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FTIR spectroscopy may provide a specific, rapid, and inexpensive method for successful 

classification of Colletotrichum coccodes isolates into Vegetative Compatibility Groups. 
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Abstract 

Colletotrichum coccodes (C. coccodes) is a pathogenic fungus that causes anthracnose on tomatoes and 

black dot disease in potatoes. It is considered as a seed tuber and soil-borne pathogen that is difficult to 

control. C. coccodes isolates are classified into Vegetative Compatibility Groups (VCGs). Early 

classification of isolates into VCGs is of great importance for a better understanding of the epidemiology 

of the disease and improving its control. Moreover, the differentiation among these isolates and the 

assignment of newly-discovered isolates enables control of the disease in its early stages. Distinguishing 

between isolates using microbiological or genetical methods are time-consuming, and not always 

available. Our results show that it is possible to assign the isolates into their VCGs and to classify them 

in the isolate level with a high success rate using Principal Component Analysis (PCA) and Linear 

Discriminant Analysis (LDA). 

Keywords: C. coccodes, Infrared spectroscopy, VCG, PCA, LDA. 
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Introduction 

 The use of Fourier Transform InfraRed-Attenuated Total Reflection (FTIR-ATR) spectroscopy 

in tandem with multivariate analysis and advanced statistical methods for soil-borne fungi classification 

has increased usage worldwide1-4. Investigation of C. coccodes is very important because this pathogen 

attacks a variety of plants and crops, causing premature death of the plants and severe damage to tubers5-
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7, reducing their marketability and resulting in significant economic loss8-10. C. coccodes is responsible 

for up to 50% of crop losses, as indicated by experimental studies in the U.S.A. 11, Israel 12, U.K.10, and 

Malaysia13. Moreover, C. coccodes is responsible for additional economic losses to the seed industry, 

particularly to the export market 14. 

 Classic microbiological, biochemical, immunological, and molecular methods are the primary 

means currently used to detect and characterize fungal pathogens. Classic microbiological methods are 

based on visual and microscopic observations of the fungus, after it has been cultivated in selective 

media15. These methods are time-consuming10 (often taking weeks), with low specificity16. In addition to 

these restrictions, these methods have limited success in also differentiating among different fungi at 

species or isolates levels17, 18. Biochemical methods are limited at the isolates level because the specific 

biochemical variations between different isolates of the same species are not well understood 19. 

Immunological methods rely on the interactions between a specific antibody and one of the pathogen 

proteins20, 21, and depend on the availability of specific monoclonal antibodies appropriate to the tested 

fungi. Molecular methods are based on the Polymerase Chain Reaction (PCR). In samples that have 

available primers, specific DNA fragments are amplified22. It is possible to detect C. coccodes 9, 23 using 

PCR and real-time PCR tests. Although molecular techniques are very specific they are expensive and 

not readily available for different isolates24-27.  

 Isolates that can transfer genetic material by contact 28, producing new stable heterokaryons, 

form subpopulations that tend to be similar due to a common genetic pool and are assigned to the same 

VCG. Fusarium oxysporum29-31, Verticillium 32, and Colletotrichum 33, 34 phytopathogens were classified 

into VCGs in order to study the genetic structure of their populations. Isolates that belong to the same 

VCG have similar pathogenic aggressiveness, making it important to classify any isolate to a specific 

VCG in order to improve the understanding of the epidemiology of the disease and enable its control35. 
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 The main technique for analysis of VCGs is the nitrate non-utilizing (nit) method. This technique 

relies on pairing between complementary nit mutants34, 36, 37, which are selected using a potassium 

chlorate-containing medium. Two isolates are assigned to the same VCG if their mutants can form stable 

heterokaryons 28, 37. This method is time-consuming, taking as much as one month to produce usable 

results. 

 Encouraging results in detection and characterization of various types of phytopathogens was 

reported using infrared spectroscopy1, 2, 4, 38-46. More recently, many infrared spectroscopic studies have 

been carried out to investigate the C. coccodes soil-borne fungus and classify the samples in the isolate 

level38-40. Using infrared spectroscopy, the vibrational spectrum, which is considered as a fingerprint of 

the sample, is measured. The FTIR-ATR sampling technique is based on evanescent wave absorption. 

This technique is of special interest because it could be used to identify specific spectroscopic changes 

in situ and in vivo47-49. 

 In our previous study, we examined the potential of FTIR-ATR spectroscopy as a tool for 

assigning 14 C. coccodes isolates into five VCGs50. The FTIR-ATR spectra were analysed using 

advanced statistical and mathematical tools, including PCA and LDA.  

In the present study we have taken this method one step further towards its practical application in the 

real world. Thirty five C. coccodes isolates were measured and assigned into eight VCGs that are known 

to exist in Israel; they were classified simultaneously in the isolate level.  

Materials and Methods 

Fungal isolates 

All samples were obtained from the Department of Plant Pathology, the Institute of Plant Protection, 

Agricultural Research Organization, at the Gilat Research Center, Israel. All tested samples were 

isolated from infected potato plants and tubers sampled from Southwest Negev, Israel. C. coccodes were 
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isolated from surface-sterilized (1% NaCl for 10 min) infected stems or tubers, placed on potato 

dextrose agar (PDA) plates, incubated in the dark at 27ºC for 7 days, and allowed to sporulate. Sclerotia 

were placed on potato dextrose agar (PDA) plates and incubated in the dark at 27ºC for 7 days and 

allowed to sporulate. Conidia were incubated in a medium containing 0.2% sorbose, 15% agar, and 100 

ppm streptomycin sulphate (SA) for 24 h at 27ºC in the dark. Monoconidial cultures were obtained from 

each isolate (by micromanipulation) and maintained on czapek dox agar (CDA) at 6ºC. Assignment of 

these isolates to VCGs was carried out as previously reported 37, 51. 

 Five samples of each isolate were grown in different batches at 27°C with continuous shaking for 

5 days to achieve comprehensive growth of the samples. 

 For spectroscopic measurements, fungi were separated and purified by spinning about 1.5 ml of 

the fungal suspension at 13200 rpm for 4 minutes, washing the pellet 4 times with distilled water, and 

suspending it with about 1 ml distilled water.  

Sample preparation 

Special precautions should be taken in preparing homogeneous fungi samples for measurements. Due to 

their complicated structures, and due to the fact that fungal hyphae have the ability to highly aggregate 

in water, we encountered some difficulties in preparing a homogeneous suspension of the fungi in water 

and spreading them evenly on the ZnSe crystal surface of the ATR accessory. We made the fungal 

sample as homogeneous as possible, by cutting the sample into smaller fragments through repeated 

pipetting. Thus it was easier to spread the sample across the ATR zinc selenide crystal (trapezoid shape, 

80 mm long, 10 mm wide and 4 mm thick) in order to obtain a high signal spectrum. About 500 µl of 

each fungal suspension sample was spread as homogenously as possible on the surface of the ATR ZnSe 

crystal (to cover the entire crystal surface), air dried for about 30 minutes, and thereafter measured by 

ATR spectroscopy.  
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We measured the spectra that were prepared from different batches and bottles at the same conditions 

(including the use of the same preparation and isolation techniques, the same methods of drying the 

sample, and using the same spectrometer).  

In this study, 911 measurements were performed from 35 different isolates.  At the same time, about 12 

different fungal isolates were isolated from the potatoes crops in parallel, purified, grown and measured 

as described before; one sample from each isolate a day. In one day 12 measurements belonged to 12 

different isolates were measured on average. We continued measuring the samples in the next day one 

measurements from each isolate. In one week, seven measurements from each isolate were obtained. 

The purified isolates were stored at 4 C  during the entire week of the measurements.  

In the successive week, the same 12 isolates were grown in fresh media for 5 days and we repeated the 

measurements as detailed above until acquiring all the planned measurements.  

FTIR measurements 

We used Tensor 27 (Bruker Optic Germany) in the ATR mode, attached to DTGS detector. The ATR 

uses a ZnSe crystal (PIKE technologies) with a trapezoid shape. The samples were air dried before 

measurements, and were scanned 64 times in the range of 675-4000 cm-1, with a 4 cm-1 spectral 

resolution.  

Spectral Manipulation 

Table 1 summarizes the VCG, isolates, and the number of measurements acquired from each VCG 

measured in this study.  

All the spectra were manipulated using the same protocol, which employed the “OPUS 7” (Bruker, 

Germany) commercial software program. 
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Table 1: Details of the VCGs, the isolates, and the number of measurements included in this study. 

 VCG 

Number 

Number of 

isolates 

Number of 

measurements 

 1 
2 
3 
4 
5 
6 
7 
8 

4 
4 
5 
6 
4 
4 
4 
4 

102 
104 
119 
154 
115 
96 

111 
110 

Sum 8 VCGs 35 Isolates 911 measurements 
 

ATR correction: The ATR correction is essential and should be to correct for the different penetration 

depth at different wavelengths of the radiation. The ATR crystal is of a trapezoid shape and is 80 mm 

long, 10 mm wide, and 4 mm thick (chosen to produce optimum performance). The ATR crystal should 

be chosen carefully so its a refractive index is much higher than that of the sample. In our case, the angle 

of incidence is 45°, the critical internal reflection angle is about 33.4° (assuming a refractive index of 2.4 

for the ZnSe crystal at 1000 cm-1, and the sample refractive index is 1.35) 52-54. Thus we insure a total 

internal reflection inside the crystal. The larger penetration depth yields greater absorption at higher 

wavelengths and thus, the maxima of the bands are red-shifted in the ATR measurements.  

Smoothing: Smoothing was performed using the Savitzky-Golay algorithm with 13 points. 

Bisecting: The spectra were then bisected into two regions (900-1775 cm-1 and 2800-3000 cm-1), to 

exclude the water absorption bands (3000-4000 cm-1) and the "dead" region (1775-2800 cm-1). 

Baseline correction: Baseline correction was employed by choosing the “concave rubberband” 

algorithm with the following parameters: number of baseline points equals 64 (i.e., the spectrum is 

divided into 64 equally sized ranges); and an equal number of iterations. 

Vector normalization: The average intensity y  is calculated and subtracted from the spectrum (
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i iy y y= − ). A new spectrum is defined by i
i

yx
S

=


, where 2

1

N

i
i

S y
=

=∑   (variance). The vector norm of 

the resulting spectrum therefore equals 1 ( 2

1
1

N

i
i

x
=

=∑ ). 

Offset: The spectrum minimum after vector normalization is shifted to zero.  

Supplementary Figure1 shows some of our spectra before and after manipulation. Supplementary Figure 

1a shows IR absorption spectra as raw data after ATR correction. Supplementary Figure1b shows the 

same spectra after manipulation before and after vector normalization.   

We focused in our analysis on the 900-1775 cm-1 region55  because it gave the best classification results 

 

PCA and LDA Statistical Analysis  

PCA and LDA are widely used as differentiation tools56 in problems involving biological samples38, 39, 

54. PCA is first applied over the spectroscopic measurement. The latter is the raw pattern recognition 

feature vector. Consider a set of N measurements, each containing D  points (intensity versus wave-

number) (D=506 in our case). A vector in a D-dimensional space represents each measurement. PCA 

refers to a linear transformation for which a new basis is chosen to represent this vector. The first basis 

vector (PC1) is the one with maximal variance; the other PCs are chosen with decreasing variances57. 

The new basis corresponds to the eigenvectors of the covariance matrix 
1

1 ( )( )
N

T
n n

n
x x x x

N =

Σ = − −∑  , 

where { }1, , Nx x  is the set of measurements (column vectors) and x  is its mean (T denotes the 

transpose operation). The variance of the data projected to a given principal axis equals to the 

eigenvalue of the corresponding eigenvector.  

Applying PCA leads to dimensional reduction58, 59 and may lead to recognition improvement: in the 

PCA procedure only a partial set of the basis vectors are chosen to represent the sample (in this work 
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 Supplementary Figure 1: Five absorption spectra of different isolates. (a) region 675-4000 cm-1, as 

raw data before and after ATR correction. (b) region 900-1775cm-1, after manipulation (cutting and 

smoothing) before and after vector normalization. 
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PC1-PCd, with1 d D≤ ≤ ), and therefore the new feature vector has less dimensions than the original 

one. Moreover, in many problems the variability is correlated with the separability38, 39, 54, so that 

properly choosing d  will lead to a better feature vectors in the separability sense.  After applying the 

PCA procedure, we use Fisher linear classifier: the probability density of each class c  (out of C  

classes) is assumed to be a Gaussian centered around the mean kµ , and all the classes share the same 

covariance matrix Σ . The category of a given measurement x   is then given by    

{ }
( )1 1

1, ,

1arg max log
2

T T
c c c c

c C
x µ µ µ π− −

∈

 Σ − Σ + 
 

, where /c cN Nπ = , and cN  is the number of measurements 

that belong to category c . 

 The identification success was calculated using two variants of k-fold cross-validation frequently 

applied in pattern recognition. Leave one out (LOO) 58 was the first variant used and obtained when 

k N= , where N is the number of data points. The LOO approach is generally used for small amounts of 

data. The second was 5-folds, i.e., 20-80% when 80% of the data was used for training and 20% for 

testing.  

We performed PCA on the spectra followed by Fisher linear classifier after all the manipulations 

(Supplementary Figure 1b). We applied Fisher linear classifier with the LOO method 911 times (the 

number of spectra), where each time we took 910 spectra for training, and we predicted the type of the 

911th spectrum. With the 20-80% method we applied the Fisher linear classifier calculations 100 times. 

Each time 80% of the results were used for training and 20% for validation. The training sets were 

chosen randomly from the results with an aim to include spectra from all categories.  
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Results 

Typical infrared absorption spectra of C. coccodes isolates are shown in Figure 1. The spectra are 

averages of 11 isolates belonging to 4 different VCGs, chosen arbitrarily from the isolates investigated 

in this study. Each VCG is represented with a different color. The standard deviations of four isolates, 

one for each VCG, are plotted as error bars in the figure.  

 

Figure 1: Average spectra of 11 C. coccodes isolates belonging to 4 different VCGs are shown in the 

900-1775 cm-1 range. The VCGs are plotted with different colors. The numbers in the text box refer to 

the serial number labels chosen for the different isolates. The error bars are the standard deviation of the 

four isolates associated with different VCGs as labelled in the figure. 

 

The spectra are dominated by a large peak in the 1185–900 cm-1 range2. Polysaccharide carbohydrates 

and nucleic acid vibrations are the main contributors in this region. Chitin, a molecule specific to fungi, 
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absorbs at 1151 cm-1 and 1078 cm-1, due to its C-O and C-C stretching vibrations60, 61. C-O stretching 

vibration of glycogen62 attributes at 1024 cm-1. Amide III bands of proteins61 attribute at 1240-1310 cm-

1. The P=O functional groups  of proteins, nucleic acids and phospholipids attribute at 1085-1090 cm-1 

due to their symmetric stretching and at 1220-1250 cm-1  due to their anti-symmetric stretching 63. 

Lipids63, sugar rings64, 65, and phosphate compounds66, 67 attribute to the absorption bands in the 1185-

1485 cm-1 range. 

Amide I (C=O carbonyl stretch) and Amide II (C-N stretching and a CNH bending vibrations)68 

with centroids, at 1650 cm-1  and 1553 cm-1 respectively, are considered to be the main features in the 

800-1775 cm-1  region. The principal spectral features in the 2800-3000 cm-1 region (data not shown) are 

contributed mainly from phospholipids62 proteins  due to the CH2  and CH3 functional group (symmetric 

and anti-symmetric stretching) with vibrational bands centered at 2853 and 2922 cm-1.  

As can be seen from Figure 1, the spectra of the different isolates are overlapped with their error 

bars, although there remain small but identifiable differences in the intensities and shapes at different 

wavenumbers when they are compared as couples. For example, in the range centered at 1400 cm-1, the 

red isolates are clearly different than the green isolates, whereas the latter overlap with the black isolates 

in this range. Looking carefully at the figure, there are some differences between the isolates that belong 

to the same VCG 7 (labelled in red) in this range, but still they are significantly different from the other 

tested VCGs.  

The measured spectra were transformed by PCA. Graphs based on two or three PC dimensions 

can provide a distinction between several groups. We tried many 2D and 3D plots of the PCA scores of 

the eight VCGs but the results were poor. In order to obtain good separation between all eight VCGs we 

should consider much higher PCs following by Fisher linear classifier. 
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An interesting question is how many PCs should optimally be used in the multivariate analysis? 

Using PCA calculations we find a new orthogonal basis by which all the spectra are calculated.  For 

example, in Figure 2(a), each spectrum was presented as a linear combination of ten loadings (labelled 

“calculated”), in order to demonstrate the power of PCA in our study (where instead of using 506 

components we need only up to 39 components). The measured spectrum (blue) and the calculated 

spectra were compared using different PC numbers. A good agreement was achieved using 39 PCs 

illustrating the feasibility and the high accuracy of the PCA method employed in the present study. 

Figure 2: Comparison between the measured and the calculated spectra based on different PCs number selected in the 

range of 900-1775 cm-1. The measured spectrum is the same in the four panels, while the calculated spectra were calculated 

using: (a) 10 PCs, (b) 20 PCs, (c) 30 PCs and (d) 39 PCs.  The best agreement between the measured and the calculated 

spectra was achieved in (d) revealing a good agreement and illustrating the feasibility and the high accuracy of the chosen 

analysis.  

 

Page 14 of 25Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



14 
 

Figure 3 (a&b) shows the identification success rate, stated in percentage, as a function of PC number 

for assigning the isolates into their VCGs and for the isolate level classification. The identification 

success rate was calculated by Fisher linear classifier using the LOO and 20-80% algorithms. The 

identification success for assigning the isolates into their VCGs was 85.7% 2.9%±  using the 20-80% 

method and 86.3% using the LOO method with 39 PCs. 

 

Figure 3: Identification success rates versus PCs number for the two classification procedures. The identification success 

was calculated using the LOO and the 20-80% approaches. a) VCGs level and b) isolate level. 
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The identification results obtained using the LOO method, for classification of the different samples into 

VCGs, and differentiation between them at the isolates level, are shown in Table 2 (a) and 2 (b), 

respectively. It is important to mention that the choice of 39 PCs was based on variance consideration; 

however for the classification purposes it is better to increase the number of PCs as can be seen in 

Figure 3a. 

Table 2 (a, b): Success identification rates presented as a confusion matrix of (a) Colletotrichum 

coccodes VCGs, (b) Colletotrichum coccodes isolates (labelled as C). Identifications were obtained 

using Fisher linear classifier calculations and the LOO algorithm in the 900-1775 cm-1 low wavenumber 

region. 

a) 

 VCG 1 VCG 2 VCG 3 VCG 4 VCG 5 VCG 6 VCG 7 VCG 8 

VCG 1 99 0 2 0 0 0 1 0 

VCG 2 0 92 5 0 0 1 6 0 

VCG 3 0 0 107 6 5 0 1 0 

VCG 4 0 0 5 144 0 0 4 1 

VCG 5 7 0 0 8 80 2 18 0 

VCG 6 0 0 7 0 17 71 1 0 

VCG 7 12 0 1 0 1 0 96 1 

VCG 8 0 1 0 0 10 0 2 97 

 

Discussion 

The classification of C. coccodes samples in the isolates level and assigning them into their VCGs was 

carried out using the FTIR-ATR spectroscopic method, in tandem with multivariate analysis with PCA 

followed by Fisher linear classifier 55. Simple methods like K-means, clustering, and spectral biomarkers 
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were not able to achieve these goals. Using the FTIR-ATR method takes only a few minutes to 

determine the VCG of a certain isolate. Moreover, the method is fully computerized, highly objective, 

and the examined isolates can be assigned into VCGs and classified at the isolate level simultaneously. 

These achievements provide distinct advantages over classical methods, because the pairing between 

complementary nit mutants34, 36, 37 for VCGs, can take about one month to reach the same determination.  

In the PCA calculations, the spectra were transformed to another domain by mathematical 

transformation. In this domain, the transformed spectra are easier to use for further analysis. 

The biological samples used in this study are isolates that belong to the same species. They are 

similar in their genome, components, and structure39, 40. This similarity is reflected in their infrared 

absorption spectra, as shown in Figure 1. The spectra overlap in their error bars and have only minute 

differences. When the differences among the classes are large, as, for example, in different generic 

samples, 2D figures based on projections of two PCs were sufficient to differentiate among them38. In 

this study, the large number of isolates, taken from the entire group of eight known VCGs, and the 

similarity of these isolates, makes the differentiation into VCGs between these samples a challenge for 

multivariate analysis. We tried different projections at different directions, but the differentiation results 

were poor. The conclusion was that a more sophisticated classifier is needed to achieve the classification 

for all the investigated groups simultaneously. Therefore, we used Fisher linear classifier with LOO and 

20-80% algorithms combined with the PCA calculation. The LOO algorithm is a common method used 

for cross-validation in small populations59, and has been extensively explored in machine learning for 

estimating the error. There is an excellent correlation between the results of the two approaches as can 

be seen from Figure 2.  

Choosing the number of PCs is an interesting issue.  The interclass variance in the isolates level was 

much less than the interclass variance in the VCG level. VCG class consists of few isolates. The 
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b)  

 101 104 105 107 11 121 124 133 138 145 14 150 154 15 166 177 190 192 19 20 21 24 25 27 2 30 31 4 56 5 69 6 70 83 88 

101 21 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0 8 0 0 0 0 0 0 0 0 0 

104 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

105 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

107 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

121 0 0 0 0 0 18 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

124 0 0 0 0 0 0 31 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 

133 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

138 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

145 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 7 0 0 0 3 0 0 0 0 0 0 0 0 0 

150 0 0 0 0 0 0 2 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 

154 0 0 0 0 0 0 0 0 5 0 0 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

166 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 

177 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

190 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

192 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 4 

24 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 

30 2 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 3 0 0 0 

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 

56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 14 0 0 0 0 0 

69 0 0 0 0 0 0 2 0 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 23 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 10 0 0 0 

70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 

83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0 

88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 
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changes in the interclass variance was reflected in the number of PCs that were needed to achieve good 

classification (Figure 3a and 3b ). Using 39 PCs, it was possible to achieve ~ 97% success rate in the 

classification in the isolate level and ~ 85% success rate in assigning these samples into eight VCGs. 

As mentioned in material and methods, the loadings which accounts for the high variance are not 

always the most separable directions. At the same time, the fact that some high PC loading has small 

variance does not necessarily indicate that it has no positive impact on the separability of the data. There 

is no reason to assume that there is a correlation between preserving the signal's variance and the 

classification abilities of the projected data. Such a correlation might be found empirically on specific 

data for a specific task. There are two popular approaches to define the number of principal components: 

1. Dimensionality reduction task while preserving most of the signal’s variance: in this approach the 

variance to be preserved is determined and the minimal number of principle components (with the 

highest eigenvalues) which satisfy the variance constraint is chosen. 

2. Cross validation: When the goal is to classify the data, as in our case, the number of principal 

components needed to preserve the signal's energy is not relevant. In this case, the data is divided into 

three sets: training, development, and test. The eigenvalues and the eigenvectors are calculated for the 

training set and sorted in decreasing order. Then, for the first d components, where d=1,2,3, ..., the 

classifier is trained. Each classifier is tested on the development set. The best classifier, i.e., one that 

gives the lowest classification error, is tested on the test set.  

When the total amount of data is small, it is difficult to have a sufficient amount of data for training, 

development, and test sets. Instead, the k-folds approach is applied, and in the extreme cases, the method 

turns to LOO. The LOO method has a drawback in that the training sets are highly correlated. 

Nevertheless, what is more important is that the test sets are disjoint sets (and as the samples are 

assumed to be statistically independent, therefore all the test sets are statistically independent). For a 
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very small amount of data this assumption is the price that must be paid in order to have a sufficient 

amount of data for training (correlation matrix for PCA and the classifier). 

In addition, for the VCG classification where we had enough data, we performed cross-validation by 

dividing the data into three sets: 60% for training, 20% for development (determining the PCs number to 

be used) and 20% for test validation. The training, development, and test sets were determined 

randomly. We repeated these experiments 10 times; the results are listed in the following Table 3. The 

average error between identification success for the development and the test set was less than 2.0 %. It 

is important to emphasized that the original vector dimension was 506. 

Table 3: Successful identification rates of assigning C. coccodes samples into their VCGs, using cross validation approach 

based on the 900-1775 cm-1 low wavenumber region. The data was divided into 3 sets 60% for PCA calculation 20% for 

development (determining the PCs number to be used) and 20% for test validation. 

 Optimal PC number Success rate for the 
development set 

Success rate for the test 
set. 

Error in 
percentage 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

80 
95 
80 
82 
89 
94 
92 
95 
97 
79 

98.9 
98.4 
98.4 
99.5 
95.1 
89.4 
99.5 
98.4 
99.5 
97.8 
 

96.2 
97.3 
94.5 
95.1 
95.6 
95.6 
98.4 
95.6 
99.5 
96.2 

2.7 
1.1 
3.9 
4.4 
0.5 
2.8 
1.1 
2.8 
0 
1.6 

 

The aim of the PCA is not to improve the classification performance (sometimes it could 

happen) but to preserve the classification performance using features’ vectors which have lower 

dimensions. As a consequence, such dimensionality reduction can save computer resources as memories 

and processing time and simplifying the classifier69. 

In this field, choosing the number of PCs depends on the number of classes, the level of 

classification (genus, species or isolates), and the sample type. For example, when investigating three 

biological systems belonging to different genera, with typically large class differences, 3 PCs were 
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found enough to yield excellent success rate39. In other study of differentiating among 15 isolates of  

Colletotrichum coccodes40, 16 PCs were used to achieve 90% success rate  in the region 800-1775 cm-1.  

In the present study we used 35 isolates of the same species of Colletotrichum coccodes the feature 

vector has 506 dimensions. Employing PCA, the vector dimension was reduced to 39 (Figure 2). Thus  

the vector dimension after dimensionality reduction is ~8% relative to the original vector size compared 

to speaker recognition field where the ratio was up to 50%70.  

The prediction of the validation sets was done by our system and was based on different features 

of the classified categories derived from the training sets. This method is always improved by enlarging 

the number of spectra; because the number of training sets is enlarged, thus the results of the 

differentiation are improved. 

The differences derived by our system, which enabled us to differentiate among the various 

classes, could not be related to specific IR absorption bands, but were instead spread over the entire 

region. This feature is a limitation of infrared spectroscopy. Nevertheless, this limitation does not affect 

the practical advantages of the FTIR-ATR spectroscopy system together with multivariate analysis, 

because the main issue of the VCG classification procedure can be achieved with a good success rate of 

85 %. It will be interesting to find out and identify the biomarkers which might lead to higher success 

rate. Trevisan71 et al. suggest a method based on  a general frame work for biomarker identification 

applicable to the FTIR datasets. It is worthwhile to test this method and make a correlation with biology 

in a further study.  

We used a model for the ATR correction developed by Bruker Optic Germany to correct for the 

different penetration depth at different wavelengths of the radiation which may lead to the red shift52-54. 

Although the above Bruker ATR correction model is simple, it helps to partially compensate for this 

phenomena. This issue is much more significant when the analyzed spectra were measured using 

Page 21 of 25 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



21 
 

different sampling techniques such as transmission and ATR. In this study, however, all the spectra were 

measured using the same ATR sampling technique.  

It is very important to develop the FTIR-ATR spectroscopic method in this field of research as it 

is similar to the remote fiber-optic probes technique which may lead in the future to the highly desired in 

vivo measurements.  

Conclusions 

In this study, we showed that the method of FTIR-ATR spectroscopy in tandem with multivariate PCA 

and LDA calculations could be a practical method for assigning C. coccodes isolates into their VCGs, 

while simultaneously classifying the sample in the isolate level. In fact, all known VCGs of C. coccodes 

in Israel were used in this study and were successfully classified by this method. The technique was 

proved as an effective and promising method for classifying the samples into VCGs and for a rapid 

identification of various fungal isolates, with some notable advantages over the standard microbiological 

methods. Further examination of all the known isolates of C. coccodes in Israel is required in order to 

fully establish the potential of this spectroscopic method for accurate classification of fungal isolates 

into VCGs, and for a rapid identification of these isolates. Moreover, this method should be applied for 

different genus and species samples, in attempts to assign them into their VCGs. 
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