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Abstract  

Aquatic toxicity is an important endpoint in evaluation of chemical adverse effects on 

ecosystems. In this study, in silico models were developed for prediction of chemical aquatic toxicity 

on different fish species. At first a large data set containing 6422 data points on aquatic toxicity with 

1906 diverse chemicals was constructed. Using molecular descriptors and fingerprints to represent the 5 

molecules, local and global models were then developed with five machine learning methods based on 

three fish species (rainbow trout, fathead minnow and bluegill sunfish). In local models, both binary 

and ternary classification models were obtained for each of the three fish species. For the global 

models, data of all the three fish species were used together. The predictive accuracy of both local and 

global models was around 0.8 for test sets. Meanwhile, data on sheepshead minnow were used as 10 

external validation set. For the best local model (model 2) the predictive accuracy was 0.875 for 

sheepshead minnow, while for the best global model (model 14) the predictive accuracy was 0.872 for 

sheepshead minnow. The FN compounds in model 2 and model 14 were 18 and 10, respectively. 

Hence, model 14 was the best model, and can predict other fish species’ toxicity. Furthermore, 

information gain and ChemoTyper methods were used to identify toxic substructures which might 15 

significantly correlate with chemical aquatic toxicity. This study provided critical tools for early 

evaluation of chemical aquatic toxicity in environmental hazard assessment. 
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1 Introduction 

In the past decades humanity has witnessed unprecedented growth and prosperity, however, this 

growth has been accompanied by environmental pollution and natural resource depletion. The release 

of chemicals continues to affect all aspects of natural resources including the atmosphere, water, soil 

and wildlife. Chemicals are an integral part of daily life in today’s world. Therefore, it is very urgent to 5 

assess the potential risk of chemicals to our health and environment. For water pollution, fish is usually 

used as the model species to evaluate chemical aquatic toxicity. Among various fishes, fathead 

minnow (Pimephales promelas) is the most widely used in North America
1
. For example, the U.S. 

EPA uses fathead minnow toxicity test as one of the management models. Experimental determination 

of the acute fish toxicity usually contains animal test, resulting in LC50 (lethal concentration 50%) 10 

values
2
. However, there is an increasing need in reducing or replacing animal test for regulatory 

purposes. Both in vitro assays and in silico methods are hence developed as non-animal alternatives
2-6

. 

To date, a large number of computational methods have been committed to the development of 

reliable prediction models of toxicity on fathead minnow. Those models can be divided into three 

categories: local models based on mode of action (MOA)
7-10

, local models based on specific functional 15 

groups
11-15

 and global models
16-27

. Among them, local models based on specific functional groups only 

could be used for assessment of specific compounds. If a compound contains multiple functional 

groups, it is difficult to be classified according to functional groups. For the local models based on 

mode of action, there is a need to know the mode of action of the compounds before assessment. 

However, such information is very difficult to be obtained, often requires expertise or clues provided 20 

by experiments. Therefore, local models have some limitations in application. The most practical 

model is global model, which need not consider the information of functional group or mode of action 

in chemicals. However, compared with the local ones, the global models usually apply different 
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toxicity data in model building. Hence, global models are more difficult to be developed with high 

accuracy than local ones. 

In practice, as the first step of hazard risk assessment, we only need to know a compound is toxic 

or non-toxic, highly toxic or slightly toxic, rather than its exact toxicity value. Chemical category 

approach is hence suitable for that purpose. The U.S. EPA has defined chemical toxicity categories of 5 

aquatic organisms. As shown in Table 1, chemical aquatic toxicity can be divided into five categories, 

i.e. very highly toxic, highly toxic, moderately toxic, slightly toxic, and practically nontoxic. Since 

2001, the OECD Environmental Outlooks have used icons of red, yellow and green traffic lights to 

highlight the magnitude and direction of pressures on environment and environmental conditions
28

. So 

we also can use the traffic lights to describe the category of toxicity. Red light indicates the compound 10 

is very highly toxic or highly toxic, and yellow light means it is moderately toxic. In the same way, 

green light means the compound is slightly toxic or non-toxic. 

Previously published models only considered chemical aquatic toxicity on one fish species, such 

as fathead minnow, which seriously limits the application of those models on other fish species. 

Hence, in this study, we aimed to build both local and global models for the prediction of chemical 15 

aquatic toxicity on various fish species. Specifically, three fish species, i.e. fathead minnow (FHM), 

bluegill sunfish (BS, Lepomis macrochirus) and rainbow trout (RT, Oncorhynchus mykiss), were used. 

In local models, both binary classification and ternary classification model were constructed. Only one 

fish species was used in one local model. The results demonstrated that binary classification models 

were better than the ternary ones. Hence, binary classification was used for further study. Sheepshead 20 

minnow (Cyprinodon variegatus variegatus) were used in external validation set to verify the 

performance of each local model. In global models, three fish species (BS, FHM and RT) were used 

together. 10-fold cross validation and external validation sets verified that the performance of the 
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global models was better than that of local models. The predictive models built here would be very 

useful for assessment of chemical aquatic toxicity. 

 

2 Materials and methods 

2.1 Data collection and preparation 5 

All chemical acute aquatic toxicity data were obtained from the U.S. EPA ECOTOX database 

(released at June 14, 2013) 
29

. Only the data tested in 96 hours on fresh water fish with LC50 values 

were chosen for this study. In particular, data on warm water fish FHM and BS as well as cold water 

fish RT were used to develop the predictive models, while data on sheepshead minnow was selected as 

external set to validate the models. 10 

Chemical 2D structures were obtained from the U.S. EPA Aggregated Computational Toxicology 

Resource (ACToR) database
30

 by CAS Registry Number (CASRN) using in-house scripts. All 

structures were double checked with the PubChem database
31

. The data were prepared in following 

steps. At first, compounds containing inorganic and organometallic, salts, and mixtures were removed. 

Next, based on the U.S. EPA guideline of toxicity categories (Table 1), the compounds were classified 15 

into three levels (high, moderate and low toxicity or red-yellow-green) and two levels (red/yellow-

green), separately. If one compound had several data points for the same fish species, we followed the 

rule of “to reduce false negative (FN)”, which means the most toxic data is selected if the data points 

belong to the same category. Otherwise we double check the conflicted compound in other database 

such as IUPAC, and decide to keep it or not. Finally the data set was randomly divided into training set 20 

and test set with the ratio of 80% vs. 20%. For the external validation sets, duplicated compounds with 
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the training and test sets were not removed, because one compound might have different toxicity on 

different fish species. 

2.2 Molecular representation 

PaDEL-Descriptor
32

 was used to calculate the descriptors (1D and 2D descriptors) of all the 

compounds. Descriptors with more than 95% zero value or zero variance were removed. The 5 

remaining descriptors were used for further chemical feature reduction. F-score and Pearson 

correlation coefficient were used together to select the descriptors, where F-score calculated the 

correlation between endpoint and descriptors, and Pearson correlation coefficient calculated the 

correlation between descriptors. The cutoff value of Pearson correlation coefficient between each 

descriptor was set to 0.8. Substructure fingerprints (FP4) were also calculated using PaDEL-Descriptor, 10 

the detailed description of FP4 can be found on the original literature
32

. 

2.3 Model building methods 

Both local and global models were constructed. The whole workflow was shown in Supporting 

Information (SI, SI-1 Figure S1). In local models, binary and ternary classification models were built 

separately. In ternary classification models, red, yellow and green light data belong to different classes, 15 

while in binary classification models, the red light and yellow light data were combined as one class, 

and green light data as the other. The method to build ternary classification models was described in 

our previous paper
33

. In global models, only binary classification models were built based on data from 

all the three fish species (BS, FHM and RT). Five machine learning methods, including random forest 

(RF), naїve Bayes (NB), k-nearest neighbors (k-NN), C4.5 decision tree (C4.5 DT), and support vector 20 

machine (SVM), were used to build the models. These methods were performed in Orange Canvas 2.7 

(available free of charge at web site: http://www.ailab.si/orange/). 
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Support Vector Machine (SVM). SVM, originally developed by Vapnik
34

, is a supervised 

machine learning method aiming at minimizing the structural risk under the frame of VC theory. SVM 

can be used for classification and regression analysis. In this study, the Gaussian radial basis function 

(RBF) kernel was used. RBF is a popular kernel function used in SVM classification. And the 

parameters C and ϒ for RBF kernel were tuned on the training set by 10-fold cross validation.  5 

k-Nearest Neighbors (k-NN). The k-NN classification method is based on closest training 

examples in a feature space
35

. In k-NN the value of k must be odd number. Here several k values were 

used, and k = 9 was the best.  

Naïve Bayes (NB). NB
36

 is one of the most used methods for classification. In principle NB 

generates the posterior probabilities. When using NB the most important thing is to select the 10 

descriptors, which should be independent each other. The default parameters were used in this study. 

C4.5 Decision Tree (C4.5 DT). C4.5 DT is one of the oldest classification methods. It was 

defined as the possible decision tree by means of a hill climbing search based on the statistical 

property. The detailed description of C4.5 can be found in the original literature
37

. The parameters 

used here were also the default values. 15 

Random Forest (RF). RF is a combination of tree predictors, in which each tree depends on the 

values of a random vector sampled independently and with the same distribution for all trees in the 

forest
38

. RF models consist of an ensemble of decision trees, each obtained by splitting object 

collections until terminal nodes contain only objects of the same class. The output class depends on the 

mode of classes output by individual trees. In this study the number of trees in forest was set as 100, 20 

and stop splitting nodes with 5 or fewer instances. Other parameters were default. 

2.4 Evaluation of model performance  
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Models were validated with 10-fold cross validation
33

 and external validation set
39

. 10-fold cross 

validation was used to evaluate the robustness of the models, and external validation set was used to 

assess the predictive accuracy of the models. 

In binary classification, all models were evaluated based on numbers of true positives (TP), true 

negatives (TN), false positives (FP), and false negatives (FN). The sensitivity, specificity, and the 5 

overall predictive accuracy (Q) of the models were calculated as following: 
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In ternary classification models, the overall predictive accuracy was calculated as following: 
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=  

Herein, N0-0 means non-toxicity predicted as non-toxicity, N1-1 means moderate-toxicity predicted 10 

as moderate-toxicity, N2-2 means high-toxicity predicted as high-toxicity, NTotal means the total number 

in the data set. 

2.5 Analysis of toxic substructures or substructural alerts 

The toxic substructures are defined as molecular functional groups that make compounds toxic, 

which are hence used as substructual alerts. Substructural alerts were derived directly from 15 

mechanistic knowledge
40

, so they are important tools to predict toxicity. Information gain (IG) method 

was used to search substructural fragments. The detailed method was described in our previous 

papers
41-43

. Another method named ChemoTyper
44

 was also used to identify toxic substructures. 
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ChemoTyper, released on November 13, 2013, was developed under a contract from the U.S. FDA, 

Center for Food Safety and Applied Nutrition (CFSAN), Office of Food Additive Safety. 

 

3 Results 

3.1 Data collection and analysis 5 

The total data points in the U.S. EPA ECOTOX database were more than 680,000. After database 

standardization, the remaining data points were 6422 with 1906 unique compounds. These data were 

separated into training sets and test sets randomly. As shown in Table 2, the numbers of compounds in 

training set and test set of local models were 814 and 181 for FHM, 738 and 162 for BS, and 741 and 

162 for RT, separately. The data points in these three fish species were combined to develop the global 10 

models. The numbers of unique compounds in training set and test set of the global models were 1337 

and 320, respectively. The distribution of compounds in different toxic classes of training sets and test 

sets were balanced. 

When building models, the most important thing is the data quality. Hence, Tanimoto coefficient 

was used to calculate the similarity of compounds in the data sets. The heat map of Tanimoto 15 

similarity index and the average Tanimoto similarity index can be seen in SI-1 Figure S2 and Table S1. 

The average Tanimoto similarity indexes were 0.350, 0.336 and 0.351 for FHM, BS and RT data sets, 

respectively. These results indicated the good generalization ability of the models. Applicability 

domain was also an important factor when building a model. In this study, the chemical space 

distributed by these data sets was defined by molecular weight (MW) and ALogP. As illustrated in 20 

Figure 1, for each fish species, data in the training set and test set distributed in the same chemical 

space, which indicated that these models had reasonable applicability domain. 
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3.2 Molecular descriptors and fingerprints 

Totally 770 different molecular descriptors were calculated by software PaDEL-Descriptor. After 

feature reduction and variable selection by F-score and Pearson correlation coefficient methods, four 

descriptors with the highest scores commonly occurred in BS, FHM and RT data sets. They were 

CrippenLogP (Crippen's LogP), ATSm1 (ATS autocorrelation descriptor, weighted by scaled atomic 5 

mass), SwHBa (Sum of E-States for weak Hydrogen Bond acceptors), and ETA_dEpsilon_D (a 

measure of contribution of hydrogen bond donor atoms). The detailed descriptions of these descriptors 

can be found in the original literature 
45-50

. Hence, these four descriptors were used in model building. 

In order to identify toxic substances using information gain method, FP4 fingerprint was also 

calculated for each molecule with software PaDEL-Descriptor. 10 

3.3 Local model building and evaluation 

In local models, both binary and ternary classification models were built by five machine learning 

methods using molecular descriptors or fingerprints to represent the molecules, which led to 20 models 

for each fish species, including 10 binary classification models and 10 ternary classification models. 

10-fold cross validation method was used to evaluate the model robustness. The performance of these 15 

models was summarized in SI-2. When using 4 physicochemical descriptors to build models, RF and 

k-NN algorithms led to better results (shown in SI-2). For example, for FHM, the 10-fold cross 

validation results demonstrated that the areas under the receiver operating characteristic (AUC) of 4D-

RF and 4D-k-NN models were 0.836 and 0.819, respectively. When using FP4 to build models, RF 

and SVM algorithms got better robustness. For example, for BS, the 10-flod cross validation results 20 

showed that the AUC values of FP4-RF and FP4-SVM models were 0.807 and 0.819, respectively. 

Hence, in the follow study, these four types of models were used for further validation in each data set. 

Test set and external validation set were used to assess the predictive accuracy of the models. For each 
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data set, the performance of these four types of models was shown in SI-1 Table S2 and Table S3. 

Binary classification and ternary classification models were constructed for each single data set 

(BS, FHM and RT). In each model, the performance for test sets was shown in Figure 2, in which 

green color means the number of correctly predicted compounds, while yellow and red colors indicate 

the number of misclassified compounds. The red color was the most priority one (FN compounds). In 5 

local models, models 1-12 were binary classification models and models a-l were ternary classification 

models. As shown in Figure 2A-C, for each data set (BS, FHM and RT) the green colored column in 

binary classification models were higher than that in ternary classification models, which means the 

performance of binary classification models were better than that of ternary ones. This also indicated 

that current machine learning methods might not be suitable for ternary classification models. Hence, 10 

in the following study only binary classification models were constructed. 

To further evaluate the performance of these binary classification models (model ID 1-12), 

sheepshead minnow data set was used as external validation set, which contained 367 compounds, 

including 136 high toxic compounds, 103 moderate toxic compounds and 128 low toxic compounds 

(Table 2). The results were listed in Table 3. As shown in Table 3, the Q values in models 1-4 ranged 15 

from 0.798 to 0.875, in models 5-8 ranged from 0.668 to 0.779, and in models 9-12 from 0.768 to 

0.839, which demonstrated that the models built from BS and RT data sets were better than those from 

FHM data set. The distribution of toxic and non-toxic compounds in BS and RT data sets were more 

balanced than in FHM data set, which might be one of the reasons to affect the performance of the 

models. Among these local models, according to Q value, model 2 yielded the best prediction result (Q 20 

= 0.875 and SE = 0.925). In model 2 4 physicochemical descriptors and k-NN algorithms were used to 

get higher Q value, but FN value in this model was not the best one. The FN values in models 2-4 were 

18, 10, and 13, respectively (Table 3). In models 3 and 4 FP4 was used to describe molecules. The 

model with the lowest FN value was models 9 and 11, both with the value of 4. But the Q values in 
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these two models were 0.768 and 0.782, which were not good enough. 

Comparing the validation results in each data set, we found that models from BS data set had 

higher Q values, and models from RT data set had lower FN values. In order to get one model with 

higher Q value and lower FN value, these three data sets (BS, FHM and RT) were combined to build 

global models. 5 

3.4 Global model building and evaluation 

The generalization ability of a model decides the reliability of the model. The data set to build 

global models contained both warm water fish (BS and FHM) and cold water fish (RT). Hence, the 

application domain of the global models was wider. Test set and external validation set were used to 

verify the robust and applicability of the global models. The performance of test set results was 10 

summarized in SI-1 Table S2. The performance of external validation set was listed in Table 3 as 

models 13-16. In these 4 models, the SE values ranged from 0.824 to 0.958, and model 14 yielded the 

best performance. The Q value and FN value in model 14 were 0.872 and 10, respectively (Table 3). 

According to the Q value and FN value, model 14 was the best one. The performance of validation set 

in global models were shown in Figure 2D. 15 

3.5 Comparison with ECOSAR 

The Ecological Structure Activity Relationships (ECOSAR) program is a computerized predictive 

system that estimates aquatic toxicity
51

. To compare the accuracy of our models, ECOSAR was used 

to predict the chemical aquatic toxicity of our external validation set. As shown in Table 3, ECOSAR 

led to Q = 0.801, SE = 0.854, SP = 0.703 and FN = 35. The predictive accuracy and FN values were 20 

inferior to ours, which indicated that our models are better than ECOSAR. 

3.6 Identification of toxic substructures 
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To investigate structural differences between toxic and nontoxic compounds, IG method was 

performed to identify toxic substructures in FHM, BS and RT data sets based on FP4 fingerprint. 

According to the values of IG, p(positive) and p(negative), we obtained 25 substructures in FHM data 

set, 28 substructures in BS data set and 23 substructures in RT data set. The threshold of 

p(positive)/p(negative) was more than 3. Among these substructures, 6 presented in all the three data 5 

sets (see Table 4). They were diaryl ether, quaternary aliph ammonium, chloroalkene, sulfenic 

derivatives, and phosphoric acid derivatives. Some substructures were found more toxic in FHM (see 

SI-1 Table S4), including alkene, arylchloride and aryliodide. 

Meanwhile, ChemoTyper was also used to find toxic substructures. And the substructures 

quaternary aliph ammonium and phosphoric acid derivatives in Table 4 were also identified by 10 

ChemoTyper. 

In Table 4, if an oxygen or sulfur atom bridged two benzene rings, the compound may have para-

hydroxyl or halogen just like bisphenol A (BPA), a toxic component in some plastics. Phosphoric acid 

derivatives are phosphorus fragments. Most of phosphonic acid derivatives, phosphoric trimester and 

phosphoric acid derivatives are pesticides. They can inhibit the activity of cholinesterase, resulting in 15 

the accumulation of acetylcholine, which was the neurotransmitter of cholinergic receptor, and then the 

cholinergic nerve system function will be disordered. They can also effect on cholinergic receptor 

directly, leading the next neuron or effector to excessive excitement or inhibition
52

. These substructure 

alerts were very important in ecological risk assessment and can help us to find toxic compounds. 

 20 

4 Discussion 

4.1 Data set analysis 
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Chemical diversity is a key factor that influences the prediction capability of models. A large data 

set containing 6422 data points with aquatic toxicity was constructed and used traffic lights (red, 

yellow and green) to make the data set visible. High toxic, moderated toxic and low toxic molecules 

were colored in red, yellow and green, respectively. Two warm water fish (FHM and BS) and cold 

water fish (RT) data were used for model building; meanwhile sheepshead minnow was selected as 5 

external validation set. Previously, Martin et al
9
 used 924 chemicals to build linear discriminant and 

random forest models, Singh et al
53

 used 505 fish toxicity data to build multispecies models. Most of 

these models were based on relatively small data sets or only one fish species. Compared with those 

published models, our models were built on the basis of more data points, more compounds and more 

fish species with different living environment. These models hence have wider domain of 10 

applicability.  

In order to explore data distribution in the chemical structural space, the radar chart
43

 analysis was 

performed to explore the applicability domain of the global models. Five physicochemical descriptors, 

including these four selected descriptors (CrippenLogP, ATSm1, SwHBa, and ETA_dEpsilon_D) and 

molecular weight, were used in the radar chart. As shown in SI-1 Figure S3, the CrippenLogP ranged 15 

from -13.270 to 15.399; ATSm1 ranged from 3.360 to 342.690; SwHBa ranged from -12.659 to 

45.429; the ETA_dEpsilon_D ranged from 0 to 0.3; and the molecular weights ranged from 44.053 to 

792.848 for global model data set. These data indicated that our models could be used in a large 

chemical space (All the data sets were provided in SI-3). 

4.2 Analysis of different models 20 

Four physicochemical descriptors and FP4 fingerprints combine with five machine learning 

method were used to build local and global classification models. The data sets in local models only 

contained one fish species (BS, FHM or RT) and in global models contained all the three species. 
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In local models, both binary classification and ternary classification models were built. As shown 

in Figure 2, binary classification models performed better than ternary ones, so binary models were 

studied further. For binary models, 10-flod cross validation verified that four models, i.e. 4D-RF, 4D-

k-NN, FP4-RF and FP4-SVM, were better than the others. After external validation, model 2 from BS 

data set was identified as the best one in terms of Q values. Though the Q value of model 2 was pretty 5 

high, its FN value was not as good as models 9 and 11, which were built from RT data set. 

Among global models, as shown in Table 3, model 14 was the best one. The Q, SE and SP values 

of model 14 were 0.872, 0.958 and 0.711, respectively. Compared with model 2, the best model in 

local models, their Q values were quite similar, 0.875 for model 2 vs. 0.872 for model 14. However, 

their FN values were pretty different, 18 in model 2 vs. 10 in model 14. This indicated that model 14 10 

was better than model 2. Hence, model 14 was the best one and can predict toxicity of other fish 

species. 

Model 14 was built from 4 physicochemical descriptors and k-NN algorithm. k-NN algorithm 

was a non-parametric method, the input consists of the k closest training examples in the feature space, 

and the output depends on whether k-NN is used for classification. In model 14, the 4 physicochemical 15 

descriptors were used to calculate the Euclidean distance from the training set for each object. The 

representation of receiver operating characteristics (ROC) plots also shown that model 14 was a little 

better than the others from the aspect of AUC. As shown in Figure S4 of SI-1, the AUC value of model 

14 was 0.887, a little higher than the others. Hence, when using physicochemical descriptors to 

represent molecules, k-NN can get better modeling results. And in this study model 14 was the best 20 

one. 

4.3 Relevance of selected descriptors to aquatic toxicity 
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The selection of molecular descriptors was very important for model building. To increase the 

interpretability of models, the relationships between eco-toxicity data of the 1337 chemicals and 4 

selected physicochemical descriptors, including CrippenLogP, ATSm1, SwHBa and ETA_dEpsilon_D, 

are present in Figure 3. 

Among these 4 descriptors, CrippenLogP is related to hydrophobicity, which distributed between 5 

-13.270 and 15.399, with mean of 2.739. The mean values of CrippenLogP were 3.553 and 1.751 in 

toxic and non-toxic molecules, respectively, which suggests that chemical aquatic toxicity increases as 

the rise of hydrophobicity. The p-value of CrippenLogP was 2.00e
-55

, indicating that distributions of 

toxic and non-toxic are significantly different. As shown in Figure 3A, toxic molecules tend to be more 

lipophilic then non-toxic molecules. ATSm1 was an ATS autocorrelation descriptor, weighted by 10 

scaled atomic mass. ATSm1 values distributed between 3.360 and 342.691, with a mean of 28.340. 

The mean values of ATSm1 were 34.361 and 21.031 in toxic and non-toxic molecules, respectively. 

This indicated that toxic molecules were favorable for higher ATSm1 values. The p-value of ATSm1 

was 9.21e
-22

, indicating that distributions of toxic and non-toxic are significantly different (Figure 3B). 

Hydrogen binding ability is commonly represented by SwHBa and ETA_dEpsilon_D. SwHBa means 15 

the sum of E-States for weak hydrogen bond acceptors and ETA_dEpsilon_D means a measure of 

contribution of hydrogen bond donor atoms. The p-value between SwHBa and ETA_dEpsilon_D were 

7.70e
-23

 and 1.76e
-20

, respectively. This indicated that the distributions of toxic and non-toxic are 

significantly different. As shown in Figure 3C and D, higher SwHBa value and lower 

ETA_dEpsilon_D value tend to be toxic molecules. 20 

Actually, chemical aquatic toxicity was a complex process which is related to many factors, such 

as chemical, biological and environmental conditions. Therefore, it is very difficult to explain their 

mechanisms using only one or few descriptors. 

Page 16 of 34Toxicology Research

To
xi

co
lo

gy
R

es
ea

rc
h

A
cc

ep
te

d
M

an
us

cr
ip

t



  

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |  17 

4.4 Analysis of misclassified compounds 

The global model using 4 physical descriptors and k-NN algorithm achieved excellent predictive 

ability (model 14). Nevertheless, some compounds in external validation set were still predicted 

incorrectly. As shown in Table 3, there were 10 toxic compounds in validation set predicted as non-

toxic (FN compounds) by the model. These 10 compounds were listed in Figure 4, including 5 

bromoform (75-25-2), butyl ether (142-96-1), phosmet (732-11-6), amitraz (33089-61-1), bufencarb 

(8065-36-9), benomyl (17804-35-2), mandipropamid (374726-62-2), pyrimethanil (53112-28-0),  

flufenpyr-ethyl (188489-07-8), indaziflam (950782-86-2), and flufenpyr-ethyl (188489-07-8). Among 

them, 8 ones were pesticide. The other two compounds, compared with other fish species, were more 

toxic, including bromoform and butyl ether. Bromoform was a brominated organic solvent, but in salt 10 

water containing up to 1.3 ppm (parts per million) 
54

. Sheepshead minnow can live in fresh water and 

salt water, hence, bromoform had higher toxic in sheepshead minnow and our model misclassified it.  

Butyl ether was low toxic in BS but higher toxic in sheepshead minnow, just like alkene, arylchloride 

and aryliodide in FHM were higher toxic (shown in SI-1 Table S4). Among the 8 pesticides, phosmet, 

amitraz and bufencarb were insecticides, benomyl, mandipropamid and pyrimethanil were fungicides, 15 

indaziflam and flufenpyr-ethyl were herbicides. Model 14 used 4 physicochemical descriptors to 

describe molecules. As we discussed above the mean value of CrippenLogP were 3.553 in toxic. 

However, 6 of the 8 pesticides had logP value less than 3.553, including phosmet, amitraz, bufencarb, 

benomyl, mandipropamid and indaziflam. The ATSm1 value in pyrimethanil was 1.608 which even 

lower than the mean value in non-toxic compounds. The SwHBa value in flufenpyr-ethyl was -1.454 20 

which even lower than the mean value in non-toxic compounds. These are the reasons that our model 

misclassified them. 
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5 Conclusions 

In this study, a large data set containing 6422 data points with aquatic toxicity was constructed. 

Based on these data, both local and global models were built for the prediction of chemical aquatic 

toxicity with C4.5 DT, RF, NB, k-NN, and SVM algorithms. In local models, binary classification and 

ternary classification models were constructed separately. For local models, the ternary classification 5 

models can get better false negative (“2-0”) than binary ones, but the overall accuracy of the ternary 

classification models was not good enough. Sheepshead minnow data set were used to validate all the 

models, the results showed that global models can predict toxicity of different fish species, which 

indicates our models have wider domain of applicability. The best local and global models will be 

integrated as part of our web server admetSAR, which is freely available on 10 

http://lmmd.ecust.edu.cn/admetsar1/. 

In the study, traffic lights were used to label aquatic toxicity categories, which could make the 

models vividly and easy to judge the toxicity by color. IG and ChemoTyper methods were used to 

identify some toxic substructures among toxic chemicals, which would be helpful for understanding 

mechanism of action and structural modification to reduce or remove the toxicity. This kind of 15 

classification strategy might be promoted to other toxicity endpoints such as acute oral toxicity, skin 

sensitivity, liver toxicity, and so on. 
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Table 1. Chemical toxicity categories in aquatic organisms 

Toxicity category 
Aquatic organisms acute concentration 

(PPM) 

Ternary 

classification 

Binary 

classification 

very highly toxic < 0.1 2 (red light) 1 (red light) 

highly toxic 0.1 - 1 2 (red light) 1 (red light) 

moderately toxic > 1 - 10 1 (yellow light) 1 (red light) 

slightly toxic > 10 - 100 0 (green light) 0 (green light) 

nontoxic > 100 0 (green light) 0 (green light) 
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Table 2. The data points after database standardization 

Toxicity FHM BS RT 
others 

species 

sheepshead 

minnow 
total 

High 219 329 361 1592 136 2501 

Moderate 253 233 251 954 103 1691 

Low 523 338 291 1078 128 2230 

Total 995 900 903 3624 367 6422 

 Training set (80%) Test set (20%) 
Validation 

set 

 FHM BS RT Global FHM BS RT Global 
sheepshead 

minnow 

High 183 260 291 408 36 69 70 93 136 

Moderate 202 197 205 325 51 36 46 93 103 

Low 429 281 245 604 94 57 46 134 128 

Total 814 738 741 1337 181 162 162 320 367 

 

 

 5 
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Table 3. The performance of models for external validation set
a 

   Methods 
Model 

ID 
Q SE SP FP FN 

sheepshead 

minnow 

(367） 

Local 

models 

BS 

4D-RF 1 0.815 0.887 0.680 41 27 

4D-k-NN 2 0.875 0.925 0.781 28 18 

FP4-RF 3 0.798 0.958 0.500 64 10 

FP4-SVM 4 0.826 0.946 0.602 51 13 

FHM 

4D-RF 5 0.779 0.782 0.773 29 52 

4D-k-NN 6 0.752 0.824 0.617 49 42 

FP4-RF 7 0.668 0.615 0.766 30 92 

FP4-SVM 8 0.733 0.782 0.641 46 52 

RT 

4D-RF 9 0.768 0.983 0.367 81 4 

4D-k-NN 10 0.839 0.933 0.664 52 19 

FP4-RF 11 0.782 0.983 0.406 76 4 

FP4-SVM 12 0.798 0.971 0.477 67 7 

Global models 

4D-RF 13 0.798 0.824 0.750 32 42 

4D-k-NN 14 0.872 0.958 0.711 37 10 

FP4-RF 15 0.798 0.925 0.563 56 18 

FP4-SVM 16 0.831 0.950 0.609 50 12 

ECOSAR 0.801 0.854 0.703 38 35 

a 
RF: random forest. k-NN: k-nearest neighbors. SVM: support vector machine. 4D: 4 

physicochemical descriptors. FP4: substructure fingerprints.  
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Table 4. The common substructure alerts identified in FHM, BS and RT data sets 

Fragments Examples 

 

  
 

 
 

786-19-6 55-38-9 

Alkylarylthioether  LC50=0.22 PPM LC50=1.683 PPM 

 

 

 

 

  

831-82-3 79124-76-8 

Diarylether LC50=4.95 PPM LC50=0.3 PPM 

 

 

 

 

 

 

26062-79-3 5538-94-3 

Quaternary aliph 

ammonium 
LC50=0.22 PPM LC50=5.2 PPM 

 

 

 

 

  

87-68-3 542-75-6 

Chloroalkene LC50=0.09 PPM LC50=0.239 PPM 

 

 

 

 

  

882-33-7 629-19-6 

Sulfenic derivatives LC50=0.11 PPM LC50=2.62 PPM 

 

 

 

 

 

 

5598-52-7 86-50-0 

Phosphoric acid 

derivatives 
LC50=0.0021 PPM LC50=0.0317 PPM 

N+
CH3H3C

H2C
CH2
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Figure Captions 

Figure 1. Diversity analysis of chemicals in the training set and test set. A) BS data sets; B) FHM 

data sets; C) RT data sets; D) data sets used in global models. 

Figure 2. The predictive results of test sets and validation sets with local models and global models. 

Model ID 1-12: local binary classification models; a-l: local ternary classification models; 13-16: 

global models. (A) BS test set with local models; (B) FHM test set with local models; (C) RT test 

set with local models; (D) external validation set with both local and global models. 

Figure 3. Distributions of 4 physicochemical descriptors including CrippenLogP, ATSm1, SwHBa 

and ETA_dEpsilon_D for toxic and non-toxic classification. p-value: Student’s t test was used to 

determine if two data sets are significantly different from each other. 

Figure 4. FN compounds in external validation set. 
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Figure 1. Diversity analysis of chemicals in the training set and test set. A) BS data sets; B) FHM 

data sets; C) RT data sets; D) data sets used in global models. 
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Figure 2. The predictive results of test sets and validation sets with local models and global models. 

Model ID 1-12: local binary classification models; a-l: local ternary classification models; 13-16: 

global models. (A) BS test set with local models; (B) FHM test set with local models; (C) RT test 

set with local models; (D) external validation set with both local and global models. 
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Figure 3. Distributions of 4 physicochemical descriptors including CrippenLogP, ATSm1, SwHBa 

and ETA_dEpsilon_D for toxic and non-toxic classification. p-value: Student’s t test was used to 

determine if two data sets are significantly different from each other. 
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Figure 4. FN compounds in external validation set. 
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