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Abstract 

Adverse drug reactions (ADRs) are associated with most drugs, often discovered late in 

drug development and sometimes only during extended course of clinical use. They are 

linked either to the therapeutic target or pathway, or could emerge as the consequence 

of known or unknown off-target effect(s) of a drug or drug combinations.  ADRs are a 

major burden on patients, medical professionals and the society in general. Discovery of 

intolerable ADRs during clinical trials significantly contributes to high attrition rates with 

associated rising cost. Thus, prediction of ADRs at the early stage of drug discovery is 

an emerging approach; however, it remains a challenging task to identify the mode of 

action of drug candidates which might lead to ADRs. We review here the 

implementation of in vitro and in silico tools streamlined for the prediction of ADRs as 

early as the target/lead identification and lead optimization phases of the drug discovery 

process. This integrated approach has been developed during the past decade by both 

academic institutions and the pharmaceutical industry with the aim to provide 

toxicological analysis, assessment and ranking of drug candidates on a broad scale. 

The major aim is to be able to mitigate targets associated with ADRs earlier and guide 

chemistry to address the therapeutic and side effects in parallel.  The major 

components of this effort are (1) experimental approach:  early in vitro safety profiling 

linked to (2) computational toxicology algorithms and models utilizing statistics, data 

mining, cheminformatics and system biology. The third component embraces the 

translational aspect for clinical ADRs, which includes in vivo exposure. In this review we 

focus on the prediction of the integrated molecular network approach.  
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The burden of adverse drug reactions 

 “A main factor contributing to increased drug-related expenses has roots in early drug 

discovery; the cost, however, will appear in the clinic”1.  Namely, the majority of safety 

issues manifest during clinical trials and post-approval. Historically, safety assessment 

of drug candidates was left to the end of the drug discovery process, when it 

contributedto Go/NoGo decisions, almost exclusively based on in vivo safety 

pharmacological observations and histopathological data.  Hazard identification in 

parallel with optimization for potency and surrogate biological effect was almost 

completely non-existent.  This “purist” approach has resulted in large-scale attrition rate 

during clinical trials and with drugs entering the clinic without knowledge of therapeutic 

target or off-target related side effects, leading to several withdrawals and numerous 

box labels2. It is not a surprise that side effects of individual drugs or drug combinations 

generate a significant expense in healthcare and early safety assessment has been 

introduced by the pharmaceutical industry and more stringent rules are demanded by 

the regulatory authorities.  

Side effects, or adverse drug reactions (ADRs) can result from either non-therapeutic 

effects associated with the primary target, e.g. in a different organ (e.g., CNS effects of 

H1 antihistamines3), or by unintended effects on “off-targets” such as inhibition of the 

human ether a go-go related gene (hERG) potassium channel resulting in pro-

arrhythmic QT prolongation4. It is important to note, that any protein could become off-

target when engaged unintentionally and can generate side effects. As an example, 

inhibition of the 5-HT3 channel could be a therapeutic target for narcolepsy, however 

blocked as an off-target could cause prolonged wakefulness and insomnia.   
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Side effects could develop acutely, concomitant with the therapeutic effect of a drug or 

as a delayed chronic ADR, such as was observed following treatment of breast cancer 

with tyrosine kinase inhibitors (TKIs)5,6. ADRs are however complex phenomena, which 

can have multiple factors, such as pathway perturbations, pharmacokinetic 

components, drug-drug-interaction issues, metabolic components and formation of 

reactive metabolites. In this review, we will focus on the possible prediction of on- and 

off-target effects, using a practical combination of early in vitro assessment and 

computational models and algorithms that aim at establishing a link between molecules, 

their biological (off)-targets, and ADRs. 

Up to date cardiac and hepatic toxicities have been the leading reasons for attrition and 

labelling7.  These side effects largely develop because of off-target activity of drugs and 

their metabolites. Even though prediction of pro-arrhythmic potential of drugs has 

improved considerably, other aspects of cardiotoxicity, such as development of 

cardiomyopathies or valvular heart disease, significantly contributed to cardiovascular 

side effects8,9.  Idiosyncratic drug-induced liver injury (DILI) is another leading ADR with 

various underlying mechanisms.  Recently, newly developed in vitro and in silico 

technologies have been implemented to assess drug-drug interactions, toxic effects of 

reactive metabolites and link hepatobiliary hepatotoxicity to bile transporters10,11.  

The emerging landscape is that as we learn more about mechanisms of action 

underlying toxic effects, the term “idiosyncratic” is removed from an increasing number 

of ADRs. This is true not just for hepatic and cardiovascular toxicity, but in general for all 

organ-linked ADRs12. Importantly, we have learnt to address mitigation of off-target 

effects and producing drugs with less pharmacological promiscuity13,14, in particular 
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concerning “antitargets”12,14,15.  For example, preclinical assessment of cardiac ion 

channel inhibition can support a well-defined mitigation process prior to candidate 

selection and prevents compounds, with potent effects at these channels, entering 

clinical trials. Consensus within the pharmaceutical industry concerning target-based 

profiling practices was covered by recent reviews12,16.     

Early awareness of safety hazards 

Increasing regulatory requirements contributed to extensive preclinical safety 

assessment of compounds at an earlier stage of drug discovery17. Clinical trials 

involving broader patient populations in multiple centers and inclusion of expensive and 

time consuming safety related procedures are more common requirements18,19,20.  It is 

in interest of the pharmaceutical industry to be prepared for such investigations, thus 

early assessment of hazards associated with molecular targets and pathways are 

gaining ground and enter the domain of registration expectations18,19.  As an added 

benefit, data accumulated by in vitro safety profiling opened the gate to the 

development of in silico tools with predictive power for ADRs21,22. This stems from two 

aspects of early safety assessment:  target molecule-ADR associations became known, 

however the experimental approach of testing a large set of molecules in a very broad 

pharmacology space is neither technically nor financially feasible.  Thus, linking 

“chemical space” to ADRs via molecular networks using comparably inexpensive in 

silico models, which can be applied on a large scale, represents a viable approach to fill 

this gap.  
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Introduction of secondary pharmacology to support early safety assessment 

Adverse drug reactions rarely appear as a single symptom or manifest in one particular 

biomarker. In practice, most drugs are associated with a selection of adverse events, 

creating a characteristic phenotype.  This depends on the therapeutic and off-target 

profile of the drug, access to the different organs and patient population.  However, to 

find ways to mitigate ADRs during the drug discovery process, we need to identify 

individual targets associated with particular side effects.  This is where in vitro 

secondary pharmacology comes into scope12,17.  It can be done at the beginning of the 

drug discovery process, in parallel with lead selection and optimization at a low cost. 

However, this approach only works if data generated in these assays or assay panels 

are predictive for well-defined ADRs in humans.  Therefore, reverse translation is used 

to link ADRs to targets/pathways for the identification of targets to be included into the 

target-based safety profiling panels.   Some on-target ADRs of drugs are relatively easy 

to identify based on their intended, known pharmacology. For example, PDE3 inhibition 

is well known to increase the incidence of death in congestive heart failure patients23 

because of longer-term consequences of its intended positive inotropic effect.  The 

diagram using reverse translation for identifying target-related ADRs is presented in 

Figure 1.  This approach is based on the assumption that identical ADRs of medicines 

for diverse indications are likely to be associated with the same target or a close target 

in the same pathway. The schematic diagram highlights in orange the crucial step 

where the connection between the ADR and target is established. While this has been 

achieved in the past to great extent by experimental approach based on empirical data, 

development of novel in silico methods applying Bayesian models24,25 and molecular 
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network approach21,26,27 offer predictions of novel drug-target-ADR associations as will 

be discussed later. 

In the absence of drugs in the clinic, OMIM, animal data from KO/KI experiments and in 

vivo pharmacology will provide information on targets and associated phenotypes which 

help to recognize ADRs in the clinical settings.  Target-ADR associations based on 

animal data have lesser confidence value because translation for clinical ADRs will 

depend on species specificity of targets, relative potency of compounds, 

pharmacokinetic factors and differences in animal and human phenotypes associated 

with the same or closely homologous proteins.   

Let’s consider the benefits and limitations of in vitro secondary pharmacology.  It is 

important to emphasize that it provides alerts for safety hazards by identifying off-

targets. In vitro secondary pharmacology assessment could fall short in the prediction of 

clinical manifestation of the off-target effects.  It is relatively easy to predict unwanted 

off-target effects; however, their manifestation and translation to ADRs is determined by 

the complex pharmacodynamics/pharmacokinetic performance of the drug candidate 

under clinical conditions.  The potency at the off-targets should be considered in the 

context of exposure, which is significantly defined by the maximum free available drug 

concentration at the site of therapeutic action in the organism28.  Most often the free 

Cmax is used for this purpose, but AUC can be considered if more relevant. In general, 

this simple calculation will forecast whether the hazard would represent a safety risk 

during clinical application.  Once the risk has been established,  in vitro profiling assays 

can lead mitigation during lead optimization by defining and applying structure-activity 

relationship (SAR), and guide the preclinical safety assessment in finding the “no 
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observed adverse effect level” (NOAEL) for the associated ADR in case the hazard still 

persists at candidate selection.  To demonstrate the practical use of this concept, we 

consider the case of 5-HT2B (HTR2B) agonism associated with the development of 

cardiac valvular disease8: If a clinical candidate with high potency at the therapeutic 

target shows weak agonist activity at this off-target then a long-term rodent experiment 

including both echocardiography and histopathology should be considered within the 

preclinical assessment29 for the support of a final decision for further development of the 

compound.  

A valuable application of in vitro safety pharmacology assessment involves preclinical 

prediction of hazard and the associated risk for such particularly difficult, multifactorial 

ADRs as suicidal ideation.  The exclusively human aspect of this ADR lacks relevant in 

vivo evaluation.  However, once critical evidence emerges from clinical observations - in 

particular from the FDA adverse event recording system (FAERS30) - on high incidence 

of suicidal ideation of various drugs with common central nervous system (CNS) targets 

and/or off-targets, one can establish links between the target and the observed ADR.  

Testing compounds at these targets will give an opportunity for early warning for 

suicidal ideation, support mitigation and initiate in vivo testing guided by the knowledge 

of the suspect off-target.  

 

Pharmacological promiscuity and poly-pharmacology 

Pharmacological promiscuity is considered an important component in side effect 

prediction13,14. There are two aspects to be looked at: promiscuous ligands13 and 
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promiscuous targets31. While well composed target panels will consider both of these 

components, they only cover a fairly small segment of pharmacological space, whether 

they are solely proprietary, or include existing data published in literature and deposited 

in chemogenomic databases. Thus the full scale of promiscuity will remain hidden with 

the consequence of possible unexpected ADRs.  For practical purpose, relatively slim 

profiling panels of targets that received high scores for seriousness of associated ADRs 

and also for high hit rate by compounds in the test set (e.g., promiscuous targets, such 

as kinases) are implemented for regular, iterative safety assessment12,17. However, 

testing a large number of compounds for safety assessment in a very broad in vitro 

panel would be expensive and time consuming. To address this bottleneck, in silico 

models have become increasingly popular as they can cover broad chemical and 

biological space.  

In certain cases poly-pharmacology is a desirable feature. One might want to alter the 

activity of multiple targets that together result in the desired phenotype. This task is hard 

to achieve and integrate with safety profiling using traditional medicinal chemistry 

considerations, and in practice can be reliably accomplished only with the use of 

computational32 modeling. Models vary between approaches with focus on chemical or 

biological characteristics with best results when both are considered and integrated.  

 

Modeling safety aspects of drugs: Integrated molecular network approach 

Alignment of ontologies provide a solid framework for computational toxicology 
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During the past 20 years there has been a significant increase of data collection with the 

advent of automatic screening and IT technologies.  Large preclinical datasets, 

generated on a vast number of molecules in a diverse set of in vitro assays and 

collection of clinical data associated with drugs opened up opportunities for model 

building. While these advances have provided foundation for in silico approaches, the 

lack of consistent annotation, coherent ontology, and non-standard terminology created 

obstacles against fast advance. Non-uniform ontologies prove to be one of the main 

factors complicating the task of data mining across multiple databases.  Despite 

extensive standardization efforts33, discrepant coding, in particular of drug names and 

ingredients, remain a major challenge in preclinical assessment. Safety related 

assessment often follows Medicinal Dictionary for Regulatory Activities (MedDRA34) 

terms and relate to the FDA Adverse Event Reporting System (FAERS30) which 

provides the translational bridge between preclinical and clinical information. Both 

Elsevier’s Pharmapendium35 and Thomson Reuters Integrity36 are utilizing these 

resources and provide useful sources of information on marketed drugs. Despite its 

availability and easy public access, FAERS should be approached with caution, as 

multiple normalization steps are required to be done by users. Specifically, although 

ADRs in FAERS are expressed using the MedDRA ontology, the names of drugs in the 

reports are entered in free form and are not standardized. This complicates the 

monitoring of adverse events related to individual ingredients and can lead to false 

negatives in the analysis of drug – adverse drug reaction signals in this database. 

Additionally, target-ADR associations can be deduced from known gene-disease 

associations. The Online Mendelian Inheritance in Man (OMIM) database37 is an 
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example resource that can be used to predict novel ADR effects associated with 

interaction with specific targets. While OMIM was designed for human (rather than 

computer) readers, and as such does not support any ontology, some attempts have 

been undertaken to translate the OMIM terms into MeSH ontology37, and such 

translated versions of OMIM are available in some databases, such as Thomson 

Reuters Integrity36. 

Also, a large volume of data concerning safety assessments of compounds is hidden 

from public access in company databases.  To rectify this problem regulatory agencies, 

academia and industry joined resources (see coordinated efforts from EPA, NIH, FDA 

and EMEA) by generating projects on a large volume of compounds and make them 

available for open access38,39,40. 

In silico models to predict pharmacological profiles (phenotypes) of compounds 

Small molecule drug discovery is largely based on the application of structure activity 

relationship (SAR), with the assumption that similar molecular structures have similar 

biological activities, often referred to as the similarity property principle. This concept is 

primarily used for lead optimization to improve activity at the indication-specific 

therapeutic target. However, this approach can be applied to the same extent to off-

targets, since a molecule doesn’t “care” about its intended action. If the high-resolution 

target structure is known, docking can be a valuable in silico profiling approach41,42. 

Prior to addressing molecular networks associated with toxicological processes, 

phenotypes, we will discuss molecular similarity and statistical cheminformatics 

approaches which support more complex in silico methods and can be applied early in 
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the lead discovery pipeline to prioritize sets of compounds. These models opened up 

the way to interpret ADRs by connecting drugs via a network of targets to ADRs. They 

rely on the similarity property principle and utilize the increasing pharmacological 

knowledge gained through profiling efforts, including proprietary and public sources. 

The basic underlying idea is that compounds similar in their structure to known ligands 

of a target are likely to modulate that target as well. These models provide qualitative 

predictions (likely to bind / not likely to bind).  Despite this limitation, they can be readily 

applied to large and diverse compound sets, which can support early safety assessment 

for hazard identification. Thus, they are suited to prioritize compounds for screening and 

scaffold selection for further optimization, rather than to make decisions on individual 

compounds.  

Although the underlying principle is the same for many of these models, they can be 

organized based on the level of abstraction that they employ. Assume we want to 

predict off-targets of a test compound. Nearest-neighbor (NN) approaches extend the 

idea of an analogue search by assessing the overlap of unique chemical features, and 

thus quantifying molecular similarity. Thus, if the test compound is highly similar to a 

known off-target ligand, it is predicted to modulate that target as well (Figure 2). Building 

on this idea, (off-)targets are represented by a collection of their known ligands. The 

similarity of the test compound can be expressed as a simple arithmetic mean (n-NN), 

or an average of the most similar compounds (k-NN). 

Evolving this idea, Keiser et al. 43,44,45   have developed the similarity ensemble approach 

(SEA), which assigns statistical significance to this combined similarity by comparing it 

to the combined similarity of a random test compound to a random set of ligands the 

Page 12 of 35Toxicology Research

To
xi

co
lo

gy
R

es
ea

rc
h

A
cc

ep
te

d
M

an
us

cr
ip

t



13 

 

size of the target set. This approach has been applied to predict off-targets of marketed 

drugs on a large scale 21. Because it takes into account the similarity to the entire set of 

known ligands, each individual, pair-wise similarity can be rather small, but the sum can 

nevertheless be significantly higher than expected by chance. This advantage is 

reflected in the often surprising prediction for compounds that show only little structural 

resemblance to any single known ligand of a target. Based on the above, these 

approach was found suitable for testing compounds in silico for unexpected (e.g. off-) 

targets during lead optimization. While determination of affinity remains out of scope of 

this method, it is a reliable tool for hazard identification within a scaffold or for single 

molecules in conjunction with confirmation of the prediction in secondary pharmacology 

assays21. 

The next step of abstraction is statistical models, such as naive Bayes, in which 

chemical features overrepresented among known ligands are used individually to score 

the test compound. This approach is highly resistant to noise in the training data, and 

profits from a large collection of diverse target ligands for training46.   

In order to link the predicted targets to ADRs, additional data can be utilized, such as 

gene expression data47 and pharmacokinetic information which allows to identify 

biological pathways and targets associated with complex ADRs24,48. In particular, drug-

target-ADR networks employ a guilt-by-association metric to assess whether an 

observed ADR is more likely due to the primary or another well-known target, and which 

adverse events may be attributed readily to novel predicted off-targets 21. 

So far we discussed how molecular similarity and statistical approaches can be applied 

to describe targets using their ligands. However, considering sets of drugs with known 
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ADRs, these adverse events can also be represented by chemical features. Bender et 

al.25 established a proof-of-concept for predicting adverse events based on chemical 

structures alone by linking targets to ADRs through correlation in chemical feature 

space. For example, chemical features statistically overrepresented for bioactivity 

against a target in large-scale bioactivity databases may also be overrepresented 

among drugs that cause the same side effect (Figure 3). Statistical models (e.g. 

Bayesian models) can be directly compared by computing the correlation of weights 

placed on chemical features between two models (either target-target, ADR-ADR, or 

target-ADR models). These correlations are usefully visualized in correlation networks 

which can reveal groups of targets and ADRs that cluster based on chemical features 

associated with them. This line of thinking has been further developed by combining 

ADR and target associations with chemical structures together with gene-pathway 

annotations24,25. The main hypothesis is that compounds which hit different targets in 

the same pathway can cause the same phenotypic effect. By aggregating compounds 

that share the same ADR phenotype and applying in silico target prediction, pathways 

causing ADRs can be revealed. We have referred to this aspect of the above in silico 

methods in the introduction and highlighted their use for target or MoA identification in a 

reverse translation mode. In our practice, this approach plays an important role to select 

secondary pharmacology targets as well. 

Efforts on in silico ADR prediction are not isolated. There are several initiatives, 

including the European Innovative Medicines Initiative (IMI) eTOX (expert systems in 

Toxicology) Consortium49 which mines preclinical and clinical trial information never 

published by pharmaceutical companies to reveal hidden associations between 

Page 14 of 35Toxicology Research

To
xi

co
lo

gy
R

es
ea

rc
h

A
cc

ep
te

d
M

an
us

cr
ip

t



15 

 

chemical structures, target molecules/pathways and ADRs.   Several US federal 

agencies (National Toxicology Program/ National Institute of Environmental Health 

Science, National Center for Advancing Translational Sciences and the Food and Drug 

Administration) also joined forces to undertake a major screening project called Toxicity 

Testing in the 21st Century (Tox21)38 to explore the in vitro effects of drugs, 

environmental toxins and industrial/household chemicals on a large number of targets, 

scattered in the pharmacology space.  Within the frame of this massive collaboration 

about 10,000 compounds are being tested. ToxCast results generated by EPA39,40are 

contributed to the federal agency collaboration and are open for the public40 through 

user-friendly web applications called "interactive Chemical Safety for Sustainability 

Dashboards (iCSS). These projects aim to provide open access to extensive biological 

and pharmacological profiling of compounds the public is exposed to through mining 

tools linking the data to observed effects.  

Similarly, other applications of parallel pharmacophore screening have been published 

recently50,51. In fact, Oprea et al. called for an in-depth integration of these sources in 

newly developed cheminformatics tools and coined the fitting term “Systems Chemical 

Biology”52. In a first step, Scheiber et. al25 employed a large set of ligand-based protein 

target prediction models (>2000)  generated using chemical fingerprints for compounds 

from GVK Bio databases,53 WOMBAT,54 MDDR,55 and in-house Novartis databases to 

automate  ligand target prediction. Importantly, all targets were mapped to the same 

ontology (e.g., NCBI gene symbol) to enable aggregation of bioactivity data from 

different sources. Targets which were predicted for a set of compounds sharing the 

same ADR were mapped into pathways in MetaBase56 (GeneGo/Thomson Reuters) to 
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retrieve those that contain at least one of the predicted targets. Finally, pathways were 

ranked according to their most relevant link to the selected ADR. 

As computational models help to expand predictions for biological and toxicological 

effects of small molecules there is a need to establish direct link with the underlying 

pathways and mode of action.  A good example is the development of BioMAP57 and 

several other models amalgamating in silico and “organ-on-the-chip” technologies58,59. 

System biology using human cells or tissues is often applied for target prediction 

however this approach utilizes both in a very close conjunction.  Various chips model 

human conditions based on microfluidics and compartmentalized organ specific tissues, 

cell cultures, biopsies or more often stem cells or iPS cells derived from patients with 

genetic diseases.  This approach is most promising to provide early human data, 

including metabolism and pathophysiological environment resembling disease 

phenotypes58,59.  The BioMAP model was initiated to overcome the complexity of 

proteomic microarrays which are difficult to interpret. It is constructed of groups of 

primary human cell co-cultures with close resemblance of their physiological assembly, 

stimulated with biologically relevant combinations of inflammatory mediators which will 

provide a specific phenotype based on a limited number of highly  characteristic 

redouts.  Modulation of selected protein readouts by chemical agents are presented as 

activity profiles (BioMAP profiles). Statistical methods are applied to the profiles to 

identify similarities between patterns linked to mode of action prediction. The close 

amalgamation of in vitro system biology with in silico tools provides a remarkable 

system capable of identifying associations of pathways with drug biological read-outs. 

For details on BioMAP consult publications by Plavec et al.60 and Storey & Tibshirani61. 
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A recent application of BioMAP within the ToxCast program  successfully proved that 

drug-pathway pairing can be associated with toxicological liabilities and related ADRs62. 

System biology approaches have the power of providing direct human data with tissue 

or even organ-specific format, with strong ”disease phenotypic”  aspects and could 

identify biomarkers for further use in clinical trials. 

Many in silico approaches towards therapeutic and safety assessment use network 

considerations26,63,64,65, therefore it is no surprise that they have converged in recent 

years into a scientific discipline of its own. The term “network medicine”26 was coined to 

describe this field of research which includes the various methodological approaches, 

with an emphasis on the “interactome” and the general organizing principles that govern 

cellular networks.  The human interactome is a network that includes all known 

molecular interactions in the human organism.  It is divided (anthropomorphically) into 

sub-networks: protein-protein interactions, drug/ligand/substrate-protein interactions, 

protein nucleic acid interactions (regulatory, RNA, and metabolic coupling).  Modules or 

sub-networks could be identified within such interactomes that reasonably represent 

disease states26,63. In the context of drug safety, drug-target networks emphasize drug–

multiple target–pathway (or systems biology) based phenotypes63. Linking interactome 

data with cheminformatics and computational chemistry models provides a promising 

approach to computational toxicology by better understanding drug function through 

disease gene associations and interconnectedness between cellular pathways.  

Networks can model perturbed disease states by symptomatic treatment and identify 

accurate biomarkers26. Historically, drug side effects were not easy to access for data 

mining purposes. The introduction of the side-effect database, SIDER66 
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(http://sideeffects.embl.de) helped to advance side-effect network studies27. Lee et al.67 

extended the SIDER-derived side-effect networks by biological processes (Gene 

Ontology terms and PubMed data text mining). Interestingly, when SIDER data were 

combined with information about disease-associated genes, it was observed that drugs 

hitting targets 3 or more edges away in a network from disease genes yielded fewer 

side effects68. This method can be considered for rational drug design to balance 

therapeutic – ADR effects. 

Utilization of the human interactome offers a new perspective for safety assessment, 

namely the in silico application of chemical structures to perturbed pathways which is 

very rarely achieved in preclinical safety assessment models. One can expect 

significant refinement of the human interactome with accumulating information on 

molecular and developmental pathways and ADR phenotypes with the benefit of 

improving efficacy of in silico tools which are based on this approach. 

Conclusions 

The development of novel in vitro technologies in association with the emerging in silico 

methods have provided a new type of safety assessment for small molecule drug 

candidates, pushing the frontline further upstream in the drug discovery process. The 

classic, largely regulatory toxicological evaluation of single compounds has been 

complemented by an early, integrated chemical and biological network-based safety 

assessment. These models are aided by links to clinical data, using translational 

information obtained from ADRs.  The connection of all of these components could not 

be achieved without computational methods, including large scale search capabilities 

and smart algorithms enabling cheminformatics and system biology evaluation of ever 
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increasing volume of biological and chemical data. Ligand- and pathway-based in vitro 

safety profiling efforts are now closely integrated with in silico methods and provide 

decision support tools for safety assessment in conjunction with efficacy information. 

Databases generated and enhanced by academic, industrial and government 

institutions obtained from target- and pathway-based safety profiling assays provide a 

rich collection of reference data more often with synchronized annotation and recently 

with the same ontology.  This enables cross searches of large, high quality databases 

for machine learning tools and statistical models. Some of the models and databases 

are readily accessible for the scientific public, others are commercially available, or 

published as validated concepts.  

In this review we focused on the prediction of integrated molecular network approach, 

while leaving discussion on models developed to address pharmacokinetics, organ 

specific toxicity and technical aspects to other previously published excellent 

reviews69,70,71.  

Safety profiling assays supported by the integrated molecular network approach are 

now well established and part of the drug discovery process. The extensive target 

annotation, association with ADRs and consideration of pharmacokinetic aspects 

provide confidence in the translational value of this method, thus it is more and more 

used for early safety risk assessment. Acknowledging, that the vast expanse of 

chemical and biological space does not allow “limitless” testing of compounds in the 

laboratory, in silico methods are more frequently used to rectify this shortcoming. 

Importantly, they also have a great utility in the design of new molecules devoid of off-
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target effects and guide chemists to synthesize those structures which carry less or no 

hazard towards unwanted ADRs.  
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Figure 1.  Reverse translation used for identifying off-targets associated with ADRs.  

A. Drugs with unrelated therapeutic targets and effects may produce common adverse 

reactions (ADRs) in patients.  Association of the observed ADR with a common target 

by in vitro profiling of the drugs will enable the calculation of a therapeutic index (IT) 

based on available pharmacokinetic information.  Most of the time, this is defined by the 

effective free maximum plasma concentration (EFPC).  Once this process is complete 

and the effect of the drugs at the common target is confirmed by the TI, a common 

application is implemented. 

B.  In vitro target-profile of compounds in the safety pharmacology panel. Examples 

demonstrate the identification of a common off-target for Pergolide (anti-Parkinson drug) 

and nor-fenfluramine (metabolite of fenfluramine, a component used for the treatment of 

obesity). Both of these drugs cause cardiac valvular disease, a rare ADR, not observed 

by other drugs from the same class, unless 5-HT2B agonism is detected. Another anti-

Parkinson drug, Ropinirole, and Rimonabant, a CB1 antagonist drug for the indication of 

obesity do not show 5-HT2B agonism and consequently do not cause cardiac valvular 

disease. Red arrows point to results obtained in the 5-HT2B assay (agonist mode). 

 

Figure 2. A. The diagram demonstrates the application of the ligand-based in silico 

approach for off- target identification using reverse translation.  Ligand-target-ADR 

networks can be generated and searched for unknown off-targets or in a more complex 

model pathways responsible for adverse phenotypes. B. Practical application of the 

method shows the discovery of the inhibitory effect of chlorotrianisene (a synthetic 
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estrogen) at the cyclooxygenase-1 (COX-1) enzyme. In addition to the shared ADRs 

(erythema multiforme and edema) associated with both estrogen receptor activation and 

COX-1 inhibition, upper abdominal pain and rush predicted that COX-1 inhibition, a so 

far unknown off-target was inhibited by chlorotrianisene. (reprinted with permission from 

Lounkine et al.21) 

 

Figure 3. Example of computational workflow to identify compound features associated 

with target-based toxicities within an adverse event (AE) network. Compounds sharing 

common toxicity are extracted and targets for each compound are predicted by using a 

multiple category Bayes model capable of predicting over 2000 targets. The predicted 

targets are then put into the context of pathways and generate a target-ADR network. 

This way toxicity can be linked to the pathways responsible for the undesired effects 

and generate an integrated molecular network.  
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Figure 1. 
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A 

 

 

 

 

 

 

 

 

 

 

 

 

B 

 

 

 

 

 

 

 

 

 

 

 

Drug Candidate 

 

Ligand B 

Effect A1 Effect A2 Effect B1 Effect B2 

Target A Target B 

    On-target                     OFF-target 

Chlorotrianisene 
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Figure 3.   
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