Toxicology Research

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/toxicology

Full Paper

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

Interaction of Tannic Acid with Carbon Nanotubes: Enhancement of Dispersibility and Biocompatibility

Xiaoyong Zhang^{a,b,*}, Meiying Liu^{a,c}, Xiqi Zhang^b, Fengjie Deng^a, Cuiying Zhou^a, Junfeng Hui^b, Wanyun Liu^a, Yen Wei^{b,*}

s Received (in XXX, XXX) Xth XXXXXXXX 200X, Accepted Xth XXXXXXXX 200X DOI: 10.1039/b000000x

The interaction of manufactured nanomaterials with environmental and biological systems has been the subject of great research interest for a long time. In the present study, adsorption of a universal environmental organic material (named tannic acid (TA)) on carbon nanotubes (CNTs) was investigated.

- ¹⁰ The influence of CNT properties and pH values on the sorption capacity of CNTs for TA was also evaluated. Our results demonstrated that sorption capacity of CNTs was positively correlated with their specific surface areas. Furthermore, TA could effectively enhance the water dispersibility of CNTs and reduce their cytotoxicity. Our results implied that TA could influence the environmental behavior and biological responses of manufactured nanomaterials, reminding us much more attention should be paid on
- 15 the combination toxicity of nanomaterials when we evaluated their environmental impacts.

1. Introduction

With the rapid development of nanoscience and nanotechnology, a variety of manufactured nanomaterials including semiconductor quantum dots, metal oxides, metal nanoparticles, carbon ²⁰ nanomaterials, organic nanomaterials *et al* have been prepared and showed great potential applications in various fields.¹⁻¹⁶ Mass production and subsequent widespread applications of these nanomaterials will inevitably increase their release into

- environment, and arouse great attention about their toxicity to ²⁵ environment and human healthy.¹⁷⁻²² Therefore, careful examination of manufactured nanomaterials with environmental and biological systems is of great research interest. Over the past years, considerable effort has been devoted to these areas and some progress has been made. For example, previous reports
- ³⁰ have suggested that many environmental pollutants including organic materials, heavy metal ions and radioactive elements could be adsorbed on nanomaterials for their high surface areas and specific chemical properties.²³⁻³³ Adsorption of organic materials on manufactured nanomaterials might also change their
- ³⁵ water dispersibility and environmental behavior.³⁴ On the other hand, considering the potential applications of nanomaterials, the biological responses of various biological systems including different types of cells, virus, fungi, bacterials, plants and animals with manufactured nanomaterials have also been carefully
- ⁴⁰ examined.³⁵⁻⁴¹ However, to the best of our knowledge, the effect of environmental polluntants on the biological responses of manufactured nanomaterials has seldom been reported.⁴²⁻⁴⁴

Tannic acid (TA) is a relative simple dissolved organic matter (DOM) with known molecular structure, which is distributed in ⁴⁵ species throughout the plant kingdom and formed by the degradation of dead plant.⁴⁵ It has been reported that TA has

significant effect on the dispersion and mobility of nanomaterials in aqueous environment.^{31, 46} TA has also been previously regarded as the model chemical or DOM surrogates to investigate 50 the mechanism of adsorption of DOM by carbon nanotubes (CNTs).³⁴ For example, Lin et al indicated that TA could be adsorbed onto CNT surface with a sorption affinity comparable to that of DOM and enhanced the stability of CNT suspensions, suggesting that the environmental behavior or biological 55 responses of CNT may be altered due to the adsorption of TA in environment.²³ On the other hand, due to its unique structure characteristics such as polyphenol structure (Fig. S1), TA possesses strong antioxidant capability, which has been regarded as an antioxidant compound to prevent lipid oxidation and 60 radical-mediated DNA cleavage by scavenging oxygen and oxygen-derived radicals.⁴⁷⁻⁵⁰ It is therefore we can expect that biological responses of nanomaterials may be changed after they were interacted with TA.

In this contribution, CNTs were selected as model ⁶⁵ manufactured nanomaterials to investigate their interaction with TA becaused of their superior properties^{51, 52} and promising applications.^{27-29, 32, 53-58} As shown in Scheme 1, the adsorption of TA on single-walled carbon nanotube (SWNT) and four multiwalled carbon nanotubes (MWNTs) with different diameters was ⁷⁰ investigated to evaluate effect of CNT properties on the adsorption of TA by CNTs. Influence of pH values on sorption capability of CNTs was also determined. Finally, the cytotoxicity of CNTs and CNT-TA complexes was also compared. We demonstrated that TA has significant influence on the water ⁷⁵ dispersibility and biocompatibility of CNTs. These results reminded us much more attention should be paid on the environmental impact of nanomaterials because they may be interacted with other environmental pollutants.

Scheme 1 Schematic showing the experimental conditions under which the effects of TA adsorbed onto the CNTs was investigated for the corresponding dispersion and biocompatibility. TA: tannic acid, SWNT: 5 single-walled carbon nanotubes, MWNT: multi-walled carbon nanotubes.

2 Experiment sections

2.1 Materials

CNTs were purchased from Shenzhen Nanotech Port Co., China. They were one SWNT with claimed outer diameter of 1-2 ¹⁰ nm and four MWNTs with claimed outer diameters of <10 nm (MWNT10), 20-30 nm (MWNT30), 20-40 nm (MWNT40) and 60-100 nm (MWNT100). These CNTs were synthesized by chemical vapor deposition from the CH₄/H₂ mixture at 700 °C using Ni particles as a catalyst. All the CNT samples were used

- ¹⁵ without further purification and their basic properties such as diameter, length, purity, amorphous contents and special surface areas of these CNTs were provided by the supplier (Table 1.). TA was purchased from Sinopharm Group Chemical Reagent Co.Ltd (Shanghai, China) with a structure characterized as five digallic
- ²⁰ acid units ester-linked to a glucose core (Fig. S1). Detailed structure information of TA could be found in supporting information. The characterization of CNTs by scanning electron microscopy (SEM, LEO 1530 VP) and transmission electron microscopy (TEM; JEOL, JEM-2010). The high resolution TEM
- ²⁵ images were obtained using a FEI Tecnai G2 F20 TEM operated at an accelerating voltage of 200 kV. TEM grids were prepared by loading the sample dispersed ultrasonically in ethanol onto a copper grid. Thermal gravimetric analysis (TGA) was conducted on a TA instrument Q50 with a heating rate of 20 °C/min.
- ³⁰ Samples weighing between 10 and 20 mg were heated from 25 to 600 °C in air flow (60 mL/min), N₂ as the balance gas (40 mL/min). Raman spectra of CNT nanoparticles were conducted on a RM 2000 microscopic confocal Raman spectrometer (Renishaw PLC, England) employing a 514.5 nm laser beam. The
- ³⁵ X-ray photoelectron spectra (XPS) were performed on a VGESCALAB 220-IXL spectrometer using an Al K α X-ray source (1486.6 eV). The FT-IR spectra were obtained in a transmission mode on a Perkin-Elmer Spectrum 100 spectrometer (Waltham, MA, USA). Typically, 4 scans at a resolution of 1 cm⁻
- $_{40}$ ¹ were accumulated to obtain one spectrum. Brunauer–Emmett– Teller (BET) surface area, S_{BET} , of the samples was determined

from N₂ adsorption–desorption isotherms obtained at 77 K using an ASAP 2010 Suface Area Analyzer (Micromeritics Instrument, USA). Prior to measurement, all samples were outgassed for 2 h ⁴⁵ at 473 K and 0.1 Pa. Surface areas were calculated by the BET method.⁵⁹ The metal catalysts of CNT samples were detected by Inductively Coupled Plasma Mass Spectrometry (ICP-MS, Thermo Elemental, X-7). We demonstrated that the metal catalysts in CNT samples are very low (less than 1%), indicating ⁵⁰ its high purity. For example, the metal catalysts of MWNT40 is 0.63% for Fe and 0.14% for Ni.

2.2 Batch adsorption experiments

The adsorption experiments were preformed according to previous report with small modification.²³ Briefly, 8 mg of CNTs ⁵⁵ was added into 40 mL vials with 40 mL of TA solution with initial TA concentrations of 0, 5, 10, 20, 40, 100, 200 and 300 μ g mL⁻¹. The mixtures of CNTs and TA solution were sonicated in a water bath (25 °C, 40 kHz) for 15 min. And then the vials were sealed with aluminum-foul-lined Teflon screw caps and were ⁶⁰ shaken for 5 days at 25 ± 1 °C. Preliminary experiments indicated that apparent equilibrium of sorption was reached within 48 h (Fig. S5). After equilibration, they were filtered through 0.22 μ m membrane filter. The filtrate was immediately determined by a UV-Vis spectrophotometer (Hitachi, U-3010, Tokyo, Japan) at ⁶⁵ 274 nm (Fig. S4).

To study the effect of pH values on TA sorption, 8 mg of CNTs were dispersed into 40 mL solutions containing 40 μ g mL⁻¹ of TA. The initial pH values were adjusted from 1.0 to 11.0 using NaOH or HCl (1 mol L⁻¹) (The pH values after adjustment 70 could be found in supporting information Table S2). After the suspensions were shaken for 48 h at room temperature, the amounts of TA adsorbed on CNTs at different pH values were calculated by using the method in supporting information (Fig. S4).

⁷⁵ Commonly used nonlinear isotherm models (Table S1, Supporting Information) were employed to fit the sorption experiment data. All estimated model parameter values and their probabilities of assuming the null hypothesis (*p*) were determined by a plotting software program (Original 8.0). Statistical ⁸⁰ significance was accepted when *P* was less than 0.01. The goodness of fitting was evaluated by the fitting parameters adjusted square of correlation coefficient (Adj r^2 , also given by the Original 8.0) which takes into account the number of independent variables reflecting the degrees of freedom.

85 2.3 Effect of TA on the stability of CNT suspensions

Furthermore, the effects of TA on the stability of CNT suspensions were also investigated by using the method as described above. In brief, 8 mg of CNTs was dispersed into 40 mL with 40 µg mL⁻¹ of TA solution. Vials were sealed and ⁹⁰ shaken for 5 days. After equilibration, the vials were centrifuged at 3000 rpm for 20 min, and the resulting supernatants, the stable suspensions possibly with dispersed individual nanotube, were taken out and measured with a UV-Vis spectrometer at 500 nm. Because of TA has no absorbance at 500 nm (Fig. S4a), and there ⁹⁵ was a good correlation between the absorbance at this wavelength and CNT concentrations. Additional, previous reports indicated that the deposition of CNT suspensions by centrifuging at 3000 rpm for 20 min was more than that by setting for 4 days.^{23, 60} The

4 day period was used previously as the duration to examine the stabilization of CNTs in an aqueous phase. Thus, the suspended CNTs in the supernantants after centrifuging at 3000 rpm for 20 min were arbitrarily considered to be stable in TA solution.

5 2.4 The effect of TA on cytotoxicity of SWNT and MWNT40

Human lung cancer cells (A549 cells) were purchased from the Institute of Biochemistry and Cell Biology, Shanghai, China. A549 cells were cultured in RPMI-1640 medium supplemented with 10% heat-inactivated FBS, 2 mM glutamine, 100 U mL⁻¹

- ¹⁰ penicillin, and 100 μ g mL⁻¹ streptomycin. Cell culture was maintained at 37 °C in a humidified condition of 95% air and 5% CO₂ in culture medium. Cell culture medium was changed every three days for maintaining the exponential growth of the cells.
- 3-(4, 5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide 15 (MTT, sigma) cell viability assay was conducted to investigate the cytotoxicity of SWNT and MWNT40 before and after adsorption of TA according to our previous reports.⁶¹⁻⁶⁷ Briefly, 1×10^5 cells were grown in wells of a 24 well plate overnight in a volume of 1 mL. Cells were then treated with 20 µg mL⁻¹ of TA
- ²⁰ and serially diluted CNTs (0, 5, 10, 20, 40, 100 μ g mL⁻¹) for 24 h. The CNTs were sterilized by standard sterilization procedure (121 °C, 30 min) for cell culture. And then these sterilized CNTs were dispersed in cell culture medium with concentration of 2 mg mL⁻¹. Then cell culture medium was removed and cells were
- $_{25}$ washed three times with PBS to remove the TA and dead cells. 500 μl of MTT solution was added and incubated for 2 h, and 500 μl of sodium dodecyl sulfate was added to solution the MTT crystal. At the end of this period, the number of viable cells was determined by a quantitative colorimetric staining assay using a
- ³⁰ tetrazolim salt (MTT, Sigma Chemical CO.) and measured by using a microplate reader (Bio-Rad, model 680, bio-Rad CO., Hercules, USA). Cultures without cells were used as blanks. The amount of dark blue formazan dye generated by the live cells was proportional to the number of live cells. Four replicate wells were
- $_{35}$ used for each control and test concentrations per plate, and the experiment was repeated three times. Cell survival was expressed as absorbance relative to that of untreated controls. Results are presented as the mean \pm standard deviation (SD).

2.5 DPPH free radical scavenging assay

- ⁴⁰ 1,1-diphenyl-2-picryl (DPPH·) free radical scavenging assay was performed to determine the antioxidant activity of TA according to previous studies but used with slight modification.⁶², ⁶⁸ Briefly, 0.1 mM solution of DPPH· was prepared in ethanol and 0.5 mL of this solution was added 1.5 mL of TA solution in
- ⁴⁵ ethanol at different concentrations (5–40 μ g mL⁻¹). A half hour later, the absorbance was measured at 515 nm against blank samples. Lower absorbance of the reaction mixture indicates higher DPPH· free radical scavenging activity. A standard curve was set up using different concentrations of DPPH·. The DPPH·
- ⁵⁰ concentration scavenging capacity was expressed as mM in the reaction medium and calculated from the calibration curve determined by linear regression ($r^2 = 0.9972$): The capability to scavenge the DPPH radical was calculated using the following equation:
- 55 Scavenging activity (%) = (A–B)/A *100 Where A is absorbance of DPPH· and B is absorbance of DPPH· and TA combination.

3. Results and discussion

3.1 Characterization of CNTs

60 The topographical microstructure and surface morphology of the CNTs were characterized by SEM and TEM. SWNT entangled into bundles with diameters from sever to tens of nanometers due to their strong interaction between the individuals. Lots of amorphous carbon clusters or metal 65 contanimants could be clearly observed on the surface of bundles (Fig. S2a, Fig. 1a). Fig S2b shows that MWNT40 was also readily wrapped into bundles; however, the entanglement of MWNT40 was obviously reduced. The SWNT was displayed in Fig. 1a. It can be seen that bundles of SWNT with diameter 70 around 5 nm can be observed. Although a lots of high resolution TEM images were obtained, it still very difficult to obtained an individual SWNT via TEM characterization. On the contrast, the outer wall and inner wall of MWNT40 can also be easily discriminated by TEM characterization (Fig. 1b). Compared with 75 SWNT, few amorphous carbon was found by TEM. On the other hand, morphology of CNTs showed no significant change after TA was adsorbed on the CNTs (Fig. S6). However, the dispersibility of both SWNT and MWNT40 were obviously improved (Fig. S7). The enhanced water dispersibility of CNTs 80 after adsorption of TA is likely due to the introduction of hydrophilic phenolic hydroxyl groups onto CNTs. The enhancement of water dispersibility of CNTs could also been achieved by many other amphiphilic agents. For example, Kim et al compared the dispersion of SWNTs using commercial 85 available surfactant (Pluronic F-127) and a water-soluble chitosan derivates, chitosan-hydroxyphenyl acetamide (CHPA). They demonstrated CHPA is an efficient biocompatible agent for individual dispersion of SWNTs. The pendant phenyl rings on CHPA could be the main force for adsorption of CHPA on 90 SWNTs.⁶⁰

Fig. 1 TEM images of CNTs a) SWNT, scale bar = 5 nm; and b) MWNT40, scale bar = 100 nm.

It is well known that TA has ten aromatic rings and a number of ⁵ hydrophilic hydroxyl groups. When it was mixed with CNTs, the aromatic rings could readily adsorbed on the CNT surface through π - π interaction, which has been previously proposed by many other reports.²³ The hydrophilic hydroxyl groups could therefore be introduced on the surface of CNTs at the same time, ¹⁰ thus the CNTs showed enhanced dispersibility in aqueous

- solution. On the other hand, the improvement water dispersion of CNTs after adsorption of TA was further evidenced by the zetapotential measurement. For example, zeta-potential values of SWNT and MWNT40 are -14.5 ± 5.4 and -13.4 ± 5.2 eV,
- ¹⁵ respectively. The zeta-potential values were increased to -47.5 ± 3.4 and -51.2 ± 2.5 eV for SWNT-TA and MWNT40-TA, respectively. The increase of the absolute zeta-potential values could therefore increasing the electrical double layer repulsive forces, thus improving the stability of CNT suspensions.
- 20 Table 1 Properties of CNTs. Special surface areas of CNT samples were determined by BET, and other properties of CNTs were provided by the supplier.

7	Diameter	Length	Purity	Amorphous	Special surface
CNTs	(nm)	(µm)		carbon	area
SWNT	1-2	5-15	90%	5%	526
MWNT10	<10	5-15	90%	5%	272
MWNT30	10-30	5-15	95%	3%	112
MWNT40	20-40	1-2	95%	3%	102
MWNT100	60-100	5-15	95%	3%	61

3.2 Effects of CNT properties on sorption

25 Adsorption isotherms of TA on SWNT and four MWNTs were fitted by two commonly used nonlinear fitting model: Freundlich model (Fig. 2a) and Langmuir model (Fig. 2b). As shown in Fig. 2, both of them could obtain well fitting results, CNTs with different properties showed significantly different sorption 30 capability. We found that the sorption capability of SWNT and MWNT10 was obviously greater than that of MWNT30, MWNT40 and MWNT100. However, the sorption capacity of MWNT30, MWNT40 and MWNT100 shows no significant difference at given sorption concentrations. The effects of CNT 35 properties and surface functionalization on their adsorption behavior has recently reported by Wang et al.⁶⁹ Three different CNTs (SWCNTs, DWCNTs and MWCNTs) and two oxidized MWCNTs with different oxygen contents have been utilized for adsorption of heavy metal ions. They demonstrated that the 40 adsorption capacity of CNTs for heavy metal ions was dominated by the amount of surface functional groups of CNTs. On the other hand, they also suggested that most of heavy metal ions could be desorbed from CNTs in solutions with low pH values, but a small partial of them might be adsorbed on CNTs irreversibly as the 45 amount of metal ions adsorbed on CNTs increases.⁶⁹ Our results as well as the previous reports implied that the adsorption capability of CNTs to environmental pollutions could be improved by surface modification. Furthermore, our results also indicated that adsorption of TA might also influence the 50 interactions between CNTs and heavy metal ions.

Fig. 2 Adsorption isotherms of TA on CNTs, a) Freundlich model fitting results, b) Langmuir model fitting results.

Table 2 shows the Langmuir model fitting results obtained 5 from sorption data. It can be seen that the adsorption capacity (O^{0}) decreased in the order of SWNT > MWNT10 > MWNT30 > MWNT40 > MWNT100. By compared with the results of Table 1, we found that the sorption capacity of CNTs was positively correlated with their special surface areas. However, it is worth 10 noting that although the special surface areas of SWNT (526 m^2/g) is much greater than MWNT10 (272 m^2/g), their sorption capacity showed relative small difference (660 mg/g for SWNT and 517 mg/g for MWNT10), suggesting that other factors such as oxygen and amorphous carbon contents may also contribute to 15 the sorption capability of TA and CNTs. Similar results were also be demonstrated in previous reports.²⁴ As Lin et al demonstrated that the special surface areas of SWNT was larger than that of MWNT10, however their sorption capacity Q⁰ showed the opposite trend.²⁴ They speculated that SWNT may readily 20 entangled into bundles due to its greater aspect ratio and thus decreasing the sorption sites for TA. Contrast with Lin's results, we showed that the sorption capacity of SWNT is not like the expected value, it is still greater than that of MWNT10. The

difference results in this work and Lin's report is partly ascribed ²⁵ to different sorpation treatment was used.²⁴ For example, in our work, the CNTs and TA were first mixed and ultrasonic dispersed for 15 min, however, Lin's report did not use ultrasonic disperse before sorption experiments. This comparison suggested that excepted from the properties of CNTs, ultrasonic treatment could ³⁰ also influence the sorption capacity of CNTs.²⁴ Furthermore, pretreated by ultrasonic could also shorten the equilibrium time. In this study, the sorption equilibrium time is 48 h, which is significant shorter than Lin's report.²⁴ The possible reason for these difference is likely due to ultrasonic teatment could ³⁵ effectively decrease entanglement of CNT bundles.

 Table 2 Langmuir model coefficients obtained from sorption data fitting results.

CNT	Q0	p of Q ⁰	b	p of b	Adj r²
SWNT	660	<0.01	0.00835	<0.01	0.995
MWNT10	517	<0.01	0.0114	<0.01	0.999
MWNT30	131	<0.01	0.0369	<0.01	0.968
MWNT40	128	<0.01	0.0369	<0.01	0.986
MWNT100	127	<0.01	0.0206	<0.01	0.992

Note: Q^0 (mg/g) is the maximum monolayer adsorption capacity, b 40 [mg/L] constant is related to the molar heat of adsorption, Adj r^2 is the adjusted *r* square.

The Langmuir adsorption model is the most commonly used model to quantify the amount of adsorbate adsorbed on an adsorbent as a function of partial pressure or concentration at a 45 given temperature. The basic idea behind the Langmuir model is the coverage of the surface by a monomolecular layer. The model approach also assumes that only one layer molecule is adsorbed. Therefore, the CNTs with greater special surface areas (SWNT and MWNT10) showed relative better fitting results than the 50 CNTs (MWNT30, MWNT40 and MWNT100) with smaller surface areas (Adj r^2 in Table 2). One more thing should be pointed out is the special surface areas of SWNT are significant greater than that of MWNT10. However, the $Adir^2$ value is smaller than that of MWNT10. We believe the possible reason is 55 due to surface of SWNT is different from MWNT10. As described above, SWNT are readily entangled and coated by amorphous carbon. Therefore it will lead to significant different adsorption sites. However, one of the main assumptions used in Langmuir model is that all adsorption sites are equally "active". 60 Compared with Langmuir model, the Freundlich model is an important multisite adsorption model for rough surfaces. Therefore, the $Adir^2$ values obtained form Freundlich model showed no significant difference (Table 3), suggesting that sorption of TA by CNTs was complex, which was not confined in 65 carbon nanotubes surface and TA.

Table 3 Freundlich model coeficients obtained from sorption data fitting results.

CNT	Kr	P of Kr	n	Pofn	Adjr ²
SWCNT	21.7	<0.01	1.79	<0.01	0.994
MWNT10	22.9	<0.01	1.87	<0.01	0.995
MWNT30	13.44	<0.01	2.27	<0.01	0.994
MWNT40	15.74	<0.01	2.45	<0.01	0.995
MWNT100	12.2	<0.01	2.25	<0.01	0.995

Toxicology Research Accepted Manuscript

Note: Kf $[(mg/g)/(mg/L)_{1/h}]$ is Freundlich affinity coefficient, 1/n is Freundlich exponential coefficient.

- The sorption mechanism of TA by CNTs have been widely 5 investigated and discussed.^{23, 70-72} A generally accepted mechanism was that aromatic rings in the structure of TA could interact with surface of CNTs through π - π interactions. As we all known, there are ten of aromatic ringss in TA structure. Therefore the interaction between TA and CNTs are very strong. Moreover,
- ¹⁰ once TA was adsorbed on the surface of CNTs, many functional groups will also be introduced onto the surface of CNTs. They may continue interacting with TA in solution through π - π interactions and hydrogen bonds. Therefore, the sorption between TA and CNTs may not be regarded as monomolecular layer
- ¹⁵ adsorption when CNTs is dispersed in high concentration of TA solution. This could also explain why the Freundlich model is better than Langmuir model.

3.3 Effect of pH values on sorption

Fig. 3 shows the effect of pH values on the sorption of TA by ²⁰ CNTs. It can be seen that the sorption capacity of CNTs decreased with the increasing of pH values. We ascribed these results to the following reasons. For example, at high pH values, the hydoroxyl groups on TA will be ionized and thus increasing the repulsive force between TA and impeding formation of multi-

²⁵ layer TA adsorption layers. On the contrary, in low pH values, TA is likely to form multi-layer TA adsorption layers. However, it is worth noting that the influence of pH values on the sorption capacity to CNTs is significant difference. The pH values showed little influence on the sorption capacity of SWNT because it
³⁰ possessed with relative high special surface areas, which did not need to form multi-layer at the experimental concentration of TA

Fig. 3 Effects of pH values on the adsorption of TA by CNTs. The 35 concentration of CNTs is 200 μ g mL⁻¹ and initial concentration of TA is $40 \ \mu$ g mL⁻¹.

3.4 Dispersibilty of CNTs by TA

To examine the dispersibility of CNTs in TA solution, the absorbance at 500 nm were quantitatively determined by UV-Vis ⁴⁰ spectrometer. CNT-TA suspension was obtained according to the procedure as described in the experimetnal section. As shown in

Fig. 4, most of the CNT suspensions shows absorbance at 500 nm, but their absorbance is vary for different CNTs. Among them, the absorbance of MWNT30 and MWNT40 are relatively 45 high. However, the absorbance of SWNT is near to zero, suggesting that effects of TA on the dispersability of CNTs is difference. It is worth noting that the dispersibility of CNTs is not postively correlated with their adsorption capacity. As shown in Fig. 2, the SWNTs has the maxium adsorption capability, 50 however, its UV absorbance value is very low (Fig. 4). We speculated that one of the possible is the concentration of TA used in our experiment is too low. In this case, the concentration of TA is not enough for fully debundle of SWNTs. However, due to the special surface areas of MWNT30 and MWNT40 is 55 relative low, therefore TA is enough for covering the surface of these CNTs, showing significant ehnhacement of their water dispersibility. On the other hand, low efficient water dispersibility for MWCNT100 is possible ascribed to few TA was adsorbed on

Fig. 4 Absorbance of CNT suspensions after CNTs were dispersed by water solution with 40 μ g mL⁻¹ of TA.

3.5 The effect of TA on the cytotoxicity of SWNT and MWNT40

Before determination of the effect of TA on the cytotoxicity of SWNT and MWNT40, we first evaluated the cytotoxicity of TA to A549 cells. As shown in Fig. S8, dose-dependent cytotoxicity was observed. It can be seen that cell viability of A549 cells is still greater than 90% when the concentration of TA is less than $_{70}$ 20 µg mL⁻¹. Therefore, we selected this concentration for further cytotoxicity experiments. Fig. 5 shows the effect of TA on the cytotoxicity of SWNT and MWNT40. It can be seen that cytotoxicity of SWNT and MWNT40 shows dose-dependent manner to A549 cells, the cell viability of SWNT is greater than 75 that of MWNT40. Interestingly, TA could significantly decrease cytotoxicity of SWNT and MWNT40 at low dosage (< 40 µg mL⁻¹). However, when concentration of CNTs is up to 100 µg mL⁻¹, TA shows no significant effect on the cell viability of CNTs. We think the limited protect effect of TA on the 80 cytotoxicity of CNTs at high concentrations could be ascribed to the following reasons. First, more TA was coated on CNTs in low concentration, which resulted in better dispersibility and low cytotoxicity. Second, ROS production by CNTs in high

concentration has surpassed the free radical scavenging capability

of TA. Previously, some reports have studied the interaction between TA and nanomaterials, however, these reports were focused on the adsorption mechanism and effect of TA on transportation of nanomaterials in environment.²³ No studies have

- 5 reported the effects of TA on the biocompatibility of CNTs. And the protective effects of TA on the cytotoxicity of CNTs are still unclear. It is well known that many factors such as adsorption of essential micronutrients and physicochemical properties of CNTs etc. could influence the cytotoxicity of CNTs.73 To better
- 10 understanding the mechanism of protection effects of TA on CNTs, the free radical scavenging capability of TA was measured. On the other hand, it has also been reported that cytotoxicity of CNTs may be ascribled to the leaching of metal catalysts such as Fe, Co and Ni into the cell culture medium.⁷⁴
- 15 Therefore the release of metal ions from CNTs was also determined by ICP-MS. In this work, we found that almost no metal ions were detected by ICP-MS when SWNT and MWNT40 were dispersed in water for 24 h, suggesting that leaching of metal ions from CNTs is not the major reasons for the 20 cytotoxicity of CNTs.

Fig. 5 Effects of TA on the cytotoxicity of SWNT and MWNT40 to A549 cells, the concentration of TA is 20 μg mL $^{-1},$ CNTs and TA were coexposure to cells for 24 h. a) Cytotoxicity of SWNT and SWNT-TA, b) 25 cytotoxicity of MWNT40 and MWNT40-TA.

3.6 DPPH⁻ free radical scavenging assay

mixed with different concentrations of TA from concentration of 5 to 40 μ g mL⁻¹. It can be seen that the absorbance of DPPH⁻ is 30 significantly decreased after mixed with TA solution. With increase concentrations of TA, the free radical scavenging capability is significantly enhanced. We further investigated the dose-dependent radical scavenging capability of TA based on the UV absorbance at 515 nm. As shown in Fig. 6b, when the $_{35}$ concentration of TA is up to 40 µg mL⁻¹, about 75% of DPPH⁻¹ free radical was scavenged. As we all known, oxidant stress is one of the major mechanisms for CNT toxicity.75-77 Therefore, the strong free radical scavenging capability of TA may be the reason for the better biocompatibility of CNT-TA complexes. **U.4** а -- DPPH - DPPH + 5 µg/mL TA DPPH + 10 µg/mL TA 0.3 DPPH + 20 µg/mL TA Absorbance DPPH + 40 µg/mL TA 0.2

Fig. 6a shows the UV-Vis spectrum of DPPH free radical after

Fig. 6 DPPH free radical scavenging activity of different concentrations $(5-40 \ \mu g \ mL^{-1})$ of tannic acid (TA), a) absorbance of UV-Vis spectrum, b) percent of DPPH scavenging by TA. (DPPH: 1,1-diphenyl-2-picryl free radical).

4. Conclusions

45

0.1

In summary, this study showed that a universal environmental organic pollutant (TA) could be effectively adsorbed on CNTs, their sorption capacity of CNTs was positively correlated with 50 their specific surface areas. After adsorption of TA, CNTs exihibited relative higher water dispersibility. More importantly, our results further demonstrated that CNT-TA complexes showed much less cytotoxicity than that of CNTs alone. The possible reason could be ascribed to the antioxidant property of TA. All of

s these results suggested that environmental behavior as well as their biological outcome of manufactured nanomaterials could be affected by other environmental pollutants, reminding us much more attention should be paid on the combination toxicity of nanomaterials and other environmental pollutants.

10 Acknowledgements

This research was supported by the National Science Foundation of China (no. 21134004, 21201108, 51363016), and the National 973 Project (no. 2011CB935700), China Postdoctoral Science Foundation (2012M520388, 2012M520243, 2013T60100, 15 2013T60178).

Notes

^a Department of Chemistry/Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. ^bDepartment of Chemistry and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical

²⁰ Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China. ^c Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

25 xiaoyongzhang1980@gmail.com; weiyen@tsinghua.edu.cn.

† Electronic Supplementary Information (ESI) available: [SEM images of CNTs, UV-Vis spectra of TA and cytotoxicity of TA et al were provided in supplementary information]. See DOI: 10.1039/b000000x/

References

- X. Zhang, S. Wang, M. Liu, B. Yang, L. Feng, Y. Ji, L. Tao and Y. Wei, *Phys. Chem. Chem. Phys.*, 2013, **15**, 19013-19018.
- X. Michalet, F. Pinaud, L. Bentolila, J. Tsay, S. Doose, J. Li, G. Sundaresan, A. Wu, S. Gambhir and S. Weiss, *Science*, 2005, 307, 538-544.
- 35 3. M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey and P. N. Prasad, *Nano Lett.*, 2008, 8, 3834-3838.
 - P. Couleaud, V. Morosini, C. Frochot, S. Richeter, L. Raehm and J. O. Durand, *Nanoscale*, 2010, 2, 1083-1095.
 - 5. I. Díez and R. H. A. Ras, Nanoscale, 2011, 3, 1963-1970.
- ⁴⁰ 6. J. Hui, X. Zhang, Z. Zhang, S. Wang, L. Tao, Y. Wei and X. Wang, *Nanoscale*, 2012, **4**, 6967-6970.
 - 7. R. Jin, Nanoscale, 2010, 2, 343-362.
 - X. Zhang, J. Hui, B. Yang, Y. Yang, D. Fan, M. Liu, L. Tao and Y. Wei, *Polym. Chem.*, 2013, 4, 4120-4125.
- 45 9. X. Zhang, M. Liu, B. Yang, X. Zhang, Z. Chi, S. Liu, J. Xu and Y. Wei, *Polym. Chem.*, 2013, 4, 5060-5064.
 - X. Zhang, X. Zhang, B. Yang, M. Liu, W. Liu, Y. Chen and Y. Wei, *Polym. Chem.*, 2013, 4, 4317-4321.
- 11. X. Zhang, C. Fu, L. Feng, Y. Ji, L. Tao, Q. Huang, S. Li and Y. Wei, *Polymer*, 2012, **53**, 3178-3184.
- X. Zhang, S. Wang, C. Fu, L. Feng, Y. Ji, L. Tao, S. Li and Y. Wei, *Polym. Chem.*, 2012, 3, 2716-2719.
- X. Zhang, X. Zhang, B. Yang, M. Liu, W. Liu, Y. Chen and Y. Wei, *Polym. Chem.*, 2014, 5, 399-404.
- 55 14. X. Zhang, X. Zhang, B. Yang, L. Liu, J. Hui, M. Liu, Y. Chen and Y. Wei, *RSC Adv.*, 2014, 4, 10060-10066.
 - 15. X. Zhang, S. Wang, C. Zhu, M. Liu, Y. Ji, L. Feng, L. Tao and Y. Wei, *J. Colloid Interf. Sci.*, 2013, **397**, 39-44.
- 16. X. Zhang, X. Zhang, L. tao, Z. Chi, J. Xu and Y. Wei, *J. Mater.* 0 *Chem. B*, 2014, **2**, 4398-4414.

- X. Zhang, J. Yin, C. Peng, W. Hu, Z. Zhu, W. Li, C. Fan and Q. Huang, *Carbon*, 2011, 49, 986-995.
- 18. X. Zhang, W. Hu, J. Li, L. Tao and Y. Wei, *Toxicol. Res.*, 2012, 1, 62-68.
- 65 19. B. Yang, Y. Zhang, X. Zhang, L. Tao, S. Li and Y. Wei, *Polym. Chem.*, 2012, 3, 3235-3238.
 - 20. X. Cai, J. Hao, X. Zhang, B. Yu, J. Ren, C. Luo, Q. Li, Q. Huang, X. Shi and W. Li, *Toxicol. Appl. Pharm.*, 2010, **243**, 27-34.
- 21. X. Zhang, S. Wang, M. Liu, J. Hui, B. Yang, L. Tao and Y. Wei, *Toxicol. Res.*, 2013, **2**, 335-346.
- X. Zhang, J. Yin, C. Kang, J. Li, Y. Zhu, W. Li, Q. Huang and Z. Zhu, *Toxicol. Lett.*, 2010, **198**, 237-243.
- 23. D. Lin and B. Xing, Environ. Sci. Technol., 2008, 42, 5917-5923.
- 24. D. Lin and B. Xing, Environ. Sci. Technol., 2008, 42, 7254-7259.
- 75 25. G. Sheng, J. Li, D. Shao, J. Hu, C. Chen, Y. Chen and X. Wang, J. Hazard. Mater., 2010, 178, 333-340.
 - L. Wang, D. Zhu, L. Duan and W. Chen, Carbon, 2010, 48, 3906-3915.
- 27. X. Wang, C. Chen, W. Hu, A. Ding, a. Di Xu and X. Zhou, *Environ. Sci. Technol.*, 2005, **39**, 2856-2860.
- D. Xu, X. Tan, C. Chen and X. Wang, J Hazard. Mater. , 2008, 154, 407-416.
- 29. H. C. Zhang, E. Q. Guo, Y. L. Zhang, P. H. Ren and W. J. Yang, *Chem. Mater.*, 2009, **21**, 5125-5135.
- 85 30. C. Chen and X. Wang, Ind. Eng. Chem. Res., 2006, 45, 9144-9149.
- 31. J. Chen, W. Chen and D. Zhu, *Environ. Sci. Technol.*, 2008, **42**, 7225-7230.
- 32. J. Hu, C. Chen, X. Zhu and X. Wang, J Hazard. Mater. , 2009, 162, 1542-1550.
- 90 33. M. Liu, X. Zhang, B. Yang, F. Deng, Z. Huang, Y. Yang, Z. Li, X. Zhang and Y. Wei, *RSC Adv.*, 2014, **4**, 35137-35143.
 - H. Hyung, J. D. Fortner, J. B. Hughes and J. H. Kim, *Environ. Sci.* Technol., 2007, 41, 179-184.
- 35. G. Jia, H. Wang, L. Yan, X. Wang, R. Pei, T. Yan, Y. Zhao and X. *Guo, Environ. Sci. Technol.*, 2005, **39**, 1378-1383.
- J. Wang, G. Zhou, C. Chen, H. Yu, T. Wang, Y. Ma, G. Jia, Y. Gao, B. Li and J. Sun, *Toxicol. Lett.*, 2007, 168, 176-185.
- W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang and C. Fan, Acs Nano, 2010, 4, 4317-4323.
- 100 38. P. Zhang, Y. Ma, Z. Zhang, X. He, Z. Guo, R. Tai, Y. Ding, Y. Zhao and Z. Chai, *Environ. Sci. Technol.*, 2012, 46, 1834-1841.
 - C.-W. Lam, J. T. James, R. McCluskey and R. L. Hunter, *Toxicol. Sci.*, 2004, 77, 126-134.
- 40. D. B. Warheit, B. Laurence, K. L. Reed, D. Roach, G. Reynolds and ¹⁵ T. Webb, *Toxicol. Sci.*, 2004, **77**, 117-125.
- Y. Zhu, X. Zhang, J. Zhu, Q. Zhao, Y. Li, W. Li, C. Fan and Q. Huang, *Int. J. Mol. Sci.*, 2012, **13**, 12336-12348.
- P. Wick, P. Manser, L. K. Limbach, U. Dettlaff-Weglikowska, F. Krumeich, S. Roth, W. J. Stark and A. Bruinink, *Toxicol. Lett.*, 2007, 168, 121-131.
 - 43. L. Dong, K. L. Joseph, C. M. Witkowski and M. M. Craig, Nanotechnology, 2008, 19, 255702.
- 44. A. L. Alpatova, W. Shan, P. Babica, B. L. Upham, A. R. Rogensues, S. J. Masten, E. Drown, A. K. Mohanty, E. C. Alocilja and V. V. Tarabara, *Water Res.*, 2010, 44, 505-520.
 - 45. J. D. Reed, J. Anim. Sci., 1995, 73, 1516-1528.
 - 46. B. Espinasse, E. M. Hotze and M. R. Wiesner, *Environ. Sci. Technol.*, 2007, **41**, 7396-7402.
 - 47. G. K. B. Lopes, H. M. Schulman and M. Hermes-Lima, *Biochim. Biophys. Acta.*, 1999, **1472**, 142-152.
 - 48. R. Pulido, L. Bravo and F. Saura-Calixto, J. Agric. Food Chem., 2000, 48, 3396-3402.
 - C. Sánchez-Moreno, J. A. Larrauri and F. Saura-Calixto, J. Sci. Food Agric., 1998, 76, 270-276.
- 125 50. Y. Yilmaz and R. T. Toledo, J. Agric. Food Chem., 2004, 52, 255-260.
 - X. Zhang, J. Ji, X. Zhang, B. Yang, M. Liu, W. Liu, L. Tao, Y. Chen and Y. Wei, *RSC Adv.*, 2013, 3, 21817-21823.
- 52. X. Zhang, M. Liu, Y. Zhang, B. Yang, Y. Ji, L. Feng, L. Tao, S. Li and Y. Wei, *RSC Adv.*, 2012, **2**, 12153-12155.

- 53. M. Prato, K. Kostarelos and A. Bianco, Acc. Chem. Res., 2007, 41, 60-68.
- P. Bonnet, M. Gresil, H. Bizot, I. Riou, P. Bertoncini, A. Buleon and O. Chauvet, *J Nanopart. Res.*, 2010, 12, 545-550.
- 5 55. X. Peng, Y. Li, Z. Luan, Z. Di, H. Wang, B. Tian and Z. Jia, *Chem. Phys. Lett.*, 2003, **376**, 154-158.
- R. W. M. Krause, B. B. Mamba, L. N. Dlamini and S. H. Durbach, J Nanopart. Res., 2010, 12, 449-456.
- 57. N. V. Perez-Aguilar, E. Mu oz-Sandoval, P. E. Diaz-Flores and J. R. Rangel-Mendez, *J Nanopart. Res.*, 2010, **12**, 467-480.
- Q. Wang, X. Wang, Z. Chai and W. Hu, Chem. Soc. Rev. , 2013, 42, 8821-8834.
- X. Zhang, X. Zhang, S. Wang, M. Liu, Y. Zhang, L. Tao and Y. Wei, ACS Appl. Mater. Interfaces, 2013, 5, 1943-1947.
- 15 60. C. K. Najeeb, J.-H. Lee, J.-H. Kim and D. Kim, *Colloids Surf. B Biointerfaces*, 2013, **102**, 95-101.
 - X. Zhang, Y. Zhu, J. Li, Z. Zhu, J. Li, W. Li and Q. Huang, J. Nanopart. Res., 2011, 13, 6941-6952.
- 62. Y. Zhu, W. Li, Q. Li, Y. Li, Y. Li, X. Zhang and Q. Huang, *Carbon*, 2009, **47**, 1351-1358.
- 63. L. Xu, X. Zhang, C. Zhu, Y. Zhang, C. Fu, B. Yang, L. Tao and Y. Wei, *J. Biomater. Sci-Polym E*, 2013, **24**, 1564-1574.
- H. Qi, M. Liu, L. Xu, L. Feng, I. Tao, Y. Ji, X. Zhang and Y. Wei, *Toxicol. Res.*, 2013, 2, 427-433.
- 25 65. X. Zhang, S. Wang, L. Xu, Y. Ji, L. Feng, L. Tao, S. Li and Y. Wei, *Nanoscale*, 2012, 4, 5581-5584.
 - J. Li, Y. Zhu, W. Li, X. Zhang, Y. Peng and Q. Huang, *Biomaterials*, 2010, **31**, 8410-8418.
- 67. M. Liu, X. Zhang, B. Yang, F. Deng, J. Ji, Y. Yang, Z. Huang, X. Zhang and Y. Wei, *RSC Adv.*, 2014, **4**, 22294-22298.
- T. Yokozawa, C. P. Chen, E. Dong, T. Tanaka, G. I. Nonaka and I. Nishioka, *Biochem. Pharmacol.*, 1998, 56, 213-222.
- J. Li, C. Chen, S. Zhang, X. Ren, X. Tan and X. Wang, *Chem–Asian J.*, 2014, 9, 1144-1151.
- 35 70. B. Pan and B. Xing, Environ. Sci. Technol., 2008, 42, 9005-9013.
- 71. X. Wang, Y. Liu, S. Tao and B. Xing, Carbon, 2010, 48, 3721-3728.
- 72. J. Yin, C. Kang, Y. Li, Q. Li, X. Zhang and W. Li, *Toxicol. Res.*, 2014, 3, 367-374.
- 73. L. Guo, A. Von Dem Bussche, M. Buechner, A. Yan, A. B. Kane and R. H. Hurt, *Small*, 2008, **4**, 721-727.
- X. Liu, L. Guo, D. Morris, A. B. Kane and R. H. Hurt, *Carbon*, 2008, 46, 489-500.
- 75. X. Zhang, W. Hu, J. Li, L. Tao and Y. Wei, *Toxicol. Res.*, 2012, 1, 62-68.
- 45 76. X. Zhang, H. Qi, S. Wang, L. Feng, Y. Ji, L. Tao, S. Li and Y. Wei, *Toxicol. Res.*, 2012, 1, 201-205.
 - 77. W. Qi, J. Bi, X. Zhang, J. Wang, J. Wang, P. Liu, Z. Li and W. Wu, *Sci. Rep.*, 2014, 4, 10.1038/srep04352.

50