Journal of Materials Chemistry C

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsC

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Polymorphic Crystals and their Luminescence Switching of Triphenylacrylonitrile Derivatives upon Solvent Vapour, Mechanical, and Thermal Stimuli

Yujian Zhang,^{^{5, ab} Qingbao Song,^{^{5,a}} Kai Wang,^d Wengang Mao,^a Feng Cao,^b Jingwei Sun,^a Lingling Zhan,^a ⁵ Yaokang Lv, ^{*a*} Yuguang Ma,^c Bo Zou,^{*d} and Cheng Zhang^{*a}}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

For piezo-, vapo-, and thermochromic materials, it remains a challenge to figure out underlying reason for fluorescence color changes upon external stimulation and determine why only some fluorophores reveal

- ¹⁰ emission switching. A novel triphenylacrylonitrile derivative (TPAN-MeO) with remarkably twisted conformations has been carefully prepared via the Suzuki coupling reaction. The fluorescence of TPAN-MeO in aggregate state depends on the polymorphism forms: three crystalline forms BCrys, SCrys and YCrys are brightly blue, sky-blue and yellow emission, respectively; meanwhile the amorphous powders are also strong fluorescent with green emission. The crystals BCrys and SCrys indicate the mechano- and
- ¹⁵ piezochromism in that grinding and high pressure could alter emission colour, respectively. In addition, the amorphous film reveals vapo- and thermochromic behaviour in that organic vapour and heating could change the green colour into sky-blue. Interestingly, the solvent vapour and heating stimuli can trigger a crystal-to-crystal transformation between SCrys form and YCrys form.

Introduction

- ²⁰ The switchable and altering fluorescence of organic molecules in the aggregated state were of great interest due to their potential applications such as display devices, sensor and security inks.¹ As a result, the preparation of variable organic solids exhibiting a dynamic fluorescence response upon external stimulation ²⁵ (heating, light and pressure etc.) has obtained considerable attention. Generally, optical properties of organic molecules in aggregated state were strongly affected by the intramolecular conformation and packing modes. For instance, H-type packing
- existing widely in π -conjugated dye obviously decreased its ³⁰ emission quantum yield (Φ_f) due to the strong excitonic coupling.^{1d,2} In sharp contrast, such excitonic coupling was dramatically weakened in the *J*-aggregate and the X-aggregate, which contributed to a high emission efficiency.³ In addition, the supra-molecular interaction including C-H/ π and C-H/N(O)
- ³⁵ induced the rigid molecules and restricted intramolecular motions without the H-type stacking, also making the organic powders reveal the rather high emission efficiency.⁴ Clearly, the fine-tuning of intermolecular packing and intramolecular conformation could availably alter the optical properties of small
- ⁴⁰ organic molecules. However, the largest number of reported dyes revealed the various optical properties accompanied with simultaneous change in molecular arrangement and conformation.^{1, 5} Thus, it was not clear which factor dominated the effect on optical properties. Importantly, it was still lack of an
- ⁴⁵ appropriate model system to separately understand the influence of molecular conformation and arrangement on fluorescence.

Polymorphism with the same constitutional formula, in which molecules stacked in more than one crystalline phase, showed the evident difference in optical properties.5,6 Moreover, polymorphic 50 crystals could be interconverted under external-stimuli as a result of the conformational flexibility and the subtleties of weak intermolecular interactions.⁷ For example, Fraser's and Park's group reported mechanochromic fluorescence (MCF) and polymorphic modulation for the difluoroboron avobenzone^{7a} and dicvano-55 distyrylbenzene derivatives^{7b}, respectively. The thermal stimuli was also employed to vary solid-state luminescence between the polycrystalline powders.^{7c-7e} In addition, the polycrystalline organometallic complex revealed a remarkable difference in its luminescence under organic vapour stimuli.7f-7j Although a large 60 number of organic fluorophores exhibiting the efficient reversible emission switching behaviours have been reported, it was still a great challenge to develop the polycrystalline fluorophores with responsive emission switching under multi-stimuli.⁸

⁶⁵ Fig. 1 Structures and dihedral angle of **TPAN-MeO**, the dihedral angle (θ_1) between anisole and its neighbouring benzene, the dihedral angle $(\theta_2 - \theta_4)$ between acrylonitrile and its adjacent benzene.

Herein, we have prepared a polycrystalline fluorophore (**TPAN-MeO**, **Fig. 1**) containing the twisted **TPAN** and anisole. Three crystal polymorphs (**BCrys**, **SCrys** and **YCrys**) of **TPAN-MeO** exhibited the bright luminescence of different colors (deep blue also blue also blue and wellow are the blue of the second sec

- ⁵ blue, sky-blue and yellow, respectively). The crystals BCrys and SCrys revealed an obvious MCF behaviour. Additionally, upon vapour treatment, the sky-blue emission of SCrys were changed into a weak yellow emission, with the resulting crystals in line with YCrys. Interestingly, the melted crystals cooled down at the
- ¹⁰ room temperature were transformed into amorphous powders (GAm), interestingly, which may became the crystalline solids (YCrys or SCrys) during other annealing conditions. Clearly, the switchable fluorescence of TPAN-MeO in the aggregated state was achieved under solvent vapour, mechanical grinding, and
- ¹⁵ heating stimuli. Furthermore, the three polymorphs with different luminescence offered us an excellent way to understand the conformational effects on optical properties.

Fig.2 Photographs of TPAN-MeO under the illumination at 365 nm: (*a*) 20 BCrys, deep blue crystal, (*b*) SCrys, sky-blue crystal, (*c*) YCrys, yellow crystal and (*d*) GAm, green amorphous powders; (*e*) Amorphous film prepared by the drop-casting, (*f*) the as-prepared film placed at the room temperature for 24 h, (*g*) the as-prepared film heated at 70 °C for 30 min, (*h*) the original film upon exposure to n-hexane vapour.

25 Results and discussion

As depicted in **Fig.S1**, the absorption spectra of **TPAN-MeO** in THF exhibited an evident peak at 334 nm, which was attributed to the π - π * transition. Whereas it emitted almost no fluorescence ($\Phi_f < 1\%$) in the solution state. In aggregated state, ³⁰ the flaky crystals of **TPAN-MeO** with yellow emission (**YCrys**, **Fig.2c**) can be obtained readily by slow evaporation of an ethyl acetate solution. The desired crystal revealed a weak luminescence ($\Phi_f = 9\%$) with fluorescence lifetime (τ) of 1.14 ns. Upon evaporation of an ethanol/CH₂Cl₂ mixture at the room

- ³⁵ temperature, needle-like single crystals of **TPAN-MeO** with skyblue emission (**SCrys**, **Fig. 2b**) were formed at the bottom of the beaker. While evaporating the above mixtures at -10 °C, two different types of polymorphs, nubby crystals (**Fig.2a**) and needle-like crystal were reaped simultaneously. The former was
- ⁴⁰ colourless with the blue emission (referred to as **BCrys**), and the latter was also colourless with sky-blue emission, which was the same as that of **SCrys**. Compared to the emission peak of **YCrys** with $\lambda_{\text{max}} = 540$ nm, the fluorescence spectra of **BCrys** and **SCrys** were blue-shifted to 458 nm and 474 nm (**Fig. S2**), respectively.
- ⁴⁵ The Φ_f of corresponding crystals were increased to be 0.73 and 0.60, respectively, which were obviously larger than that of **YCrys**. Interestingly, the amorphous powders obtained by heat

treatment showed the green emission (Fig.2d, 511 nm) with a high Φ_f of 0.26. These results demonstrated the uniqueness of

- ⁵⁰ **TPAN-MeO** as a luminophores that could reveal the four-colour luminescence only by altering solid environments. Generally, the twisted luminophore exhibited the bluer emission with higher efficiency in crystalline phase than that in amorphous phase due to the weak intermolecular interaction.⁹ However, in our case,
- ss **YCrys** indicated an obvious redshift and a lower emission efficiency relative to GAm. What was the reason for the opposite effects? **YCrys** exhibited the weak luminescence, which could be in principle ascribed to a small radiative or a large nonradiative rate constant. As shown in **Table1**, the radiative rate constant ($k_{r=}$
- ⁶⁰ $\Phi_{\rm f}/\tau$) of **YCrys** was $8.2 \times 10^{7} \,{\rm s}^{-1}$, which was very close to that of GAm (k_r =9.0×10⁷ s⁻¹). However, the non-radiative rate constant [k_{nr} = (1- $\Phi_{\rm f}$)/ τ] in crystal **YCrys** (k_{nr} = 8.3×10⁸ s⁻¹) was evidently larger than that in amorphous phase (**GAm** k_{nr} =2.6×10⁸ s⁻¹). Clearly, the lager non-radiative decay channel of **YCrys** closely
- $_{65}$ related to the especial intramolecular conformation, results in fluorescence quenching, which are further discussed below. 7b,10

Table 1 The photophysical properties of **TPAN-MeO** in the different aggregated state, the dynamic parameters determined from the Function $I \propto \Sigma_i A_i \exp(-t/\tau_i)$ (A_i and τ_i are the relative weights and 70 lifetimes respectively, i = 1, 2).

	1		/			
	$\Phi_{ m f}{}^a$	<τ> ^b [ns]	λ_{max} [nm]	χ^2	$k_f[\mathbf{s}^{-1}]^b$	$k_{nr}[s^{-1}]^b$
BCrys	0.73	3.02	458	1.041	2.4×10 ⁸	8.9×10 ⁷
SCrys	0.60	2.51	474	1.060	2.4×10^{8}	1.6×10 ⁸
YCrys	0.09	1.14	539	0.998	8.2×10^{7}	8.3×10 ⁸
GAM	0.26	2.88	511	1.001	9.0×10 ⁷	2.6×10 ⁸

^{*a*} $\Phi_{\rm f}$ measured by calibrated integrating sphere; ^{*b*} An apparent decay time constant $<\tau>$ was determined by using the relation $<\tau> = \sum_{i=1}^{n} A_i \times \tau_i$ ($n = 1 \sim 2$); ^{*i*} the radiative rate constant $k_r = \phi_f / < \tau >$; The non-radiative rate constant $k_{nr} = (1 - \phi_f) / < \tau >$;

Fig.3 Molecular stacking structure in the polymorphic crystals (BCrys, SCrys and YCrys) of TPAN-MeO

Polymorphic crystal structure of **TPAN-MeO** were determined, and the respective crystallographic data were ⁸⁰ depicted in supporting information (SI). The unit cell of **SCrys** was triclinic, space group *P*-1, consisting of one discrete molecule. And the single crystal BCrys and YCrys belonged to a crystal system of monoclinic space group Cc and P2 (1)/*n*, respectively. As shown in **Figs. S4-6**, the aromatic C-H/ π shydrogen bonds existed in all three polymorphs. Two other types of hydrogen bonds (C-H/O, C-H/N) were observed in single crystal **BCrys** and **SCrys**. However, No π - π overlap was formed

in three polymorphs due to the twisted conformation. Clearly, these secondary bonding interactions played an important role in the crystal formation as a key force to stabilize the crystals. In addition, these intermolecular weak interactions could hinder the

- ⁵ rotation of phenyl rings and block nonradiative pathway, which contributed to activate the strong fluorescence.^{4a-b,11} Thus, the TPAN-MeO molecules in the aggregated state revealed the drastically enhanced fluorescence compared with those of isolated state in solution. As depicted in Fig.3, the polymorph
- ¹⁰ **BCrys** adopted a stacking mode of *J*-type aggregation along molecular long axis. For **SCrys** and **YCrys**, two types of edge-toface molecular packing were formed. Moreover, the inter-plane distance of polymorphic crystals were more than 4.7 Å, and there was little overlap between adjacent π conjugations (**Figs.S4-S6**).
- ¹⁵ The results revealed that almost no intermolecular π - π interactions existed in the crystalline state. Thus, the emission properties of crystals mainly depended on the individual molecule. In other words, the molecular conformation played a crucial role in determining the emission of polymorphic crystals.

²⁰ Table 2 the dihedral angle in the polymorphic crystals (BCrys, SCrys and YCrys) of TPAN-MeO

Polymorphism	$\theta_1{}^a$	$\theta_2^{\ b}$	$<\theta_r>^c$	$\theta_3^{\ b}$	θ4 ^b	
BCrys	46.9	42.0	44.5	43.5	60.8	
SCrys ^d	34.6	36.1	35.4	58.8	48.2	
Scrys	19.0	44.4	31.7	39.0	61.2	
OCrys d	26.3	40.5	33.4	48.3	65.4	
UCLYS	29.6	29.8	29.7	59.2	53.5	

^{*a*} The dihedral angle between anisole and its neighbouring benzene; ^{*b*} the dihedral angle between acrylonitrile and its adjacent benzene; ${}^{c} < \theta_{r} > = (\theta_{1} + \theta_{2})/2$; ^{*d*}Two crystallographically independent conformational molecules

In **BCrvs**, the dihedral angle (θ_1^{BCrys}) between the anisole and its adjacent benzene is 46.9° as depicted in Table 2. There were two crystallographically independent conformational molecules in the crystal of SCrys. The dihedral angle (θ_2^{SCrys} , 36.1° , 44.4°) of SCrys got very close to that of BCrys (42.0°). ³⁰ However, the θ_1 was obviously decreased to 34.6° and 19.0°, respectively. Clearly, the smaller average dihedral angle ($\langle \theta_r \rangle$) along the molecular long axis in SCrys (35.4° and 31.7°, see Table 2) meant that the effective π -electron conjugation degree was higher than that in BCrys (44.5°). Hence, the red shift of the 35 emission peak of SCrvs relative to that of BCrvs should be ascribed to the intramolecular conformational planarization. As depicted in Fig.3, polymorph YCrvs also exhibited an edge-toface packing with two the different conformational molecules in the unit. The main difference between two polymorphs (SCrys 40 and **YCrys**) was the coplanar extent ($\langle \theta_r \rangle$), the former was 35.4° and 31.7° and the latter was 33.4° and 29.7°, respectively (Table 2). The results indicated the effective conjugation length of YCrys was further extended along the molecular long axis. As a result, the emission maximum of YCrys ($\lambda_{max} = 540$ nm) red ⁴⁵ shifted by 64 nm with respect to **SCrys** ($\lambda_{max} = 474$ nm). Clearly, YCrys and SCrys had the similar molecular stacking modes, but the different molecular conformation, which resulted in the

change in fluorescent colours.

50

Fig. 4 Fluorescence spectra of the crystal YCrys under the hydrostatic pressure from compression (a, b) to decompression (c).

As mentioned above, **TPAN-MeO** formed three different kinds of crystals: **BCrys** (blue emitting, $\Phi_f = 0.67$), **SCrys** (sky-⁵⁵ blue emitting, $\Phi_f = 0.63$) and **YCrys** (yellow emitting, $\Phi_f = 0.09$). Obviously, **YCrys** revealed rather low luminous efficiency relative to others. Regardless of the intermolecular interactions, a twisted conformation generally contributed to form a nonraditive excited state, which resulted in a low Φ_f . However, **YCrys** ⁶⁰ showed the relatively more coplanarity along the 4-methoxy-1,1'biphenyl (highlighted in blue in the **Fig. 1**) than that of **SCrys** and **BCrys**. Remarkably, the dihedral angles (θ_3^{BCrys}) between acrylonitrile and aspect α in **BCrys** was 43.5° as shown in **Table 2**. The **SCrys** had two conformationally different molecules in ⁶⁵ the unit, the dihedral angles (θ_3^{SCrys}) were changed into 58.8° and 39.0°. The θ_3^{SCrys} in one of the conformations was obviously larger than that of **BCrys**. In **YCrys**, the dihedral angles (θ_3^{YCrys}) were further increased to 59.21° and 48.34°. Obviously, the aspect α of TPAN was relatively more twisted with the acrylonitrile. As ⁷⁰ a result, the highly twisted structure greatly turned on the nonradiative activation pathways. With $\Phi_f = 0.09$ and $\tau=1.14$ ns (see **Table 1**), the nonradiative rate constant of **YCrys** was $k_{nr}^{YCrys} = 8.3 \times 10^8 \text{ s}^{-1}$, thus approximately 1 order of magnitude larger than that of **BCrys** $(k_{nr}^{BCrys} = 8.9 \times 10^7 \text{ s}^{-1}$, Table 1) which ⁷⁵ resulted in the weak fluorescence. Clearly, the cause of the complicated fluorescence behaviours could fall into two parts: the

Journal of Materials Chemistry C Accepted Manuscript

increase in coplanar extent along molecular long axis gave rise to the continuous spectra redshift; meanwhile, the various fluorescent efficiency were mainly attributed to the distortion between aspect α and acrylonitrile. Fig.S7 revealed that the PL s intensity of YCrys crystals were remarkably enhanced as

- s intensity of **YCrys** crystals were remarkably enhanced as decreasing the temperature. These results indicated the slight intramolecular motions including the rotations and the vibrations of phenyl rings still existed in aggregated state, which dissipated the excited energy, and thus inducing luminescence quenching
- ¹⁰ processes. To further approve the proposal, the *in-situ* steadystate PL experiments of **YCrys** were performed under high pressure. As depicted in **Fig.4a**, with slight increasing hydrostatic pressure, the PL intensity was clearly enhanced until the pressure up to 0.74 GPa. After further compression, the emission intensity
- ¹⁵ was gradually weakened, and the fluorescence spectra were concomitantly red-shifted (Fig.4b), which coincided with the previous results.^{5a-e,12} Interestingly, when the hydrostatic pressure was gradually released, the emission spectra returned to initial state (Fig.4c). The similar PL behaviour was also observed in
- ²⁰ samples **SCrys** and **BCrys** as shown in **Figs.S8-S9**. In low pressure region, the intermolecular interaction was slight increased, which availably restricted the intramolecular motions and boosted up the PL efficiency. And the intermolecular distances had no clear change.¹³ Upon the further compression,
- ²⁵ the π - π interaction was activated and dominant, hence the decrease in the PL intensity and redshifts of the crystal were observed at high pressures (≥ 1.29 GPa). Clearly, the intramolecular motions still existed even in aggregate state, which quenched its luminescence.

Fig.5 Fluorescence spectra of the SCrys (a) and BCrys (b) upon multistimuli.

Fig.6 Digital images of samples **TPAN-MeO** in different states recorded ³⁵ under UV light. I) Fuming with CH₂Cl₂ vapour; II) heated to the melted state and cooled down at room temperature; III) heating process at 70 °C for 1h; IV) Fuming with n-hexane vapour; Heated to the melted and then slightly contacted with a glass capillary at 168 °C (V) and at 101 °C (VI).

By grinding of crystals SCrys and BCrys in an agate 40 mortar, all of their fluorescence colour were changed into the similar green colour as depicted in Fig.5. The powders of two samples revealed the similar emission spectra (~493 nm). The results indicated that the two crystals might become an amorphous state upon grinding, which were further confirmed by 45 the identical PXRD (see Fig. S11). Unusually, the ground powders of the BCrys could not be recovered to its initial state upon exposure to organic vapour (n-hexane, ethanol) or heating process. After the heating and organic solvent stimuli, the amorphous powders had a similar PXRD pattern and emission 50 spectrum as that of SCrys as shown in Fig. 5. The results meant that the packing pattern of SCrvs may be a more stable state than that of BCrys. Fig.2e showed that the drop-casting film of TPAN-MeO was amorphous with the bright green luminescence $(\lambda_{\text{max}} = 508 \text{ nm}, \text{ see Fig.S13})$, which resembled that of the sample 55 GAm. And the amorphous film was not a steady state at the room temperature. As depicted in Fig.2f, the as-prepared film placed at room temperature for 24 h became the crystalline state with the sky-blue emission (λ_{max} =471 nm; see **Fig.S13**). The transition rate of fluorescence could be accelerated by increasing in the 60 temperature. For instance, its luminescence colour became completely sky-blue after heating above 70 °C for 30 min (see Fig.2g). In addition, the green-emitting film was also transformed into crystalline powders upon exposure to n-hexane vapour, showing the sky-blue luminescence. PXRD experiments 65 exhibited that the packing arrangement of the sky-blue emitting film was consistent with that of the SCrys (see Fig.S14).

Fig.7 Normalized photoluminescence spectra (*a*) and DSC thermograms (*b*) of samples **TPAN-MeO** in the different states

The Crystals of SCrys were initially colourless in appearance, but appeared to become vellow in colour upon exposure to CH₂Cl₂ vapour for one minute at room temperature as depicted in Fig.6d. The emission spectra of the yellow powders (f-YCrys) revealed a broad emission spectra ranging 75 from 440 nm to 560 nm (Fig. 7a). As shown in Fig. 8a, the diffraction patterns of sample f-YCrys exhibited sharp and intense reflections at $2\theta = 8.2^{\circ}$, 12.3° , 16.4° , 18.5° , 20.5° and 20.8°, which were similar to that of YCrys. Moreover, a weak, broad, and diffused peak ranging from 16° to 25° also existed. 80 Clearly, the SCrys revealed the vapor-induced the crystal-tocrystal conversion behaviour. Interestingly, the TPAN-MeO powders showed the thermally induced reversible phase transition properties. When the crystalline powders of SCrvs were heated to the melted state and cooled down at room temperature, the 85 amorphous powders (GAm) was formed as shown in Fig.6b. And the green-emitting phase could revert back to initial SCrys upon n-hexane vapour (**Fig. 6a**). The DSC curves of GAm powders indicated two cold-crystallization transition peaks (71.0 °C, Δ H =4.58 J/g; 96.4 °C, Δ H =4.58 J/g) ahead of the melting (171.0 °C, Δ H = 173.22 J/g), however, which was not observed in crystals

- ⁵ YCrys and SCrys (Fig.7b). The result showed that the GAm was a meta-stable amorphous phase and changed into a more stable crystalline phase via an exothermal recrystallization process. As expected, heating GAm powder at 70 ° C for 1 h also recovered the original state showed in Fig.6c, which was associated with the
- ¹⁰ first-order endothermic peak. If the **SCrys** crystals were thermally melted and then slightly contacted with a glass capillary at about 168 °C, which was a little smaller than the melting temperature (171 °C). The yellow-emitting powders (**h**-**YCrys**) was produced at once, which revealed the luminescence
- ¹⁵ properties similar to that of the **YCrys**. Interestingly, when the temperature was decreased to 101 °C, the obtained powders (**h**-**SCrys**) became colourless with the sky-blue emission. This observation revealed that the second cold-crystallization peak could be ascribed to a transition from **GAm** to the more stable **h**-
- 20 SCrys. The powder X-ray diffraction analysis was performed after the heating stimulus-triggered phase transition. As depicted in Fig.8b, The crystal structure of h-YCrys and h-SCrys obtained via heating treatment was rather similar to that of YCrys and SCrys crystallized from the solution phase, respectively. The 25 experimental results exhibited that the crystal-to-crystal
- transformations was also achieved upon heating process.

Fig.8 Powder X-ray diffraction patterns of samples $\ensuremath{\text{TPAN-MeO}}$ in the different states

30 Conclusions

In conclusion, organic crystals (**BCrys**, **SCrys** and **YCrys**) with blue, sky-blue, and yellow fluorescence have been prepared under altered growing conditions. On the basis of single-crystal structural and photophysical analysis, we found that the various ³⁵ fluorescence of the polymorphs could be attributed to the conformational change rather than the intermolecular interaction. In addition, it was confirmed that the intramolecular motions still existing in crystalline state quenched the fluorescence via *in-situ* steady-state PL experiments. The PL spectra indicated that

- ⁴⁰ changes in the molecular aggregate state of **BCrys** and **SCrys** crystals upon grinding or under high pressure resulted in the altering molecular conformation, and thus induced the mechano(piezo)chomic fluorescence. Interestingly, the crystal-to-crystal molecular conversion between the **BCrys** and **YCrys** was
- ⁴⁵ readily achieved under heating and solvent vapour stimulation. Clearly, employing "polymorphs" with the multiple mutable interactions to prepare stimuli-responsive materials and

understand its formation mechanisms was rational and successful.

50 Acknowledgements

This work was supported by the National Basic Research Program of China (2011CBA00700), National Natural Science Foundation of China (51403060, 51203138, 51273179, 11204101, 21101137 and 91227202) and the Natural Science 55 Foundation of Huzhou (2014YZ02).

Notes and references

^aDepartment of Materials chemistry, Huzhou University, xueshi Road No.1 313000 Huzhou, P. R. China;

- ⁶⁰ ^bCollege of Chemical Engineering, Zhejiang University of Technology, Caowang Road No.18 Hangzhou 310000, P. R. China; <u>Tel:+86-571-88320508</u>; E-mail: <u>czhang@zjut.edu.cn</u> ^cState Key Laboratory of Luminescent Materials and Devices, South
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, P. R. China
- ^{65 d}State Key Laboratory of superhard materials, Jilin University, Changchun, P. R. China E-mail: <u>zoubo@jlu.edu.cn</u>

 ${}^{\xi}\!Y.$ J. Zhang and Q. B. Song contributed equally to this work.

- 70 † Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/
- ⁷⁵ 1 (a) S. P. Anthony, *ChemPlusChem*, 2012, 77, 518-531; (b) J. Mei, Y. Hong, J. W. Y. Lam, A. J. Qin, Y. H. Tang, and B. Z. Tang, *Adv. Mater.*, 2014, **26**, 5429-5479; (c) Y. Sagara and T. Kato, *Nat. Mater.*, 2009, **1**, 605-610; (d) S. Varghese and S. Das, *J. Phys. Chem. Lett.*, 2011, **2**, 863-873; (e) H. B. Sun, S. J.
 ⁸⁰ Liu, W.P. Lin, K. Y. Zhang, W. Lv, X. Huang, F. W. Huo, H. R. Yang, G. Jenkins, Q. Zhao, W. Huang, *Nat. Commun.*, 2014, **5**, 3601-3609; (f) X.Q. Zhang, Z.G. Chi, Y. Zhang, S.W. Liu and J. R. Xu, *J. Mater. Chem. C*, 2013, **1**, 3376-3390;(g) Z. G. Chi, X. Q. Zhang, B. J. Xu, X. Zhou, C. P. Ma, Y. Zhang, S.
- 5 W. Liu, J. R. Xu, Chem. Soc. Rev. 2012, 41, 3878-3896;
- 2 (a) F. C. Spano, J. Chem. Phys., 2001, 114, 5376-5390; (b) J.
 Cornil, D. Beljonne, J. P. Calbert and J. L. Bredas, Adv. Mater., 2001, 13, 1053-1067; (c) J. Gierschner and S. Y. Park, J. Mater. Chem. C, 2013, 1, 5818-5832; (d) J. Gierschner, M. Ehni, H. J.
- Egelhaaf, B. Milián Medina, D. Beljonne, H. Benmansour, and G. C. Bazan, J. Chem. Phys. 2005, 123, 144914; (e) J. Gierschner, L. Lüer, B. Milián-Medina, D. Oelkrug, and H. J. Egelhaaf, J. Phys. Chem. Lett. 2013, 4, 2686-2697
- 3 (a) Z. Q. Xie, B. Yang, F. Li, G. Cheng, L. L. Liu, G. D. Yang,
 ⁹⁵ H. Xu, L. Ye, M. Hanif, S. Y. Liu, D. G. Ma and Y. G. Ma, *J. Am. Chem. Soc.*, 2005, **127**, 14152-14153; (b) F. Würthner, T. E. Kaiser and C. R. Saha-Möller, *Angew. Chem., Int. Ed.*, 2011, 50, 3376-3410; (c) J. B Zhang, B. Xu, J. L. Chen, S. Q. Ma, Y. J. Dong, L. J. Wang, B. Li, L. Ye, and W. J. Tian, *Adv. Mater.* 2014, 26, 739-45; (d) R. T. Cheriya, K. Nagarajan, M. Hariharan, *J. Phys. Chem. C*, 2013, **117**, 3240-3248;
 - 4 (a)Y. P. Li, F. Li, H.Y. Zhang, Z. Q. Xie, W.J. Xie, H. Xu, B.

Page 6 of 7

40

-

Li, F.Z. Shen, L. Ye, M. Hanif, D.G. Ma and Y. G. Ma, *Chem. Commun.*, 2007, 231-233; (b) Z.Q. Xie, B. Yang, G. Cheng, L. L. Liu, F. He, F. Z. Shen, Y.G. Ma, and S.Y. Liu, *Chem. Mater.* 2005, **17**, 1287-1289; (c) N. B. Shustova, T. C. Ong, A. F.

- ⁵ Cozzolino, V. K. Michaelis, R. G. Griffin, M. Dinc, J. Am. Chem. Soc. 2012, 134, 15061;(d) Z. Q. Xie, L.L. Liu, B. Yang, G. D. Yang, L. Ye, M. Li, and Y.G. Ma, Cryst. Growth Des. 2005, 5, 1959-1964
- 5 (a)Y. Dong, B. Xu, J. Zhang, X. Tan, L. Wang, J. Chen, H.
- ¹⁰ Lv, S. Wen, B. Li , L. Ye , W. Tian, *Angew. Chem. Int. Ed.* 2012, **51**, 10782-10785; (*b*) G. Q. Zhang, J. W. Lu, M. Sabat, and C. L. Fraser, *J. Am. Chem. Soc.* 2010, **132**, 2160-2162; (*c*) K. Nagura, S. Saito, H. Yusa, H. Yamawaki, H. Fujihisa, H. Sato, Y. Shimoikeda, S. Yamaguchi, *J. Am. Chem. Soc.* 2013,
- 135, 10322-10325; (d) H.Y. Zhang, Z. L. Zhang, K. Q. Ye, J. Y. Zhang, and Y. Wang, *Adv. Mater.* 2006, 18, 2369-2372; (e) W. Liu, Y. L. Wang, M.X. Sun, D. T. Zhang, M. Zheng and W. J. Yang, *Chem. Commun.*, 2013,49, 6042-6044; (f) X..G Gu, J. J. Yao, G.X. Zhang, Y.L. Yan, C.Zhang, Q. Peng, Q. Liao, Y. Wu,
 Z. Z. Yu, Y. S. Zhao, H.P. Ev, and D. O. Zhang, *Adv. Event.*
- Z. Z. Xu, Y. S. Zhao, H.B. Fu and D. Q. Zhang, Adv. Funct. Mater. 2012, 22, 4862-4872
- 6 (a) Y. Fan, Y. F. Zhao, L. Ye, B. Li, G. Yang, and Y. Wang, *Cryst. Growth Des.*, 2009, 9, 1421-1430; (b) E. Sakuda, K. Tsuge, Y. Sasaki, and N. Kitamura, *J. Phys. Chem. B* 2005, 109, 25 22326-22331
- 7 (a) G. R. Krishna, M. Kiran, C. L. Fraser, U. Ramamurty, and
 C. M. Reddy, *Adv. Funct. Mater.* 2013, 23, 1422-1430 (b) S. J.
 Yoon, J. W. Chung, J. Gierschner, K. S. Kim, M. G. Choi, D.
 Kim, and S. Y. Park, *J. Am. Chem. Soc.* 2010, 132, 13675-
- ³⁰ 13683; (c) T. Mutai, H. Satou, and K. Araki, *Nat. mater.*, 2005, 4, 685-687; (d) R. Davis, N. P. Rath, S. Das, *Chem. Commun.* 2004, 74-75; (e) Y. Zhao, H. Z. Gao, Y. Fan, T. Zhou, Z. Su, Y. Liu, and Y. Wang, *Adv. Mater.* 2009, **21**, 3165-3169; (f) M. Kato, A. Omura, A. Toshikawa, S. Kishi, and Y. Sugimoto,
- ³⁵ Angew. Chem. Int. Ed. 2002, **41**, 3183-3185; (g) T. Lasanta, M. Olmos, A. Laguna, J. López-de-Luzuriaga, and P. Naumov, J. Am. Chem. Soc., 2011, **133**, 16358–16361; (h) C. Strasser and V. Catalano, J. Am. Chem. Soc., 2010, **132**, 10009-10011; (i) M.

A. Rawashdeh-Omary, M. D. Rashdan, S. Dharanipathi, O. Elbjeirami, P. Ramesh and H. V. Rasika Dias, *Chem. Commun.*, 2011,47, 1160-1162; (*j*) O.S. Wenger, *Chem. Rev.*, 2013, 113, 3686–3733

- 8 (a) C. Li, X. Luo, W. Zhao, C. Li, Z. Liu, Z. Bo, Y. Dong, Y.Q. Dong and B. Z. Tang, New J. Chem., 2013, 37, 1696-1699; (b)
- X. Luo, W. Zhao, J. Shi, C. Li, Z. P. Liu, Z. S. Bo, Y. Q. Dong, and B. Z. Tang, *J. Phys. Chem. C*, 2012, **116**, 21967–21972; (*c*)
 R. H. Li, S. Xiao, Y. Li, Q. Lin, R. Zhang, J. Zhao, C. Yang,
 K. Zou, D. Li and T. Yi, *Chem. Sci.*, 2014,**5**, 3922-3928; (*d*) K.
 Wang, H. Zhang, S. Chen, G.Yang, J.Zhang, W. Tian, Z. Su,
 and Y. Wang, *Adv. Mater.* 2014, 26, 6168-6173
- 9 (a) Y. Q. Dong, J.W. Y. Lam, A.J. Qin, J.X. Sun, J.Z. Liu, Z. Li, J. Z. Sun, H. H. Y. Sung, I. D. Williams, H. S. Kwok and B. Z. Tang, *Chem. Commun.*, 2007, 3255-3257; (b) X. L. Luo, J. N. Li, C. H. Li, L. P. Heng, Y. Q. Dong, Z. Liu, Z. S. Bo, and B. Z. Tang, *Adv. Mater.* 2011, 23, 3261-3265
- 10 (a) S. J. Yoon, S. Varghese, S. K. Park, R. Wannemacher, J. Gierschner, and S. Y. Park, *Adv. Optical Mater.* 2013, 1, 232-237;(b) J. Gierschner1, M. Ehni, H. J. Egelhaaf, B. M. Medina, D. Beljonne, H. Benmansour and G.C. Bazan, *J. Chem. Phys.* 2005, 123, 144914
- (a) J. Chen, B. Xu, X. Ouyang, B. Z. Tang and Y. Cao, J. Phys. Chem. A, 2004, 108, 7522.; (b)Y. Ran, J. W. Y. Lam, Y. Dong, B. Z. Tang and K. S. Wong, J. Phys. Chem. B, 2005, 109, 1135.
- ⁶⁵ 12 (a) H. S. Yuan, K. Wang, K. Yang, B. B. Liu, and B. Zou, J. *Phys. Chem. Lett.* 2014, **5**, 2968-2973; (b) Z. A. Dreger, E. Balasubramaniam, Y. M. Gupta, J. *Phys. Chem. A* 2009, **113**, 1489-1496. (c) Y. J. Zhang, K. Wang, G. L. Zhuang, Z.Q. Xie, C. Zhang, F. Cao, G. X. Pan, H. F. Chen, B. Zou, and Y.G. Ma, *70 Chem. Eur. J.* 2015, **21**, 2474 2479
- 10° Chem. Eur. 5. 2015, 21, 2474 2479
- 13 X. Fan, J. L. Sun, F. Z. Wang, Z. Z. Chu, P. Wang, Y.Q. Dong, R. R. Hu, B. Z. Tang and D. C. Zou, *Chem. Commun.*, 2008, 2989-2991

75

Table of Contents (TOC)

⁵ The organic crystals BCrys, SCrys and YCrys exhibits blue, sky-blue, and yellow fluorescence, respectively. Their various fluorescence of the polymorphs can be attributed to the conformational change. In addition, the responsive fluorescence switching of polymorphs are readily achieved under grinding, heating and solvent vapour stimulation