Journal of Materials Chemistry C

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsC

Journal Name

ARTICLE

Cite this: DOI: 10.1039/xoxx00000x

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Morphological and crystal structural control of tungsten trioxide for highly sensitive NO₂ gas sensors

Zhicong Meng,^a Aya Fujii,^a Takeshi Hashishin,^b Noriyuki Wada,^c Tomoe Sanada,^a Jun Tamaki,^a Kazuo Kojima,^{a*} Hitoshi Haneoka^d and Takeyuki Suzuki^d

We discussed the synthesis of cuboid-monoclinic tungsten oxide (C-m-WO₃) and particles and hexagonal-plate-like-hexagonal tungsten oxide (H-h-WO₃) particles by acidification and hydrothermal treatment with $(NH_4)_{10}W_{12}O_{41}$, $5H_2O$ as a starting material. From the WO₃ particles, thin- and thick-film gas sensors were fabricated for NO₂ sensing application, and the effect of morphology and crystal structure of the WO₃ particles on the NO₂ sensing properties was investigated. The extremely high sensor responses of 160 to 20-ppb NO₂ and of 10120 to 500-ppb NO₂ were obtained for a C-m-WO₃ thin-film sensor at operating temperature of 200 °C. The crystal structure features of as-prepared particles were studied by XRD, XPS, SEM, TEM, and solid state ¹H and ¹³C NMR measurements. The presence of residual impurities, cations, and high density of surface OH⁻ in the H-h-WO₃ particles was demonstrated, which could be one of the key reasons for the crystal structure dependence of the sensing properties in C-m-WO₃ and H-h-WO₃ gas sensors.

Introduction

Nanostructured materials are considered as good candidates for gassensing applications. Gas sensors based on nanostructures of oxide semiconductors such as tin oxide,^{1,2} zinc oxide,³ indium oxide,⁴ and tungsten oxide^{5,6} have shown enhanced capability to detect target gases with higher sensitivity, faster response-recovery and lower operating temperatures. Tungsten trioxide (WO3) is a versatile material which offers manifold applications owing to its promising physical and chemical properties. As an n-type semiconductor, WO₃ is a potential candidate to be used in photo-electrochemical cells.⁷ In contrast to TiO₂, which absorbs only UV light, WO₃ possesses a relatively small band gap between 2.4 and 2.8 eV, which makes it a visible-light-responsive photocatalyst.^{8,9} With the ability to change its colour easily, WO3 is the most researched material for chromogenic devices.¹⁰⁻¹² For semiconductor gas sensors, WO₃ is an important base oxide which exhibits high sensitivity to nonhydrocarbon gases such as NO₂, O₃, H₂S and NH₃.¹³⁻¹⁵ In particular, WO₃ showed superior sensitivity and selectivity in detecting NO₂ gas.¹⁶⁻¹⁸ So far enhanced gas-sensing properties of nanostructure WO3 to NO2 have been observed for various types of morphology such as nanosheets assembled hollow microspheres,¹⁹ square-like nanostructures,²⁰ Lamellar structures,²¹ spherical nanoparticles,²² nanorod bundles,²³ nanowires,²⁴ nanowires array²⁵ and three-dimensional nanowire networks.²⁶ These WO₃ nanostructures have been prepared in several ways: acidification and hydrothermal treatment, aerosol-assisted CVD and thermal evaporation. On the other hand, WO₃ has several crystalline modifications: triclinic, monoclinic, orthorhombic, hexagonal, and cubic. Up to now, most of the reports on gas sensor applications are of monoclinic WO₃ (m- WO_3),^{19-23, 25-26} while hexagonal WO₃ (h-WO₃) has been studied for sensing NH₃ or H₂S only by a few groups,^{24,27-30} where the h-WO₃ prepared by acidic precipitation followed by hydrothermal and heat treatments at low temperatures or by annealing hexagonal ammonium tungsten bronze (HATB). Recently it has been revealed that the crystal structure (monoclinic or hexagonal) of the WO₃ caused large differences not only in sensing properties,³¹ but also in activities of WO₃-supporting catalysis.³²

Among these reports, the interaction between WO₃ and gases is significant to understand the correlation between gas-sensing behavior and surface state of WO₃. The oxidation state of tungsten atoms in h-WO₃ observed with XPS and the gas-sensing property of the h-WO₃ to 10-ppm H₂S have been reported.^{28,31} The sensor responses (the ratio of conductance in the air to that in H₂S) to 10ppm H₂S for an oxidized h-WO₃ (W^{6+} :96.8, W^{5+} :1.8, and W^{4+} :1.4%) and a reduced h-WO₃ (W⁶⁺:77.3, W⁵⁺:15.9, and W⁴⁺:6.8%) at 200 °C had similar values of 41 and 44, respectively. However, the response time was longer for the reduced h-WO₃ than for the oxidized h-WO₃. It is considered that on the outermost surface of h-WO₃, the amount of oxygen defects for W^{5+} is less than that for W^{6+} , thus the response time becomes longer for reducing H₂S gas. It is interestingly stated that in the h-WO₃ sensing property to 50-ppm NH₃, the conduction type of h-WO₃ at 200 °C is changed from that at 100 °C.³⁰ Tungsten vacancies contribute to generation of holes at 100 ^oC, however, in reducing NH₃ gas, a depletion layer increases (the resistance increases) by accompanying disappearance of holes. On the other hand, on the outermost surface of h-WO₃, the W-O bond is transiently broken, and oxygen vaporizes to generate oxygen vacancies. In order to keep a charge balance, in the depletion layer of the outermost surface, the small amount of charge carriers (holes) generate an inversion layer within the depletion layer, however, electrons flow into the inversion layer to remove that layer. Then, the supply of free electrons from NH₃ decreases the resistance. The sensor responses as the resistance ratios to 50-ppm NH₃ at 100 and 200 °C were 2.7 and 1.2, respectively. Other gas-sensing studies with h-WO₃ were few; only the sensor responses to 50-ppm NH₃ at 300 $^{\circ}$ C were reported to be 1.6²⁹ and 3.0.³² Another interesting study is that the OH density on the surface is higher for m-WO₃ than for h- WO_3 ³² those high OH density sites on the surface of WO₃ are beneficial for Au nanoparticle nucleation, leading to that the CO oxidation ability is larger for Au deposited m-WO₃ than for Au

deposited h-WO₃. As described above, it is said that the surface properties of WO₃ affect greatly the gas-sensing and catalytic properties.

In the present study, we discuss two kinds of WO₃ nanostructure with differences in morphology and crystal structure: cuboid-monoclinic WO₃ (C-m-WO₃) and hexagonal-plate-like-hexagonal WO₃ (H-h-WO₃), synthesized by acidification and hydrothermal treatment using the same starting material of ammonium paratungstate pentahydrate, and discuss also their NO₂ gas-sensing properties. Our study aims to investigate how the morphology (cuboid: C- or hexagonal-plate: H-) and crystal structure (m- or h-) of WO₃ influence the sensing properties.

Experimental Section

Synthesis

A facile hydrothermal process was employed to synthesize C-m-WO₃ and H-h-WO₃. Ammonium paratungstate pentahydrate ((NH₄)₁₀W₁₂O₄₁ 5H₂O) and nitric acid (69 %) were used as starting materials for both samples. In synthesizing the C-m-WO₃ sample, (NH₄)₁₀W₁₂O₄₁·5H₂O was dissolved in deionized water, and heated to 80 °C to form transparent solution with mild stirring. Then HNO₃ was added into the solution drop by drop, and the solution was kept stirring at 75 °C for 25 min. After the reaction was completed, the resulting product was centrifuged and washed with deionized water. The precipitate (precursor I: H₂WO₄) was transferred into 50 ml deionized water to be stirred for 24 h at room temperature. Then the suspension was transferred to a 100-ml Teflon-lined stainless-steel autoclave and kept at 160 °C for 14 h. After naturally cooling to room temperature, the collected product was dried at 35 °C for 48 h. Then the as-prepared products were calcined at 400 °C for 3 h to obtain the final product of C-m-WO₃ particles.

In synthesizing the H-h-WO₃ sample, the aqueous solution of $(NH_4)_{10}W_{12}O_{41}$ ·5H₂O was heated to 70 °C, and HNO₃ was added at one fling. Then the reaction solution was naturally cooled down to room temperature. After centrifuged and washed with deionized water, the precipitate (precursor II: H₂WO₄) was transferred into 50 ml deionized water and added surfactant of cetyltrimethylammonium bromide ([CH₃(CH₂)₁₅N(CH₃)₃]Br, CTAB). After stirring for 3 h at room temperature, the suspension was hydrothermally treated at 150 °C for 10 h. After naturally cooling to room temperature, the collected product was washed, dried and calcined at 400 °C for 3 h to obtain the final product of H-h-WO₃ particles. The formation process of the two kinds of WO₃ can be described by the following reactions:

 $(NH_4)_{10}W_{12}O_{41} \cdot 5H_2O + 10HNO_3 + 7H_2O \rightarrow 12H_2WO_4 + 10NH_4NO_3$ (1)

$$H_2WO_4 \rightarrow WO_3 + H_2O \tag{2}$$

Characterization

The crystal phases of the hydrothermally synthesized samples as well as their precursors were studied by powder X-ray diffraction (XRD) using CuK α radiation (Rint-2200, Rigaku, Japan). The morphology of the WO₃ particles was investigated by field-emission scanning electron microscopy (FE-SEM) (S-4800, Hitachi, Japan), and transmission electron microscopy (TEM, JEM-2100F, JEOL, Japan) operated at 200 kV. The specific surface area (a_{BET}) and pore size distribution of the hydrothermally synthesized samples were measured with Brunauer-Emmett-Teller (BET) method (BELSORP 18, BEL, Japan). Solid-state ¹H and ¹³C NMR spectra were recorded on an NMR spectrometer (Bruker, AVANCE III, 600WB, SSNMR) with a 4.0-mm low-gamma probe. The pulse program for ¹H MAS (magic angle spinning) NMR was CRAMPS with the MAS rate of 2.3 kHz, and that for ¹³C MAS NMR was DDMAS with the MAS

NO2 sensor fabrication and measurement

Figure 1. Configuration of a WO₃ sensor.

An SiO₂/Si substrate equipped with Au comb-type microelectrodes was used for NO₂ sensing measurements. The configuration of a sensor is shown in Fig. 1. The area of the comb-type microelectrodes was $0.3 \times 0.5 \text{ mm}^2$, where both the strip width of a finger and the distance between the adjacent fingers were 5 µm. The as-synthesized WO₃ powders were dispersed into the hydrophobic solvent of 1,2pentanediol and kept with stirring for 7 days to obtain highly dispersive suspensions used for sensing film formation. The asobtained suspension was deposited onto the comb-type microelectrodes with a micro-injector for thin-film sensor and with a micropipette for thick-film one, dried, and then calcined in air at 400 °C for 3 h to form a WO₃ sensing film. The thickness of the sensing film could be controlled in the range of $1.6 - 3.0 \ \mu m$ for thin-film sensor and $10 - 15 \,\mu\text{m}$ for thick-film one by changing the WO₃ powder content in suspension and the dropping amount of suspension. Gas sensing experiments were carried out in a conventional flow apparatus equipped with a heating facility at a gas flow rate of 100 cm³/min. The concentration of NO₂ was varied between 0.02 and 1 ppm by diluting a parent NO_2 gas (5.01 ppm in N₂) with oxygen and dry air. The sensor response (S) was defined as the ratio of Rg to Ra (S = Rg/Ra), where Rg is the electric resistance in NO₂-containing air, and Ra is that in air. The schematic diagram of sensing measurement equipment is drawn in Fig. S1.

Results and discussion

Material characteristics

Fig. 2 shows the XRD patterns of the as-obtained WO₃ samples and the precursors I and II (H₂WO₄). All typical diffraction peaks for the C-m-WO₃ sample can be readily indexed to monoclinic phase (JCPDS No. 83-0950). No characteristic peaks from other crystalline impurities were detected, which indicates that the C-m-WO₃ is single, monoclinic phase. The diffraction peaks of the H-h-WO₃ sample correspond to hexagonal phase (JCPDS No. 33-1387) and monoclinic one (JCPDS No. 83-0950). The patterns of the precursors I and II almost agree with those of orthorhombic H₂WO₄ (JCPDS No. 43-0679) reported previously,³³ and the pattern of the precursor II shows the preferentially oriented (2 0 0) plane, compared to the precursor I. The morphology of the as-synthesized WO₃ particles is shown in Fig. 3. The grain size distribution estimated from the FE-SEM image was 50 - 200 nm for the cuboid-shaped C-m-WO₃ sample. The H-h-WO₃ sample consisted mainly of hexagonal-plate-shaped particles that are about 1000 - 2000 nm in length and 20 - 30 nm in thickness, together Journal Name

with a minor amount of cuboid-shaped WO₃ particles with grain size distribution of about 20 - 100 nm. The particle sizes measured by TEM (Fig. 4) are the same as found by FE-SEM. The HR-TEM images revealed that both kinds of WO₃ particles were highly crystalline. Lattice fringes were clearly observed with a gap of 0.37 nm for the C-m-WO₃ particles, which was identified as the crystal panel of (2 0 0) of monoclinic-phase WO₃. For the H-h-WO₃ particles, the lattice distance was observed as 0.63 nm, which corresponded to the interspace of (1 0 0) planes of hexagonal-phase WO₃. Some defects were observed on the surface of the H-h-WO₃ particles. The BET specific surface areas of the samples obtained by N₂ adsorption were 11.7 and 4.87 m²g⁻¹, and the average pore sizes were 18.3 and 37.7 nm for the C-m-WO₃ and H-h-WO₃ samples, respectively.

Figure 2. XRD patterns of as-prepared WO₃ particles and the precursors I and II (H_2WO_4).

Figure 3. FE-SEM images of (a) C-m-WO₃ and (b) H-h-WO₃.

Figure 4. TEM (a, c) and HR-TEM (b, d) images of the C-m-WO₃ (a, b) and H-h-WO₃ (c, d) particle.

NO₂ sensing properties

The NO₂ gas sensing properties of the C-m-WO₃ and H-h-WO₃ sensors were investigated with NO₂ concentrations ranging from 20 ppb to 1 ppm at operating temperatures ranging from 60 to 300 $^{\circ}$ C.

The temperature dependence of the sensor response to 0.5-ppm NO₂ shown in Fig. 5 indicated that the optimum operating temperature of the two thin-film sensors was 200 °C, which was the same as the thick-film sensors (data not shown). The H-h-WO₃ thin-film sensor showed higher response compared with the C-m-WO₃ one in a low temperature range of 60 - 120 °C. However, we noticed that without the desorption treatment, the sensor cannot recover the initial resistance after the NO₂ gas was turned off at the operating temperatures lower than 150 °C. Fig. 6 shows the transient response of the two thin-film sensors to 0.5-ppm NO₂ at the operating temperature of 200 °C. The electric resistance of the two sensors significantly increased upon exposure to NO2 gas and recovered the initial value when the sensor was refreshed by dry air. This result indicated that the adsorption of NO₂ gas on the WO₃ sensing films was reversible. The C-m-WO₃ thin-film sensor exhibits a relatively long response time, though the recovery time of less than one minute was effective for the online monitoring of environmental, dilute NO₂. On the other hand, the H-h-WO₃ thin-film sensor performed with short response and long recovery times and a relatively high value of Ra (~ $10^6 \Omega$ in RT, dry air) compared to the C-m-WO₃ one (~ $10^5 \Omega$ in RT, dry air). Fig. 7 shows the sensor responses of the thinand thick-film sensors at 200 °C as a function of NO₂ concentration. The logarithm of the sensor responses almost linearly increased with

Figure 5. Temperature dependence of S for thin-film sensors of C-m-WO₃ and H-h-WO₃ to 0.5-ppm NO₂.

Figure 6. Typical response and recovery transients to 0.5-ppm NO_2 at 200 °C for thin-film sensors of (a) C-m-WO₃ and (b) H-h-WO₃.

Figure 7. S as a function of NO_2 concentration for thin-film (a) and thick-film (b) sensors of C-m-WO₃ and H-h-WO₃ at 200 °C.

Figure 8. Sensor response of the C-m-WO₃ sensor to different gases measured at 200 °C.

Journal Name

Tał	ole I. Sensin	g proj	perties of th	e th	in- and	l thi	ck-fil	lm sensors
of	C-m-WO ₃	and	H-h-WO ₃	to	NO_2	at	the	operating
temperature of 200 °C.								

WO ₃ sensor	Thickness (µm)	Response (min: T ₉₀)	Recovery (min: T ₉₀)	$S_{20\text{-ppb }NO_2}$	
C-m-WO ₃ (thin)	2.19	2.4	0.8	160	
H-h-WO ₃ (thin)	2.17	1.9	1.8	23	
C-m-WO ₃ (thick)	11.5	1.3	0.9	43	
H-h-WO3 (thick)	14.4	1.4	2.4	96	

Table II. NO2 sensor response of different WO3 nanostructures.

- 1		+		
WO ₃ nanostructures	Operating temp. (°C)	NO ₂ conc. (ppb)	Sensor response (S = R_{NO_2} / R_{air})	Refs.
Hollow microspheres Square-like structures Lamellar-structured particles Spherical particles Porous nanorod bundles Nanowires Nanowire array C-m-WO ₃ and H-h-WO ₃ (Max.)	300 125 200 150 250 100 180 200 200	$ \begin{array}{r} 1000 \\ 100 \\ 200 \\ 5000 \\ 3000 \\ 1000 \\ 20 \\ 500 \\ \end{array} $	53.9 92 275 81 111.3 38 10 160, 96 10120, 3100	19 20 21 22 23 24 25 This work This work

the logarithm of the NO₂ concentration. It was indicated that for the thin-film sensors, sensor response of the C-m-WO₃ sensor was much higher than the H-h-WO₃ one, which was in contrast to the case of the corresponding thick-film sensors. The sensing properties of the four WO₃ sensors are summarized in Table I, where the 90 % response and recovery times were calculated from the resistancetime data based on the resistance when exposed to 0.5-ppm NO₂ for 3 min. The highest sensor response of 160 to 20-ppb NO₂ was obtained for the C-m-WO₃ thin-film sensor. Referring to some recent reports on the NO₂ sensing properties of different WO₃ nanostructures, as summarized in Table II, the C-m-WO₃ thin-film sensor fabricated in this work possesses very high sensor response to dilute NO₂. According to the environmental standard of NO₂ (less than 0.04 - 0.06 ppm per hour, in Japan), gas sensors should be able to detect NO₂ at the 10-ppb concentration level when used for the sensitive environmental monitoring at polluted areas caused by NO₂ emissions mainly from diesel vehicles. Both sensitivity (sensor response) and speed (response-recovery time) of the as-fabricated Cm-WO₃ sensor well satisfy the requirement for actual applications in high sensitive, environmental NO₂ monitoring.

Selectivity is another important factor of gas sensors in practical application. Fig. 8 shows the C-m-WO₃ sensor response to various gases of NO₂, O₃, NO, CO, and NH₃. The sensor exhibited the highest response to NO₂ gas among the gases. For actual applications in environmental monitoring, the effect from O₃ should be taken into consideration. Practical evaluation using a C-m-WO₃ sensor has demonstrated its sufficient stability, accuracy and resolution in a 10-week sequential measurement,³⁴ suggesting the great potential for actual environmental monitoring of dilute NO₂.

For most of the semiconductor oxide gas sensors, the change in electric resistance is primarily caused by the adsorption and reaction of the gas molecules on the surface of the sensing material. In the air, WO₃ particles adsorb oxygen molecules on the surface and generate chemisorbed oxygen species such as O^2 , O, and O_2 . A depletion layer is formed on the surface area of WO₃ particles.³⁵ Upon exposure to NO₂ gas, the NO₂ molecules are adsorbed on the active sites on the WO₃ surface. Charge transfer is likely to occur from WO₃ to adsorbed NO₂ according to the following reactions,^{36, 37} leading to the increase in thickness of the depletion layer.

$$NO_2(g) + e^- \rightarrow NO_2^-(ads)$$
 (3)

$$NO_2(g) + e^- \rightarrow NO^-(ads) + O(ads)$$
 (4)

In the C-m-WO₃ thin-film sensor, the enhanced sensing properties may be ascribed to the large specific surface area and the high crystallinity of the C-m-WO₃ particles consisted chiefly of the single-crystal WO₃. The specific surface area of the as-prepared Cm-WO₃ particles was 10 times larger than that of the normal commercially-supplied WO₃ (around 1 m²g⁻¹), which significantly enhanced the adsorption sites on the surface of the sensing film. Further the high crystallinity of the C-m-WO₃ particles provided efficient transport of electrons, resulting in the greatly improved sensing properties. On the other hand, the H-h-WO₃ showed much larger average pore size, which was about two times as large as that of the C-m-WO₃, and thus could form a porous-structure sensing film. In a thick-film sensor, the good porosity enhanced the diffusion of NO₂ in the sensing film and made NO₂ gas reach the deeper inner layer to be effectively adsorbed on WO₃ particles between electrodes, increasing the sensor resistance and thus inducing the high sensitivity. Compared to the H-h-WO₃, the high-densely packed C-m-WO₃ sensing film suppressed the diffusion of the gas molecules and made the NO₂ difficult to reach deep inside the sensing film. This might be the reason for the higher sensor response of the H-h-WO₃ thick-film one (Table I).

Thickness effect on the sensor response and the mechanism which related to the oxygen partial pressure has been reported for WO_3 sensors based on spherical- and disk-shaped particles.^{38, 39} In those studies, the optimum thickness of the C-m-WO₃ and H-h-WO₃ sensors was observed to be quite different, which probably results from the quite different morphology and surface structure of the sensing films.

We also noticed many surface defects exist on a single H-h-WO₃ particle (Fig. 4). NO₂ gas was observed to be easily adsorbed and reacted at the surface of the H-h-WO₃ at relatively low temperature, which would be associated with the presence of the surface defects.

Crystal structure features

It has been reported that the hexagonal WO₃ is a metastable crystal phase; impurities are necessary in stabilizing its crystal structure.^{31,40-42} The as-synthesized WO₃ samples were investigated by solid state ¹H and ¹³C NMR. ¹H-CRAMPS NMR spectra shown in Fig. 9 (a) indicated the presence of peaks of protons in the H-h-WO₃, which were located at 4.2, 3.3, and 0.9 ppm, while no proton was detected in the C-m-WO₃. The peak at 4.2 ppm was assigned to NH₄⁺ ions by comparison with the ¹H NMR spectrum of the starting material $(NH_4)_{10}W_{12}O_{41}$ 5H₂O, where the peak of NH_4^+ was obvious. The weak shoulder between 4 and 6 ppm in the spectrum of H-h- WO_3 may be given by surface and structure H_2O molecules.^{41,43-45} The signal at 0.9 ppm was assigned to the surface-bonded OH groups, in accordance with previous works.^{45,46} We suppose that the peak at 3.3 ppm may probably come from the residual surfactant, CTAB, which was introduced in the hydrothermal treatment for the H-h-WO₃ sample, however it was difficult to assign it only by ¹H NMR spectra. Then ¹³C-DDMAS NMR measurements were carried out to get further structural information. The ¹³C NMR spectra shown in Fig. 9 (b) indicated that no peak was detected in the C-m-WO₃ sample, while for H-h-WO₃ sample, peaks located at 65.6 and 52.7 ppm and signals lower than 30.5 ppm were observed. By comparison with the spectrum of pure CTAB, the peaks at 65.6 and 52.7 ppm were assigned to -CH₂-N and -N(CH₃)₃, respectively. The

Journal Name

signals lower than 30.5 ppm may originate from the $-CH_3$ and $-CH_2$ - chains of CTAB,^{47,48} where some observed differences in the chemical shift from pure CTAB can be explained in terms of the local bonding and environmental changes and/or the long-term field drift during the measurements.^{49,50} Further detailed studies and analysis are in progress.

Figure 10. XPS spectra of as-prepared C-m-WO₃: (a) O 1s, (b) W 4f; and H-h-WO₃: (c) O 1s, (d) W 4f.

The different oxidation states of tungsten were confirmed by XPS spectra (Fig. 10). Table S1 shows that the as-prepared H-h-WO₃ is almost completely oxidized with 99.3 % W⁶⁺ atoms detected (W_{4(7/2} peak: 38.2, 37.0 eV; W4f_{5/2} peak: 36.1 eV). However, the as-prepared C-m-WO₃ contained W⁶⁺ (98.3 %) and W⁵⁺ (1.7 %) species (W4f_{7/2} peak: 38.0, 36.9 eV; W4f_{5/2} peak: 35.9 eV). The amounts of surface species (O²⁻, OH⁻, and H₂O) were also examined. Table S1 shows that the amount of surface OH⁻ was considerably larger for H-h-WO₃ (O²⁻/OH⁻/H₂O (in %) = 60.0/38.1/1.9) than for C-m-WO₃ (80.4/4.9/14.7).

NMR and XPS spectroscopy gave important information about the different crystal structures of C-m-WO₃ and H-h-WO₃. It was found that the small amount of residual impurities and cations were not only necessary to stabilize the H-h-WO₃ structure, but also without them, the H-h-WO₃ particles could not even be formed.^{27,32,41} Morphology and structure transformation of tungstic acid hydrate, $H_2WO_4 \cdot nH_2O$, have been reported,⁴⁰ in which sodium ion content in the solid phase had been found to control the reaction route in the hydrothermal treatment of tungstic acid hydrates. In the present study, for synthesizing the H-h-WO₃ particles, relatively low temperature and the short-time acidification are necessary. It is reasonable to consider that residual NH₄⁺ existing as a persistent contaminant in the reaction product, helps to form hexagonal crystal seeds, and plays an important role in forming the hexagonal WO₃ crystal in further hydrothermal treatment.⁵⁰ Surfactant CTAB is considered to adhere to the surface of the WO₆ octahedra or the structure water and to affect differently the growing rates of different crystal planes of the precursors, appearing as the preferred preferentially oriented (2 0 0) plane in Fig. 2. During the hydrothermal process, morphology formation and recrystallization occur at an accelerated rate in the autoclave. With the presence of the hexagonal crystal seeds and the controlled orientation direction, as shown in Fig. 11, the hexagonal-plate-like H-h-WO₃ particles were finally formed. However, until now we could not succeed in preparing pure H-h-WO₃ in our experiments. The more detailed quantitative explanation on the crystallization and composition of the H-h-WO₃ needs further investigation. On the other hand, due to the presence of minor amount of residual impurities and cations in the hexagonal WO₃, it is assumed that reduced tungsten atoms such as W^{5+} and/or W^{4+} may also present to maintain the electroneutrality.^{27,32,40-42} However, the XPS spectra showed that the as-prepared H-h-WO₃ was almost completely oxidized. The reason is supposed to be due to the presence of OH, which contributed to maintain the electroneutrality in H-h-WO₃ crystal structure. The small amount of W5+ atoms detected in C-m-WO3 samples in this study may be due to a change of the sample surface in the high vacuum in an XPS chamber, in accordance with previous works.^{32,41} The high density of surface OH⁻ species and the presence of residual impurities and cations in the crystal structure may result in the increased conductance and recombination sites in the H-h-WO₃ particles, which greatly affect the adsorption of the gas molecules as well as the transport of electrons, leading to make a definite influence on the sensing properties of the H-h-WO₃ sensor.

Figure 11. Schematic model for the formation of H-h-WO₃ particles during the hydrothermal process. WO_6 octahedra is extracted from the reported model.³¹

Page 6 of 6

Influence of the morphology (cuboid or hexagonal-plate) and crystal structure (monoclinic or hexagonal) of WO₃ on gas-sensing properties was studied. Thin- and thick-film sensors based on two kinds of WO₃ (C-m-WO₃ and H-h-WO₃) were fabricated and NO₂ sensing properties were investigated. The C-m-WO3 thin-film sensor (2.19 µm thick) showed the extremely high sensor responses of 160 to 20-ppb NO₂ and 10120 to 500-ppb NO₂ at 200 °C, which may possess great potential for actual applications in very highly sensitive, environmental NO₂ monitoring. The large specific surface area and the high crystallinity of the C-m-WO₃ may also imply the potential as a promising candidate for designing high activity photocatalyst materials. On the other hand, the H-h-WO₃ formed a porous-structure sensing film, and the higher sensor response was obtained in the operation of the H-h-WO₃ thick-film sensor (14.4 µm thick) than the C-m-WO₃ thick-film one (11.5 µm thick). Solid state ¹H and ¹³C NMR spectra indicated the presence of residual impurities and cations in the as-synthesized H-h-WO₃ sample, and higher density of OH on the surface of H-h-WO₃ particles was demonstrated by XPS spectra. Stabilizing impurities and defects in the crystal structure as well as the surface OH⁻ density will be key factors to understand the different sensing properties of the H-h-WO₃ and C-m-WO₃ gas sensors.

Acknowledgements

This research was supported by JSPS KAKENHI Grant Number 23.40224.

Notes and references

^a Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan, *Email:kojimaka@sk.ritsumei.ac.jp

^b Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, Kumamoto 860-8555, Japan

^c Department of Materials Science and Engineering, National Institute of Technology, Suzuka College Shiroko, Suzuka, Mie 510-0294, Japan

^d Comprehensive Analysis Center, the Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan

Electronic Supplementary Information (ESI) available: [details of any t supplementary information available should be included here]. See DOI: 10.1039/b000000x/

- E. Comini, G. Faglia, G. Sberveglieri, D. Calestani, L. Zanotti, M. Zha, Sens. Actuators B, 2005, 111, 2-6. 1.
- 2
- 3
- Sens. Actuators B, 2005, 111, 2-0. Y.B. Shen, T. Yamazaki, Z.F. Liu, D. Meng, T. Kikuta, N. Nakatani, M. Saito, M. Mori, Sens. Actuators B, 2009, 135, 524-529. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Appl. Phys. Lett., 2004, 84, 3654-3656. C. Li, D.J. Zhang, X.L. Liu, S. Han, T. Tang, C.W. Zhou, Appl. Phys. Lett., 2003, 83, 1845-1847. 4.
- A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S.Z. Deng, N.S. Xu, Y.
 Ding, Z.L. Wang, *Appl. Phys. Lett.*, 2006, 88, 203101.
 C.S. Rout, A. Govindaraj, C.N.R. Rao, *J. Mater. Chem.*, 2006, 16, 5.
- 6. 3936-3941.
- 7. C. Santato, M. Odziemkowski, M. Ulmann, J. Augustynski, J. Am. Chem. Soc., 2001, 123, 10639-49.
- R. Abe, H. Takami, N. Murakami, B. Ohtani, J. Am. Chem. Soc., 2008, 8. 130, 7780-7781
- 9. Q. Xiang, G.F. Meng, H.B. Zhao, Y. Zhang, H. Li, W.J. Ma, J.Q. Xu, J. Phys. Chem. C, 2010, 114, 2049-2055.
- B. Xue, J. Peng, Z. Xin, Y. Kong, L. Li, B. Li, J. Mater. Chem., 2005, 10. 15, 4793-4798 11.
- S. Wang, X. Feng, J. Yao, L. Jiang, Angew. Chem. Int. Ed., 2006, 45, 1264–1267.
- J. Wang, E. Khoo, P.S. Lee, J. Ma, J. Phy. Chem. C, 2008, 112, 14306-12. 14312 13. I.M. Szilagyi, S. Saukko, J. Mizsei, A.L. Toth, J. Madarasz, G. Pokol,

- *Solid State Sci.*, 2010, **12**, 1857-1860. M. Akiyama, J. Tamaki, N. Miura, N. Yamazoe, *Chem. Lett.*, 1991, **20**, 14. 1611-1614.
- 15. N. M. Vuong, H. Jung, D.J. Kim, H. Kim, S.K. Hong, J. Mater. Chem., 2012, 22, 6716-6725 Z. Liu, M. Miyauchi, T. Yamazaki, Y. Shen, Sens. Actuators B, 2009, 16.
- 140, 514-519. D. Meng, T. Yamazaki, Y. Shen, Z. Liu, T. Kikuta, *Appl. Surface Sci.*, 2009, **256**, 1050-1053. 17.
- Z. Meng, C. Kitagawa, A. Takahashi, Y. Okochi, J. Tamaki, Sens. Mater, 2009, 5, 259-264. 18.
- L. You, X. He, D. Wang, P. Sun, Y.F. Sun, X.S. Linag, Y. Du, G.Y. Lu, Sens. Actuators B, 2012, 173, 426–432.
 L. You, Y.F. Sun, J. Ma, Y. Guan, J.M. Sun, Y. Du, G.Y. Lu, Sens. 19.
- 20. Actuators B, 2011, 157, 401-407.
- 21. T. Kida, A. Nishiyama, M. Yuasa, K. Shimanoe, N. Yamazoe, Sens. Actuators B, 2009, 135, 568-574.
- 22 S. Ashraf, C.S. Blackman, R.G. Palgrave, S.C. Naisbitt, I.P. Parkin, J. Mater. Chem., 2007, 17, 3708-3713
- P.V. Tong, N.D. Hua, V.V. Quang, N.V. Duy, N.V. Hieu, Sens. Actuators B, 2013, **183**, 372–380. 23
- D. Meng, N.M. Shaalan, T. Yamazaki, T. Kikuta, Sens. Actuators B, 24. 2012, 169, 113-120.
- B. Cao, J. Chen, X. Tang, W. Zhou, J. Mater. Chem., 2009, 19, 2323-25. 2327.
- 26.
- 27.
- 28 **589**, 161-166.
- C. Balázsi, L. Wang, E.O. Zayim, I.M. Szilágyi, K. Sedlacková, J. Pfeifer, A.L. Tóth, P.-I. Gouma, *Journal of the European Ceramic Society*, 2008, **28**, 913-917. 29
- L. Wang, J. Pfeifer, C. Balázsi, I.M. Szilágyi, P.I. Gouma, Proc. of SPIE 30. 2007, 2007, 6769, 67690E-1-8.
- 31. I.M. Szilágyi, J. Madarász, G. Pokol, P. Király, G. Tárkányi, S. Saukko, J. Mizsei, A.L. Tóth, A. Szabó, K.V. Josepovits, Chem. Mater., 2008, 20, 4116-4125
- T. Firkala, B. Fórizs, E. Drotár, A. Tompos, A.L. Tóth, K.V. Josepovits, 32. K. László, M. Leskelä, I.M. Szilágyi, Catalysis Letters, 2014, 144, 831-836
- D. Chen, L. Gao, A. Yasumori, K. Kuroda, Y. Sugahara, Small, 2008, 4, 33. 1813-1822.
- Z. Meng, T. Hashishin, J. Tamaki, K. Kojima, *Key Engineering Materials*, 2013, **538**, 308-311. 34.
- 35. N. Yamazoe, G. Sakai, K. Shimanoe, Catalysis Surveys from Asia, 2003, 7.63-75
- H. Xia, Y. Wang, F. Kong, S. Wang, B. Zhu, Z. Guo, J. Zhang, Y. Wang, S. Wu, *Sens. Actuators B*, 2008, **134**, 133–139. C.Y. Lee, S.J. Kim, I.S. Hwang, J.H. Lee, *Sens. Actuators B*, 2009, **142**, 36.
- 37. 236-242
- 38 J. Tamaki, A. Hayashi, Y. Yamamoto, M. Matsuoka, Sens. Actuators B, 2003, 95, 111-115
- J. Tamaki, A. Hayashi, Y. Yamamoto, J. Ceram. Soc. Jpn., PacRim5 Special Issue, 2004, 112, S546–S549. 39
- 40 C. Balazsi, J. Pfeifer, Solid State Ionics, 2002, 151, 353-358.
- I.M. Szilágyi, B. Fórizs, O. Rosseler, Á. Szegedi, P. Németh, P. Király, G. Tárkányi, B. Vajna, K.V. Josepovits, K. László, A.L. Tóth, P. Baranyai, M. Leskelä, *J. Catalysis*, 2012, **294**, 119-127. 41.
- I.M. Szilágyi, I. Sajó, P. Király, G. Tárkányi, A.L. Tóth. A. Szabó, K. Varga-Josepovits, J. Madarász, G. Pokol, *J Therm Anal Calorim*, 2009, 42.
- Varga-Josepovnis, J. Hudanave, & F. F. J. J.
 98, 707-716.
 I.M. Szilágyi, J. Madarász, G. Pokol, F. Hange, G. Szalontai, K. Varga-Josepovits, and A.L. Tóth, *J Therm Anal Calorim*, 2009, 97, 11-18.
 I.M. Szilágyi, F. Hange, J. Madarász, and G. Pokol, *J. Inorg. Chem.*, 2006, 2412-2419. 43.
- 44
- 2006, 3413-3418. H.-J. Lunk, M. Salmen, D. Heidemann, International J. Refractory 45
- Matals & Hard Materials, 1998, **16**, 23-30. H.-J. Lunk, B. Ziemer, M. Salmen, D. Heidemann, *Refractory Matals & Hard Materials*, 1993-1994, **12**, 17-26. 46.
- C. Sizun, J. Raya, A. Intasiri, A. Boos, K. Elbayed, Microporous and 47 Mesoporous Mater., 2003, 66, 27-36. W. Shen, J. Yang, S. Li, W. Hu, J. Xu, H. Zhang, Q. Zou, L. Chen, F.
- 48 Deng, Microporous and Mesoporous Mater., 2010, 127, 73-81.
- 49 N. Chaiyut, T. Amornsakchai, H. Kaji, F. Horii, Polymer, 2006, 47, 2470-2481
- 50 Y. Koyama, T. Takao, Y. Yanagisawa, H. Nakagome, M. Hamada, T. Kiyoshi, M. Takahashi, H. Maeda, *Physica C*, 2009, **469**, 694-701.
- 51 J.H. Ha, P. Muralidharan, D.K. Kim, J. Alloys Compd., 2009, 475, 446-451