This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
We demonstrated herein the first class of polyoxometalate-containing thermotropic liquid-crystalline materials, in which the nonmesogenic organic moieties were covalently tethered onto the nanoscaled polyoxometalate. These materials showed layered smectic A (SmA) phase when cooling from isotropic state.

Liquid crystal (LC) state exists between the crystalline solid and the amorphous liquid. Combining both order and mobility, liquid crystals exhibit anisotropic and switching properties that are conducive to numerous applications. In the past decade, there has been an increasing interest in the field of liquid crystal nanoscience, which primarily deals with the synergistic relationship between LCs and nanomaterials such as nanoparticles and nanotubes. Nanomaterials can introduce specific characteristics into LC systems and enhance the physical properties of LCs, while LCs provide a very good support for the self-assembly of nanomaterials into well-defined functional superstructures in multiple dimensions. Polyoxometalates (POMs) are a class of discrete anionic metal oxides with intriguing physical properties and unmatched range of structures that can range in size from nano to micrometer scale. Incorporation of the nanoscaled POMs into LCs generates novel functional liquid-crystalline nanomaterials and has received increasing attention over recent years. A widely used method to fabricate liquid-crystalline POM nanomaterials is the encapsulation of POM anions into mesogenic or nonmesogenic cationic surfactants. However, few examples based on the covalent modification have been reported, although the covalent approach indeed offers indisputable assets.

In the search of POM-based advanced functional materials, herein we present the fabrication of liquid-crystalline nanomaterials based on [(C$_2$H$_5$)$_n$]$_4$(SiW$_{11}$O$_{39}$)O{Si(CH$_3$)$_2$-NH$_2$HCl$_2$} (SiW$_{11}$-NH$_2$) Keggin POM cluster (Scheme 1). The synthetic procedure is straightforward and consists of a one-step reaction of SiW$_{11}$-NH$_2$ with gallic acid derivatives that have been applied to obtain thermotropic mesophases with single-molecule magnets, octahedral metal atom clusters etc. The gallic acid derivatives were synthesized with long alkyl chains bearing azobenzene groups, which are widely used as rigid units in the fabrication of liquid-crystalline materials. In our case, differential scanning calorimetry (DSC) and optical polarized microscopy (OPM) experiments showed that the gallic acid derivatives did not show liquid-crystalline properties (see supporting information). Grafting these gallic acid derivatives onto POM clusters through amide bonds gave rise to compounds 1a-c.

The molecular structures and conformations of 1a-c were investigated by different techniques. FT-IR spectra of 1a-c show typical amide C=O stretching vibrations at ca. 1660 cm$^{-1}$, and characteristic SiW$_{11}$-NH$_2$ stretching vibrations at ca. 1044 (Si-O-Si), 965 (W=O), and 850 (W-O-W) cm$^{-1}$, indicating gallic acid derivatives have been grafted onto POMs. In the 1H NMR spectra of 1a-c, signals of the tetraubutylammonium cation and the gallic acid derivative are clearly observed and fit well with the molecular structures. The 29Si NMR spectra of 1a-c show two signals at ca. -52 ppm and -85 ppm, which can be assigned to the Si in the silane and the heteroatom of the mono-lacunary Keggin cluster of SiW$_{11}$, respectively (Fig. S7-9). Although the above analytical methods gave a good indication for the formation of the desired compounds, electrospray ionization mass...
spectrometry (ESI-MS) provided further convincing structural information. ESI-MS spectra of 1a-c show several intense signals characterized by complex isotope patterns (Fig. S10-12). It is possible to assign all the signals (Table S2). For example, ESI-MS peaks of 1a observed at m/z 1271.35 can be attributed to \([\{(SiW_1O_40)\{(Si(CH_3)NHCOCH_2(OCH_2H_2OCH_2H_2N_2)_{2}\}=HCOONa\}]^{+}\) (Fig. 1a), while peaks of 1b observed at m/z 1313.39 correspond to \([\{(SiW_1O_40)\{(Si(CH_3)NHCOCH_2(OCH_2H_2OCH_2H_2N_2)_{2}\}=HCOONa\}]^{+}\) (Fig. 1b). In the case of 1c, ESI-MS peaks observed at m/z 1355.70 can be assigned to \([\{(SiW_1O_40)\{(Si(CH_3)NHCOCH_2(OCH_2H_2OCH_2H_2N_2)_{2}\}=HCOONa\}]^{+}\) (Fig. 1c).

The thermal properties and LC behaviors of 1a-c were investigated by thermogravimetric analyses (TGA), DSC, OPM, and small-angle X-ray scattering (SAXS). TGA analyses reveal that all these hybrids are thermally stable up to 220 °C (Fig. S13). DSC analyses of 1a-c show that a glass transition state exists in all these hybrids during the heating and cooling process (Fig. S14). Specific exothermic and endothermic peaks, indicating the existence of liquid-crystalline phases, can be observed in the DSC curves of all the compounds except for 1a (Table S1). However, all of them exhibit clear birefringence as observed by OPM measurements when directly cooling from isotropic state (Fig. 2 and S15). For 1a, a typical fan-shaped texture, which can be assigned to a layered smectic A (SmA) phase, was obtained when cooling from isotropic state. Further decrease of temperature causes no significant change in texture until a frozen glass state appears. Similar situation can be observed for compounds 1b and 1c. However, some differences still exist. For example, during the cooling process of compound 1b or 1c, the fan-shaped texture gradually transfers to an irregular texture, indicating the thermal changes in enthalpy, which is in good accordance with the DSC measurements. These enthalpy changes, however, do not lead to phase transitions as revealed by the following SAXS studies.

To gain more insights on the arrangement of the molecules in the mesophase, variable-temperature SAXS measurements were carried out (Fig. 3). The SAXS patterns of 1a shown in Fig. 3a are nearly independent of temperature (Table S5), and can be characterized by five reflexes at \(q = 1.12, 2.24, 3.41, 4.62, \) and 5.68 \(\text{nm}^{-1}\) with the ratio of 1:2:3:4:5, indicating a highly ordered lamellar structure. The interlayer distance \(d_{001} = 2\pi/\sqrt{q}; 56.0 \) Å) is comparable with the molecular length in the extended molecular conformation (56.2 Å, calculated by MM2 force field method). This fact strongly suggests the existence of a lamellar SmA phase on cooling process. The SAXS patterns of 1b and 1c are almost the same with those of 1a. Five equidistant reflexes are found in all temperature ranges (Fig. 3b and 3c). The interlayer distances \(d_{001}\) of 1b and 1c are calculated to be 59.1 Å and 62.2 Å, respectively, which are very close to the extended molecular lengths (59.0 Å for 1b and 61.6 Å for 1c). The interlayer distances of 1b and 1c determined by SAXS are also found to be nearly independent of temperature, which is in agreement with the nature of the SmA phase.13 The reflex \((q = 5.06 \text{ nm}^{-1}\) shown in all SAXS patterns corresponds to a distance of \(d' = 12.4 \) Å, presumably caused by neighboring POM clusters.14,15

![Fig. 2 Optical polarized micrographs of a) 1a at 180 °C, b) 1a at 130 °C, c) 1b at 175 °C, d) 1b at 130 °C, e) 1c at 180 °C, and f) 1c at 130 °C during the cooling process (magnification: \(\times 100\)).](image)

![Fig. 3 Variable-temperature small-angle X-ray scattering patterns of a) 1a, b) 1b, and c) 1c on cooling process.](image)
by HR-TEM. As shown in Fig 4b, well-ordered POM clusters within the POM-containing layer can be observed. On the basis of the above results, we propose a model for the packing structures of SmA phase (Fig. 4c), in which the organic moieties are located in between the POMs layers.

Fig. 4 a) HR-TEM image of 1c; b) magnified HR-TEM image of 1c; c) the suggested model describing the lamellar SmA structure.

Conclusions

In conclusion, we reported for the first time the synthesis and characterization of covalently modified POMs-containing thermotropic liquid-crystalline nanomaterials, in which the nonmesogenic organic moieties were tethered onto the nanoscaled POM cluster. These hybrids were found to be able to self-organize into a well-defined smectic lamellar structure, as confirmed by SAXS and HR-TEM measurements. Combining the advantages of organic moieties and tremendous properties of POMs, these hybrid materials allow the development of promising LCs in the field of smart multi-responsive material and catalyst. As such, this work provides fascinating perspectives in the design and elaboration of novel POMs-containing liquid-crystalline nanomaterials and may open a new pathway in the development of POMs-containing multifunctional nanosystems.

This research was supported by National Basic Research Program of China (973 program, 2014CB932104), National Science Foundation of China (21222104), the Fundamental Research Funds for the Central Universities (RC1302), Changjiang Scholars and Innovative Research Team in University. The authors appreciate the financial support from Beijing Engineering Center for Hierarchical Catalysts.

Notes and references

Covalently Grafting Nonmesogenic Moieties onto Polyoxometalate for Fabrication of Thermotropic Liquid-Crystalline Nanomaterials

Chang-Gen Lin, Wei Chen, Solomon Omwoma, and Yu-Fei Song*

We demonstrated the first class of polyoxometalate-containing thermotropic liquid-crystalline materials constructed from nonmesogenic moieties.