This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Supramolecular enhancement of aggregation-induced emission and its application in cancer cell imaging

Guocan Yu, a Guping Tang b and Feihe Huang* a

Compared with conventional fluorophores which are often quenched in the aggregate state or at high concentration due to concentration quenching or aggregation caused quenching, tetraphenylethene (TPE)-based organic fluorogens exhibit an extraordinary aggregation-induced emission (AIE) feature, providing a new platform for the development of fluorescence light-up molecules and photostable nanoaggregates for specific analyte detection and imaging. However, self-assembly of TPE-based building blocks can hardly be achieved without introduction of other driving forces due to the propeller-shaped structure and the dynamic rotation of the phenyl rings of the TPE unit. Herein, two four-arm TPE derivatives containing electron-rich naphthalene (TPE-NP) and electron-deficient paraquat (TPE-PQ) groups, respectively, were designed and synthesized. Driven by charge-transfer (CT) interactions, a complex formed between TPE-NP and TPE-PQ. It self-assembled into nanorods in a 1D packing mode, resulting in restriction of intramolecular rotation to enhance the AIE effect significantly. A difunctional negatively charged water-soluble pillar[6]arene (H) was employed to reduce the toxicity and enhance the membrane permeability of TPE-PQ by forming a stable inclusion complex (H⊃TPE-PQ) with TPE-PQ. A ternary system containing H, TPE-NP and TPE-PQ was utilized as an imaging agent for cancer cells due to the pH-responsiveness of H. Compared to the physiological pH of 7.4, the pH in tumor tissue and endosomes is more acidic, resulting in the disassembly of the host–guest complex H⊃TPE-PQ and the formation of the AIE-enhanced CT complex between TPE-NP and TPE-NP in the cancer cells.

Introduction

Cancer is a leading cause of death worldwide and only modest effects on the survival rate can be achieved by traditional cancer treatment. Accurate identification of cancer cells vs normal cells plays a significant role in the clinical diagnoses and prognoses of various types of cancers. The interstitial pH in malignant tumors is lower than that in normal tissues as a result of increased lactic acid production and reduced buffering and perfusion, which can be employed to selectively detect cancer cells. Fluorescence imaging has been one of the most powerful techniques for the detection of cancer cells without altering regular cellular functions due to its high specificity and sensitivity.1 Various sophisticated fluorescence probes, such as fluorescent proteins, organic dyes, upconversion nanophosphors, semiconductor nanocrystals, and other nanoparticles, have been designed for this purpose.2 Typically, light emissions from conventional fluorophores are quenched in the aggregate state or at high concentration due to aggregation caused quenching (ACQ), which greatly limits the labeling degree of fluorophores to cancer cells, resulting in significant compromise of sensitivity and posing a formidable hurdle to detect cancer cells.3

In contrast to the ACQ effect, Tang et al have developed a novel class of organic luminogens, such as tetraphenylethene (TPE), with extraordinary aggregation-induced emission (AIE) features, which are non-emissive in solution but are induced to luminesce intensely in the aggregate state through restriction of intramolecular rotation (RIR) of the benzene rings of the TPE unit.4,5 A series of AIE-based fluorescent probes have emerged for the detection of a wide range of biomolecules in the past decade, because the AIE-active fluorogens exhibit unique fluorescence turn-on properties with high sensitivity and contrast. Various methods, including covalent and noncovalent modification of TPE derivatives, have been employed to restrict the intramolecular rotation of the aromatic rings to achieve the AIE effect. Among them, supramolecular approaches to modify the AIE-active fluorogens are especially important for biocompatibilization and bioapplications, because the unique properties of the fluorogens can be effectively preserved.6 Noncovalent interactions,7 such as hydrogen bonding, hydrophobic interactions, π-π stacking interactions, electrostatic interactions, and charge-transfer interactions have been employed as driving forces to restrict the intramolecular rotation of aromatic rings of AIE-active fluorogens, thereby effectively enhancing their AIE effect. Development of new supramolecularly enhanced AIE-based cancer cell imaging agents will not only allow for the clinical diagnoses and...
probes of cancers but might also be helpful for the selective delivery of anticancer drugs.

![Chemical structures of model compounds PQ and TNP](image)

Herein, two four-armed TPE-based derivatives containing electron-rich naphthalene (TPE-NP) and electron-deficient paraquat (TPE-PQ) groups, respectively, were designed and synthesized. Charge-transfer (CT) interactions between the electron-rich naphthalene groups and electron-deficient paraquat units were achieved, resulting in the restriction of the intramolecular rotation of the benzene rings to enhance the emissive efficiency of TPE-PQ and TPE-NP.

![Synthetic route to difunctional pillar[6]arene H1](image)

The synthetic route to H is shown in Figure 1 and the synthetic routes to TPE-PQ and TPE-NP are shown in Scheme 1.

Experimental section

Synthesis

The synthetic route to H is shown in Figure 1 and the synthetic routes to TPE-PQ and TPE-NP are shown in Scheme 1.

Synthesis of H1: A solution of 1,4-bis(butoxy)pillar[6]arene (DBP6)\(^{10}\) (5.62 g, 4.00 mmol) in THF (100 mL) was stirred while an aqueous solution of \(\text{NH}_4\)_2[Ce(NO_3)_6] (2.19 g, 4.00 mmol) was added dropwise. The mixture was stirred at room temperature for 24 h. The organic solvent was removed and the water layer was extracted with dichloromethane (3 × 50 mL). The combined organic phase was washed with water (3 × 100 mL) and saturated NaCl solution (100 mL) and dried over anhydrous Na_2SO_4. After filtration and evaporation, the residue was purified by column chromatography on silica gel (petroleum ether/dichloromethane, 4:1 → 2:1 v/v) to provide H1 as a red solid (640 mg, 21%), m.p. 129.1–130.8 °C. The \(^1\)H NMR spectrum of H1 is shown in Figure S1. \(^1\)H NMR (400 MHz, chloroform-\(d\), room temperature) \(\delta\) (ppm): 6.82 (s, 2H), 6.77 (s, 2H), 6.75 (s, 2H), 6.71 (s, 2H), 6.68 (s, 2H), 6.43 (s, 2H), 3.90–3.73 (m, 28H), 3.61 (s, 4H), 1.80–1.73 (m, 20H), 1.54–1.49 (m, 20H), 1.02–0.92 (m, 30H). The \(^13\)C NMR spectrum of H1 is shown in Figure S2. \(^13\)C NMR (100 MHz, chloroform-\(d\), room temperature) \(\delta\) (ppm): 187.17, 170.10, 149.60, 149.52, 149.49, 149.43, 149.38, 145.77, 132.43, 128.26, 127.17, 126.94, 126.15, 121.55, 114.31, 113.91, 113.80, 113.43, 109.82, 109.63, 107.82, 107.53, 97.73, 97.29, 85.72, 85.23, 78.03, 75.81, 67.31, 67.26, 67.04, 66.66, 59.36, 53.09, 30.89, 30.86, 30.82, 30.39, 29.87, 29.33, 29.26, 20.00, 18.44, 18.42, 18.39, 18.38, 18.23, 13.17, 12.97, 12.92, 12.88, 12.64. LRESIMS: \(m/z\) 1314.3 [M + Na\(^{+}\)] (100%). HRESIMS: \(m/z\) calc'd for [M + Na\(^{+}\)]_ Calcd 1315.8363, found 1315.8386, error 1.7 ppm.

Synthesis of H3: A solution of H2 (702 mg, 0.500 mmol) in CH_2Cl_2 (20 mL) was stirred while an aqueous solution of Na_2SO_4 (1.92 g, 11.1 mmol) was added. The mixture was stirred at room temperature for 12 h. The water layer was extracted with CH_2Cl_2 (3 × 50 mL). The combined organic phase was washed with water (3 × 100 mL) and saturated NaCl solution (100 mL) and dried over anhydrous Na_2SO_4. After filtration and evaporation, the resulting H2 was used in the next step without further purification. Methyl chloroacetate (2.59 g, 24.0 mmol) and K_2CO_3 (6.62 g, 48.0 mmol) were added to a solution of H2 (645 mg, 0.500 mmol) in CH_3CN (50 mL). The mixture was heated under nitrogen at reflux for 24 h. The cooled reaction mixture was filtered and washed with chloroform. The filtrate was evaporated under vacuum, and the residue was purified by flash column chromatography (dichloromethane/ethyl acetate, 20:1 v/v) to yield H3 as a white solid (689 mg, 96%), m.p. 146.5–148.2 °C. The proton NMR spectrum of H3 is shown in Figure S5. \(^1\)H NMR (400 MHz, chloroform-\(d\), room temperature) \(\delta\) (ppm): 8.68 (s, 2H), 6.73 (s, 2H), 6.71 (s, 2H), 6.68 (s, 2H), 6.66 (s, 4H), 4.37 (s, 4H), 3.82–3.71 (m, 38H), 1.72–1.63 (m, 20H), 1.45–1.41 (m, 20H), 1.30–1.26 (m, 30H). The \(^13\)C NMR spectrum of H3 is shown in Figure S6. \(^13\)C NMR (100 MHz, chloroform-\(d\), room...
temperature) δ (ppm): 168.53, 149.49, 149.47, 149.44, 149.38, 149.17, 127.79, 127.05, 126.92, 126.87, 126.67, 126.02, 114.58, 114.09, 114.00, 113.83, 113.64, 76.56, 76.04, 75.72, 76.22, 67.12, 66.99, 65.27, 50.77, 30.90, 30.87, 30.84, 30.82, 30.01, 29.64, 29.53, 28.68, 18.43, 18.39, 18.37, 18.33, 12.92, 12.90, 12.88, 12.86, 12.78. LRESIMS is shown in Figure S7: m/z 1459.3 [M + Na]+ (100%). HRESIMS: m/z caleld for [M + K]+ Cs2H13O25Na, 1459.8787, found 1459.8763, error –1.6 ppm.

Synthesis of H: A solution of H (718 mg, 0.500 mmol) in CH3CH2OH (40 mL) was treated with 40% aqueous sodium hydroxide (40 mL) at reflux for 12 h. The mixture was concentrated under reduced pressure, and diluted with water (10 mL). The precipitate was collected by filtration, washed with water, and dried under vacuum to give H (727 mg, 100%) as a white solid, m.p. 167.5–169.8 °C. The proton NMR spectrum of H is shown in Figure S8. 1H NMR (400 MHz, chloroform-d, room temperature) δ (ppm): 7.06 (s, 2H), 6.74 (s, 2H), 6.69 (s, 4H), 6.65 (s, 2H), 6.59 (s, 2H), 4.31 (s, 4H), 3.89–3.67 (m, 32H), 1.70–1.61 (m, 20H), 1.44–1.31 (m, 20H), 0.90–0.78 (m, 30H). The 13C NMR spectrum of H is shown in Figure S9. 13C NMR (100 MHz, chloroform-d, room temperature) δ (ppm): 166.93, 150.50, 150.45, 150.39, 150.17, 128.78, 128.07, 127.92, 127.87, 127.66, 127.00, 115.60, 115.13, 115.01, 114.85, 68.24, 68.14, 68.00, 66.28, 53.85, 31.91, 31.88, 31.82, 31.06, 30.56, 19.45, 19.41, 19.39, 19.35, 13.96, 13.94, 13.90, 13.82. LRESIMS is shown in Figure S10: m/z 1491.0 [M + K]+ (100%). HRESIMS: m/z caleld for [M – Na+] Cs2H11O25Na, 1407.8498, found 1407.8523, error 1.7 ppm.

Synthesis of 3: 2 (2.09 g, 60.00 mmol) and K2CO3 (13.2 g, 98.00 mmol) were added to a solution of 1 (3.96 g, 10.00 mmol) in CH3CN (300 mL). The mixture was heated in a three-necked flask under nitrogen atmosphere at reflux for 2 d. The cooled reaction mixture was filtered and washed with chloroform. The filtrate was evaporated under vacuum, and the residue was purified by flash column chromatography (from dichloromethane/methanol (6:1 v/v) to MeOH/NH4Cl (2 N)/MeNO2 (7:2:1 v/v/v)) to yield 4 as a light red oil (1.45 g, 32%). The proton NMR spectrum of 4 is shown in Figure S20. 1H NMR (400 MHz, D2O, room temperature) δ (ppm): 8.86 (s, 8H), 8.18 (s, 8H), 7.66 (s, 8H), 8.86 (s, 8H), 7.42 (d, J = 4 Hz, 8H), 6.87 (d, J = 8 Hz, 4H), 6.53 (s, 16H), 6.27 (s, 16H), 3.93 (s, 12), 3.63–3.60 (m, 64H). The 13C NMR spectrum of 4 is shown in Figure S21. 13C NMR (100 MHz, D2O, room temperature) δ (ppm): 156.54, 153.21, 149.91, 146.10, 145.46, 141.03, 140.90, 138.37, 136.68, 132.23, 129.14, 126.67, 125.49, 122.55, 113.75, 69.88, 69.57, 68.92, 66.86, 66.00, 60.85, 60.39, 46.70, 20.63. LRESIMS is shown in Figure S22: m/z 1255.9 [M + TsO – H]− (100%). HRESIMS: m/z caleld for [M – 4TsO]+ CsH111O16Na, 414.2049, found 414.2056, error 1.7 ppm.

Synthesis of TPE-PQ: Bromoethane (10.8 g, 100 mmol) was added to a solution of 4 (2.34 g, 1.00 mmol) in CH3CN (50 mL). The mixture was heated under nitrogen at reflux for 12 h. The cooled reaction mixture was evaporated under vacuum to yield TPE-PQ as a light red oil (2.77 g, 100%). The proton NMR spectrum of TPE-PQ is shown in Figure S23. 1H NMR (400 MHz, D2O, room temperature) δ (ppm): 8.99 (s, 16H), 8.35 (s, 16H), 8.66–8.51 (m, 32H), 4.78 (s, 8H), 4.60 (t, J = 8 Hz, 8H), 3.96–3.90 (m, 16H), 3.56–3.51 (m, 53H), 1.56 (t, J = 4 Hz, 12H). The 13C NMR spectrum of TPE-PQ is shown in Figure S24. 13C NMR (100 MHz, D2O, room temperature) δ (ppm): 146.07, 145.97, 145.20, 145.16, 132.26, 132.09, 129.34, 126.94, 126.89, 126.74, 126.71, 126.67, 126.64, 125.38, 113.94, 69.89, 69.67, 69.66, 69.54, 69.81, 68.58, 67.19, 61.32, 57.68, 20.49, 15.62. LRESIMS is shown in Figure S25: m/z 874.6 [M + TsO – 4Br]− (100%). HRESIMS: m/z caleld for [M – 4TsO – 4Br]+ CsH113Cl2Na2O16S6, 221.6200, found 221.6227, error 3.2 ppm.

Cell Culture

MCF-7 and HEK293 cells were cultivated in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin. Cells grew as a monolayer and were detached upon confluence using trypsin (0.5% w/v in PBS). The cells were harvested from cell culture medium by incubating in trypsin solution for 5 min. The cells were centrifuged, and the supernatant was discarded. A 3 mL portion of serum-supplemented DMEM was added to neutralize any residual trypsin. The cells were resuspended in serum-supplemented DMEM at a concentration of 1 x 10^4 cells/mL. Cells were cultured at 37 °C and 5% CO2.
Evaluation of Cytotoxicity

The cytotoxicity of H, TPE-NP, TPE-PQ, TPE-PQ@TPE-NP and H$_2$TPE-PQ against MCF-7 and HEK293 cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay in a 96-well cell culture plate. All solutions were sterilized by filtration with a 0.22 μm filter before tests. Raw 264.7 cells were seeded at a density of 1 × 104 cells/well in a 96-well plate, and incubated for 24 h for attachment. Cells were then incubated with H, TPE-NP, TPE-PQ, TPE-PQ@TPE-NP and H$_2$TPE-PQ at various concentrations for 4 h and 24 h, respectively. Then 20 μL of a MTT solution (5 mg/mL) was added to each well. After 4 h of incubation at 37 °C, the MTT solution was removed, and the insoluble formazan crystals that formed were dissolved in 100 μL of dimethylsulfoxide (DMSO). The absorbance of the formazan product was measured at 570 nm using a spectrophotometer (Bio-Rad Model 680). Untreated cells in media were used as a control. All experiments were carried out with three replicates.
Results and discussion

Supramolecular Enhancement of Aggregation-Induced Emission Driven by Charge-Transfer Interactions

TPE-NP exhibits the characteristic AIE feature. It gives very weak emission in THF where it is well dissolved with the wavelength of emission bands at 386 and 412 nm corresponding to the emission of naphthalene rings. Water is a poor solvent for TPE-NP due to the existence of highly hydrophobic aromatic rings of TPE-NP. As shown in Fig. S32, the fluorescence intensity (FL) of TPE-NP was enhanced gradually by increasing the volume fraction of water (f_w) in the THF/H_2O mixture from 0 to 80 vol%, accompanied by a red-shift to 491 nm for the emission maximum. Moreover, the FL intensity of TPE-NP at 491 nm increased dramatically upon further enhancement of f_w from 80 to 90 vol%, 44-fold as compared to that in the pure THF solution, consistent with other hydrophobic AIE dyes. On the contrary, TPE-PQ shows excellent solubility (higher than 50 mM) in water due to the presence of four dicationic paraquat units as arms, resulting in the excellent solubility of TPE-NP in water at room temperature. (b) Plot of emission intensity at 491 nm vs. the TPE concentration. The inset in (b) is a fluorescent photo of TPE-PQ@TPE-NP in water at different TPE concentrations.

Fig. 2 (a) Fluorescence spectra of TPE-PQ@TPE-NP at different TPE concentrations in water at room temperature. (b) Plot of emission intensity at 491 nm vs. the TPE concentration. The inset in (b) is a fluorescent photo of TPE-PQ@TPE-NP in water at different TPE concentrations.

Self-Assembly of the Charge-Transfer Complex

Due to the propeller-shaped structure of TPE and the dynamic rotation of the phenyl rings, the self-assembly of TPE-based building blocks has been rarely reported due to the failure of π-π stacking without introduction of other driving forces. After the establishment of the CT complex TPE-PQ@TPE-NP in water as a supra-amphiphile, we wondered whether these building blocks would self-assemble into interesting nanostructures on account of the introduction of the CT interactions between the electron-rich naphthalene rings and electron-deficient paraquat units. Two possible packing modes might be achieved for TPE-NP and TPE-PQ driven by CT interactions: one-dimensional (1D) self-assembly and two-dimensional (2D) self-assembly as shown in Fig. S36. Transmission electron microscopy (TEM) was employed to reveal the morphology of the self-assembly. As shown in Fig. 3, nanorods were observed with ~6 nm diameter and ~1 μm length after a solution containing equimolar TPE-NP and TPE-PQ stood for two weeks. From a magnified image of these nanostructures (Fig. 3c), no sharp color contrast between the periphery and central parts was noted, indicating that the one dimensional nanostructures were solid nanorods (rod-like micelles). Notably, the nanorods were quite straight and smooth, which was attributed to the existence of cationic paraquat groups on the surfaces of the nanorods, generating electrostatic repulsive interactions. Interestingly, the average length of the nanorods decreased to ~300 nm when the TPE-PQ@TPE-NP molar ratio was changed to 50/49 (Fig. 3d), and it further decreased to ~200 nm at a molar ratio of 50/45 (Fig. 3e). The reason was that excess TPE-PQ in the solution acted as stoppers to inhibit the growth of the nanorods, resulting in the reduction of their length.
Furthermore, the nanorods formed bundles with lengths of ~300 nm when the concentration of the building blocks was increased to 5.00 × 10^{-4} M (Fig. 3g–3i), and the diameter of the self-assembly remained ~6 nm. Due to the existence of electron-rich naphthalene rings and electron-deficient paraquat units on the surfaces of the nanorods, CT interactions between the nanorods resulted in the formation of relatively larger aggregates. It should be noted that the extended length of the building blocks is about 6 nm (Fig. S35) which is close to the diameter of the nanorods, suggesting face-to-face packing of TPE-NP and TPE-PQ. On the other hand, no increase in viscosity was observed with increased concentration, indicating that the CT complex indeed self-assembled in water in 1D packing mode (Fig. 3). A mechanism to explain why the CT complex self-assembled into 1D nanorods rather than 2D aggregates, relates to the hydrophobic TPE regions adhering to the neighboring ones to minimize the exposure of the hydrophobic regions to water.\(^{11}\) As mentioned above, the AIE effect was enhanced significantly by the formation of the CT complex, resulting in restriction of intramolecular rotation of the aromatic rings on the TPE groups in the core of the nanorods.

pH-Responsive Complexation between H and TPE-PQ

Compared with TPE-NP, paraquat derivatives exhibited high toxicity for the cells due to increased intracellular levels of superoxide (O$_2^-$), which limits their bio-relevant applications. Pillar[n]arenes,\(^{13}\) mainly including pillar[5]arenes\(^{13c}\) and pillar[6]arenes,\(^{13}\) a new kind of macrocyclic hosts next to crown ethers, cyclodextrins, calixarenes, and cucurbiturils,\(^{14}\) are linked by methylene (-CH$_2$-) bridges at para-positions of 2,5-dialkoxybenzene rings, forming unique rigid pillar architectures. The unique symmetrical structure and easy functionalization of pillararenes have afforded them superior properties in host–guest recognition. Pillararenes act as useful platforms for the construction of various interesting supramolecular systems, including liquid crystals,\(^{13d}\) cyclic dimers,\(^{13e}\) chemosensors,\(^{13f}\) supramolecular polymers,\(^{13g,h}\) drug delivery systems,\(^{13i}\) transmembrane channels,\(^{13j}\) cell glue\(^{13k}\) and selective adsorption porous material.\(^{13m}\) From our previous work, we knew that pillar[n]arenes formed stable inclusion complexes with paraquat, reducing the toxicity of PQ effectively.\(^{9}\) On account of these factors, a difunctional pillar[6]arene H bearing two anionic carboxylate groups was designed and synthesized to effectively wrap the toxic paraquat groups on TPE-PQ through host–guest interactions to form electroneutral complexes.\(^{16}\)

Driven by the cooperativity of electrostatic interactions, hydrophobic interactions, and π-π stacking interactions between cationic paraquat units and anionic H, a stable host–guest complex H⊃TPE-PQ formed (see ESI, Fig. S37–S39). The association constant between paraquat and H was (4.54 ± 0.19) × 10^{-3} M^{-1}, indicating that the complex H⊃TPE-PQ was quite stable in water (Fig. S39). Moreover, the assembly and disassembly between H and TPE-PQ could be reversibly controlled by sequential addition of aqueous DCl and NaOD due to the pH-responsiveness of H (Fig. S40). When the solution became acidic, the carboxylate groups on H were protonated into carboxylic acid groups, resulting in the disassociation of the complex.\(^{9}\) Upon addition of NaOD, the carboxylic acid groups were deprotonated to anionic carboxylate groups, which interacted with the cationic guest effectively again to form a stable inclusion complex. The pH-responsive complexation between H and TPE-PQ was accompanied with FL intensity changes. Compared with free TPE-PQ exhibiting weak emission, a significant FL enhancement was observed upon formation of an electroneutral host–guest complex H⊃TPE-PQ, which showed relatively poor solubility in water, thus inducing the appearance of the AIE effect. On the contrary, TPE-PQ was dethreaded from the cavity of H and dissolved in water freely by protonation of the pH-responsive macrocyclic host, resulting in the reversal of the AIE effect (Fig. S41).

Host-Induced Toxicity Reduction and Application of the Ternary Supramolecular System in Living Cancer Cell Imaging

In order to further apply these supramolecular systems in biologically and pharmaceutically relevant fields, their toxicity needed to be evaluated. A simple evaluation of cytotoxicity for H, TPE-NP, TPE-PQ, TPE-PQ@TPE-NP and the host–guest complex H⊃TPE-PQ at different concentrations against MCF-7 and HEK293 cells was carried out by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Fig. 4a–4d show the minimal influence on cell viability and proliferation for both MCF-7 and HEK293 cells incubated with H and TPE-NP for 4 h and 24 h with the concentration ranging from 20 to 150 μg mL^{-1}, indicating the excellent biocompatibility and low toxicity of these two compounds. On the other hand, TPE-PQ exhibited high toxicity against MCF-7 and HEK293 cells; the addition of TPE-PQ led to rapid decrease in relative cell viability. In stark contrast, the relative cell viability of the host–guest complex H⊃TPE-PQ was...
higher than that of TPE-PQ at the same concentration, which indicated that the toxicity of TPE-PQ was significantly reduced upon formation of the stable host–guest complex.

Furthermore, a ternary supramolecular system containing H, TPE-NP and TPE-PQ was utilized as a living cell imaging agent. The electroneutral H⊃TPE-PQ was uptaken by MCF-7 cells relatively easily compared with positively charged TPE-PQ. H⊃TPE-PQ disassembled in the cell by protonation of pH-responsive H into the neutral state. Then the electron-deficient paraquat groups on TPE-PQ dethreaded from the cavity of H and interacted with electron-rich naphthalene rings on TPE-NP to form a stable CT complex in the cells, resulting in the enhanced AIE due to the restriction of the intramolecular rotation of the aromatic rings on TPE groups. This enhanced AIE was applied in cell imaging. The CT complex stained cells showed a bright densely punctuated pattern in the cytoplasm by confocal fluorescence microscopy with excitation wavelength λ = 405 nm. In our studies, we found that this ternary supramolecular system could not stain normal cells due to the relatively high pH value in these cells. This relatively high pH value meant that the disassembly of H⊃TPE-PQ could not be easily achieved, efficiently hindering the formation of the AIE-enhanced CT complex TPE-PQ@TPE-NP.

Conclusions

In summary, two tetraphenylethene derivatives containing electron-rich naphthalene (TPE-NP) and electron-deficient paraquat (TPE-PQ) groups, respectively, were designed and synthesized. Driven by charge-transfer (CT) interactions, TPE-NP and TPE-PQ self-assembled into nanorods in 1D packing mode, resulting in the restriction of intramolecular rotation to enhance the aggregation-induced emission (AIE) effect significantly. In order to enhance the membrane permeability and reduce the toxicity of TPE-PQ, a difunctional pillar[6]arene H bearing two carboxylate anionic groups was employed to form pH-responsive inclusion complexes with the four paraquat units of TPE-PQ. Due to the pH-responsiveness of H, a ternary supramolecular system containing H, TPE-NP and TPE-PQ was utilized as a living cell imaging agent, which stained the cancer cells. In the cancer cells, TPE-PQ dethreaded from the cavity of H, and interacted with TPE-NP to form a stable CT complex, resulting in the restriction of the intramolecular rotation of the aromatic rings on TPE groups to induce the appearance of an enhanced AIE phenomenon in the cytoplasm. These results indicate that the combination of the AIE effect and supramolecular chemistry has enormous potential in biologically and pharmaceutically relevant fields, such as biosensors, drug and gene delivery systems, protein-protein interactions and cell imaging.

Acknowledgements

This work was supported by National Basic Research Program (2013CB834502) and the National Natural Science Foundation of China (21125417).

Notes and references

a State Key Laboratory of Chemical Engineering, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China. E-mail: fhuang@zju.edu.cn; Fax: 86 571 8795 3189; Tel: 86 571 8795 3189
b Department of Chemistry, Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University Hangzhou, 310027, P. R. China.