
Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

RSCPublishing

ARTICLE

Air-stable organic semiconductors based on 6,6'-dithienylindigo and polymers thereof

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

E. D. Głowacki, D. H. Apaydin, Z. Bozkurt, U. Monkowius, K. Demirak, E. Tordin, M. Himmelsbach, C. Schwarzinger, M. Burian, R. T. Lechner, N. Demitri, G. Voss, and N. S. Sariciftci

Herein we report on the synthesis and properties of 6,6'-dithienylindigo (DTI), as well as its solubilized *N,N'*-di(tert-butoxy carbonyl) derivative (BOC-DTI). BOC-DTI can be electropolymerized and thermally-interconverted into films of poly(DTI). Thin films of DTI afford quasi-reversible 2-electron reduction and oxidation electrochemistry, and demonstrate ambipolar charge transport in organic field-effect transistors with hole mobility up to 0.11 cm²/Vs and electron mobility up to 0.08 cm²/Vs. Operation of the p-channel shows excellent air stability, with minimal degradation over a 60 day stressing study. Poly(DTI) can be reversibly oxidized and reduced over hundreds of cycles while remaining immobilized on the working electrode surface, and additionally shows a pronounced photoconductivity response in a diode device geometry. This work shows the potential of extended indigo derivatives for organic electronics applications, demonstrating impressive stability in ambient conditions.

Introduction

Indigo and its 6,6'-dibromo derivative, Tyrian Purple, have been used as dyes and pigments for thousands of years by many of the world civilizations. In the 19th century, the high commercial value of indigo dyestuffs encouraged early organic chemists to explore synthetic routes to indigos, and indeed the economic race to develop synthetic indigos was a major impetus behind the development of modern synthetic organic chemistry.^{2,3} Recently, it was found that indigo⁴, 6,6'dibromoindigo⁵, and similar hydrogen-bonded molecules^{6,7} show considerable promise for organic electronics applications. In field-effect transistors, indigos show ambipolar operation with mobility in the range $0.01 - 1.5 \text{ cm}^2/\text{Vs}$. These materials stand out in particular due to excellent operational stability in air, with minimal performance degradation even after measuring for >1 year. In parallel, there have been extensive studies reported in the literature on semiconducting properties of the closely-related building blocks of isoindigos^{8,9} and diketopyrrolopyrroles, 10,11 where these chromophores function as electron-accepting units in donor-acceptor type polymers. Indigos themselves were overlooked for such applications, as they are considered to have poor intramolecular π conjugation.¹² Nevertheless, in crystalline thin films indigos adopt a cofacial packing with sufficient transfer integral between neighboring molecules to support charge transport.⁷ Formation of highly-crystalline films is driven by the interplay

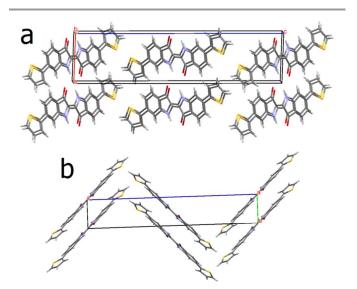
of π - π stacking and intra- and intermolecular hydrogen bonding (H-bonding). Very recently in this journal, polymers containing indigo as an acceptor unit in the main chain were reported, with large side chains attached to the nitrogens to preserve solubility. These materials show promising n-type behavior with electron mobility ~10⁻³ cm²/Vs. ¹³ The authors discuss the problematic aspect of the solubilizing chains distorting the planarity of the indigo chromophore. The aim of the study presented here was to develop an efficient synthetic strategy to extend the indigo molecule with well-known organic semiconducting moieties as a simple building block we use here thiophene – while preserving the H-bonded highly-planar indigo unit. To this end, we present two synthetic routes to enable solution-based chemistry while yielding the H-bonded compound in the end. This allows us to test how the indigo moiety can template crystalline growth when functionalized with conjugated units. Additionally, substitution with thiophenes allows facile polymerization. Insolubility of indigos is caused by the interplay of H-bonding and π - π stacking, leading to exceptionally-high crystal lattice energies. As a technique to make indigos tractable for synthesis, N,N'-disubstitution with alkyl or acyl units is used to eliminate H-bonding and distort the planarity of the original indigo molecule. Though such substitution facilitates chemical manipulation, it also interrupts the crystalline packing interactions characteristic of H-bonded indigos and therefore is likely detrimental to transport. In this work we introduce thermolabile protection groups: t-butoxy

carbonyl (tBOC) units. This can render the indigo molecule soluble for chemical manipulation and processing. 14 Afterwards, the tBOC groups can be decomposed into gaseous products CO₂ and isobutene by simple heating to temperatures >150° thereby regenerating the planar, H-bonded form of indigo. Using this transient protection technique, we can synthesize 6,6'-dithienylindigo (DTI, 5a) which can be used to fabricate ambipolar OFETs with $\mu_h = 0.11$ and $\mu_e = 0.08$ cm²/Vs. These OFETs demonstrate impressive stability in air during a 60 day stressing study. The electropolymerized form poly(DTI) is an insulator, however it shows a strong (resistance drop $\sim 10^4$) photoconductivity response in diode geometry. The poly(DTI) can also undergo fully reversible reduction at low potentials (-480 mV vs. Ag/AgCl) over hundreds of repeated cycles, making it the first example to our knowledge of a polymer vat dye that preserves its characteristic electrochemistry whilst not dissolving in the electrolyte. The two synthetic routes presented here to achieve extended indigos via coupling reactions open up new avenues in using indigo as a functional and stable building block for organic electronic materials.

Results and discussion

Synthesis and crystal structure

Initially, we attempted coupling reactions on 2 directly. However, due to extremely poor solubility of the compound, we were not able to obtain coupling products. Two synthetic approaches that overcome the solubility problem, shown in scheme 1, were evaluated in order to synthesize compounds 5a,b. In the route shown in the upper part of the scheme, the protect-deprotect route, we synthesize the tBOC protected form 4 of tyrian purple 2. Compound 4 is transformed to BOC-DTI 5b via Stille or Suzuki coupling with two equivalents of 2-(tributylstannyl)thiophene or 2-thienvl boronic respectively. In the alternate route, Stille coupling is performed directly on 4-bromo-2-nitrobenzaldehyde 1, generating 3 with essentially quantitative yield. Compound 3 is then transformed via the Baeyer-Drewsen reaction¹⁵ into DTI 5a with a yield of approx. 25%, which can in turn be protected with tBOC to yield 5b. Material 5a could be isolated directly from the dried reaction mixture by temperature gradient sublimation in vacuum to yield highly pure samples. Compound 5b, on the


other hand, was purified by column chromatography to separate it from small amounts of $\bf 4$ and mono-thienyl coupling byproduct $\bf 5c$. Stable aqueous vats of the reduced form $\bf 5a_{vat}$ could be easily prepared using sodium dithionite as the reducing agent despite the hydrophobic thiophene substituents.

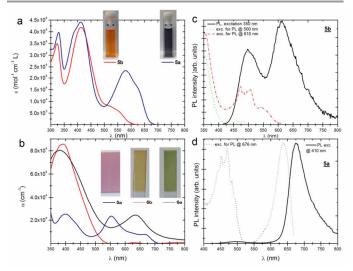
Diffraction-quality crystals of 5a were grown in a temperature-gradient tube furnace under a stream of dry nitrogen with a flow of 2 L/min using source material that had previously been purified by sublimation. The source temperature was held at 305 °C and crystals formed in a downstream zone with 110 ± 15 °C. Crystals were measured using synchrotron radiation with a wavelength of 0.7 Å. Experimental details can be found in the ESI. Projections of the crystal packing structure viewed down the a and b axes are shown in Figure 1. The indigo core of 5a is, like other Hbonded indigos, highly planar, while the thiophene rings are at a torsion angle of 14° relative to the indigo plane. Intermolecular H-bonding occurs along the a-direction, with a NH^{···}O= distance of 2.51 Å (Figure 1b). Typically, this distance for indigo and 6,6'-disubstituted indigos is shorter: ~2.1 Å. Along the b-direction, there is pronounced π - π stacking, with an intermolecular centroid-centroid distance of 4.78 Å (Figure 1a). The packing arrangement of 5a is quite unlike any reported indigo crystal structures. Typically, indigos crystallize in a criss-cross arrangement where each molecule forms single hydrogen bonds to four neighbouring molecules, with π - π stacking occurring in the perpendicular direction. The one exception is 6,6'-dichloroindigo, which forms double hydrogen-bonds to two neighbours, leading to linear chains of molecules with adjacent chains propagating in the same direction and a brick-wall type π -stacking structure. ¹⁶ The linear-chain vs. criss-cross H-bond lattice arrangements are well-known from work on other H-bonded pigments, where several materials can form both linear-chain and criss-cross polymorphs under certain conditions. 17 Though the linear-chain motif is present in 5a, the H-bonded sheets of molecules are tilted with respect to each other by 89° along the c-axis. The formation of such staggered linear chains is familiar from psubstituted diketopyrrolopyrrole pigments, but has not been observed in indigos before. 18 The close π - π stacking along the b-axis probably provides the primary contribution to electronic transport through films 5a.

RSCPublishing

ARTICLE

Scheme 1. Two synthesis routes to obtain 6,6'-dithienylindigo, and its polymerized form via electrochemical polymerization. i: acetone, 2M KOH, -5°C to rt. ii: $Pd(PPh_3)_4$, 2-(tributylstannyl)thiophene, toluene, reflux under N_2 . iii: Boc_2O , DMAP, THF, rt under N_2 . iv: 2-thienylboronic acid, $Pd(dppf)Cl_2$, 1M K_2CO_3 , THF, reflux under N_2 . v: $Na_2S_2O_4$, 2M KOH, heat

Figure 1. Crystal structure of DTI (**5a**). a) A slightly-tilted view down the b-axis, showing π - π stacking interactions between H-bonded chains of indigos. b) View


down the a-axis, showing the direction of propagation of the H-bonded linear chains.

Optical properties

The strong and surprisingly bathochromic absorption in indigoid dyes originates from the so-called indigoid Hchromophore, a cross-conjugated arrangement of electron donor and acceptor groups. 19 Thus, low-energy visible light absorption occurs due to charge transfer from the electron-rich NH groups to the electron-poor carbonyl functions. In order to better understand the absorption and emission data shown in Figure 2, we conducted DFT calculations to estimate molecular conformation and frontier orbital energies (Figure 3). The characteristic frontier orbital shapes of the cross-conjugated Hchromophore are the same in compounds 4-5 as previously calculated by DFT for other indigos. 20,21 UV-Vis absorption spectra of 5a and 5b in DMSO solution are shown in Figure 2a. Though 5b is highly-soluble in a wide range of organic solvents, DMSO was chosen as a common solvent that also allowed, after heating, dissolution of the deprotected form 5a. Compound 5a shows a main HOMO-LUMO transition peak at 580 nm, with a lower-energy shoulder at ~625 nm, causing the

solution to appear a deep purple colour. By way of comparison, indigo in DMSO has a λ_{max} at 620 nm. It is known that electron-rich substituents in the 6,6' positions inductively push electron density onto the carbonyl groups, 22-24 decreasing their electron-accepting character and therefore hypsochromically shifting the absorption of the indigoid H-chromophore. It is not surprising that the highly electron-rich thiophene functions shift the absorption so strongly to the blue in the case of 5a. The protected form of the compound, 5b, has an even more shifted H-chromophore absorption, with a peak at 540 nm, due to the added contribution of the electron-withdrawing tBOC groups, which decrease the electron-donating ability of the nitrogen atoms within the π system of the H-chromophore. Compound 5b shows photoluminescence with two distinct peaks, at 500 and 610 nm. The former originates from the chromophore containing the thiophene-phenyl system, as can be deduced from the excitation spectrum. The lower energy luminescence at 610 nm can be attributed to the H-chromophore. The excitation profile for this luminescence band follows that measured in the absorbance spectrum, however with a more distinct fine structure, clearly showing a splitting between higher and lower energy bands that is visible in the case of the unprotected 5a. The luminescence from 5a, in solution however, shows one single peak at 676 nm, with the excitation profile fitting closely to the absorbance spectrum. These differences with respect to the protected compound can be rationalized by the fact that tBOC substituted compounds are known to be highly distorted with respect to the central double bond, 14 thus the indole-thiophene chromophore can be electronically decoupled from the central H-chromophore. In the rigid and planar 5a, the electronic structure collapses to lower energy H-chromophore states. Qualitatively consistent with these experimental results are the results of the DFT calculations of frontier orbital energies: The presence of the electron-poor tBOC group energetically stabilizes both the HOMO and LUMO orbitals and leads to an increase of the energy gap compared to the unprotected compounds. Figure 3 shows the relative predicted energy levels as well as groundstate optimized conformations. The predicted DFT band gaps are systematically overestimated, however the qualitative differences, such as the decrease of band gap upon deprotection $(5b\rightarrow 5a, 6b\rightarrow 6a)$ reflect what is found experimentally. Also

the relative positions of the calculated HOMO and LUMO energy levels follow the same trends found from electrochemical oxidation and reduction onsets, respectively (Table 1).

Figure 2. a) UV-Vis absorption of **5a,b** in DMSO solution. Cuvettes show 0.1mM solutions. b) UV-Vis absorption of thin films on ITO glass. c) Photoluminescence and excitation spectra of **5b** in DMSO solution. d) Photoluminescence and excitation spectra of **5a** in DMSO.

In the case of thin films, the situation follows what is observed in solutions (Figure 2b). In evaporated films of 5a, the absorption splits into a lower energy band with a peak at 670 nm and a higher energy band at 552 nm, the latter having a higher oscillator strength. Thus, the films appear violet in colour and are identical to 6,6'-dibromoindigo (2) in appearance. Electropolymerized films with protecting groups (6b) are yellow in colour, with only one absorption peak at 398 nm, indicating that the indigoid moieties are highly twisted and thus have limited conjugation. This is also reflected in the DFT conformation calculation. Upon heating and deprotection, the deprotected form of the polymer (6a) regains a low energy absorption broad peak at 632 nm, and appears green in colour. Neither polymer film showed any detectable photoluminescence.

RSCPublishing

ARTICLE

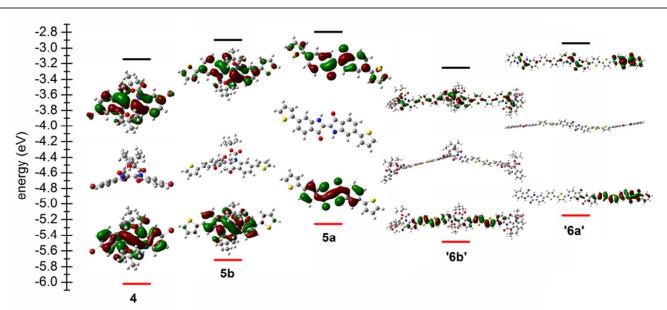
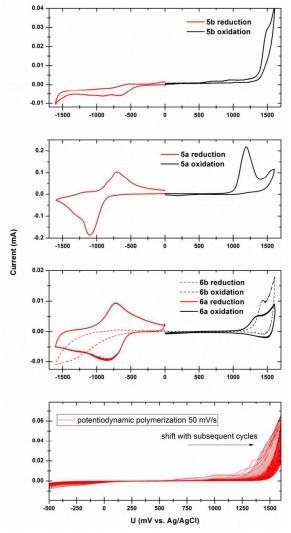


Figure 3. Optimised ground-state geometries and frontier orbital energies of compounds 4, 5a,b and cut-out segments of polymers 6a and 6b obtained by DFT calculations.

Electrochemisty and electropolymerization


Cyclic voltammetry was used to evaluate the electrochemical behaviour of 5a,b and 6a,b (Figure 4). In all cases, 0.1M tetrabutylammonium hexafluorophosphate in acetonitrile was used as the electrolyte solution, with Ag/AgCl functioning as the quasi-reference electrode, and a Pt foil as counter electrode. Using Ferrocene as a standard, 25 we estimated frontier orbital energies for all compounds, summarized in Table 1 together with band gaps calculated from electrochemistry and optical absorption. A worthwhile observation is that the optical band gaps are always equal to or greater than the electrochemicallycalculated band gaps. In organic semiconducting materials typically this relation is reversed. The exact origin of the unusually small electrochemical gap in indigos, observed in the compounds reported here as well as previously for unsubstituted indigo,4 is unclear. It may be related to the relatively polar indigo system which can easily undergo oxidation and reduction processes.

We exploited the pendant thiophene groups on DTI 5b to conduct an oxidative polymerization to yield 6b immobilized on an ITO working electrode. DTI 5b was dissolved to a concentration of 0.05M in an electrolyte solution of 0.1M tetrabutylammonium hexafluorophosphate in acetonitrile. An Ag/AgCl wire functioned as the quasi-reference electrode, and a Pt foil served as the counter electrode. The experiments were carried out in a dry N_2 environment. Both potentiodynamic and

potentiostatic oxidative polymerization was conducted. Electropolymerization of the monomer 5b was realized potentiodynamically by cycling potentials between 1600 mV and -500 mV with a scan rate of 50mV/s (Figure 4). Throughout the polymerization a shift in the oxidation potential to higher values was observed which we attribute to increased ohmic loss as the polymer film grows. The BOC-protected poly(DTI) 6b could then be deprotected by simply heating at 150°C for 5 minutes, yielding films of poly(DTI) 6a. Figure 5c,d shows AFM micrographs of poly(DTI) films before and after deprotection. In both cases a crystalline grain-like morphology is visible, quite similar to films of monomer 5a (Figure 5a,b) though with significantly lower roughness. Potentiostatic polymerization yielded films with identical morphology, however significantly thicker (>1µm) films could be grown since the material was not de-doped by cycling and could be conductive enough to support growth of thicker films. Neither **6a** nor **6b** could be solubilized for analysis. Structure was confirmed using matrix-assisted laser-desorption ionization (MALDI) mass spectroscopy using samples of thick potentiostatically-grown films which could be scratched off the electrode surface as flakes (see ESI for spectra).

Indigoids are vat dyes, thus upon reduction or oxidation **5a** becomes highly soluble in polar solvents. This causes rapid dissolution of films during cyclic voltammetry and impedes the measurement of respective re-oxidation or re-reduction. In contrast to films of monomer **5a**, the polymerized **6a** showed extraordinary cyclic stability. We conducted 500 scans in acetonitrile under ambient conditions, and found no degradation

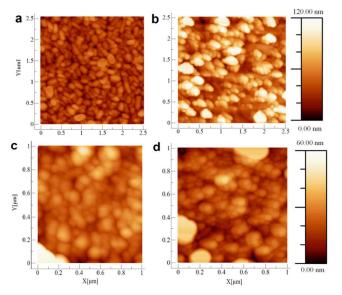
of the film or change in electrochemical behaviour, the successive scans could be overlaid. Often, repeated reductive electrochemistry in air leads to degradation, however samples of 6a were highly stable. We attempted measurement in aqueous electrolytes and found that no electrochemical current was measurable, which was attributed to the extreme hydrophobicity of the 6a film. This has been reported for other conjugated polymers as well. Replacing the electrolyte with the original acetonitrile one immediately yielded the previous electrochemical behaviour. Similarly, monomer 5a could not be measured with aqueous electrolytes. It was possible, however, to make a basic vat of 5a using sodium dithionite as the reducing agent. Heating 5a powder to 85°C in 2M KOH with Na₂S₂O₄ resulted in a dark orange-coloured vat of the reduced form of 5a (see spectra in ESI). If oxygen was excluded, the vat was stable in its reduced form at least for several days. Admission of air resulted in reoxidation to the neutral 5a which reprecipitated out of the solution.

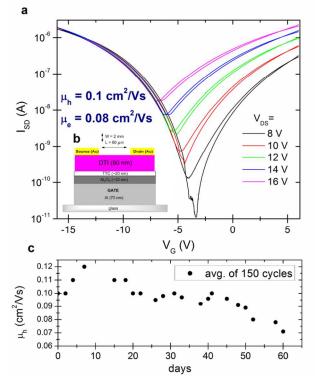
Figure 4. Comparison of the cyclic voltamograms of **5b** measured in solution, **5a** measured as film, and polymers **6a** and **6b** as films. A scan rate of 20mV/s was used in all cases. The bottom graph shows the potentiodynamic electropolymerization procedure for $\mathbf{5b} \rightarrow \mathbf{6b}$.

Table 1. Estimations of frontier orbital energy levels						
Material	E _{ox} (V vs. Ag/AgCl)	E _{red} (V vs.	HOMO [†] (eV)	LUMO [‡] (eV)	$\begin{array}{c} E_g^{(CV)} \\ (eV) \end{array}$	$\begin{array}{c} E_g^{(opt)} \\ (eV) \end{array}$
2	1.10	Ag/AgCl) -0.86	-5.8	-3.8	2.0	2.0
5a	0.96	-0.78	-5.6	-3.9	1.7	1.8
5b	1.30	-0.39	-6.0	-4.3	1.7	2.0
6a	1.11	-0.48	-5.8	-4.2	1.6	1.7
6b	1.25	-0.60	-5.9	-4.0	1.9	2.3

 $^{\dagger}E_{HOMO} = -(E_{[onset, ox. vs. NHE]} + 4.75)(eV)$

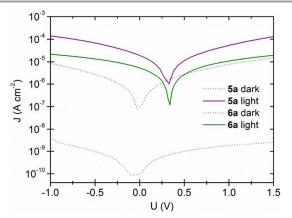
 $^{\ddagger}E_{LUMO} = -(E_{[onset, red. vs. NHE]} + 4.75)(eV)$




Figure 5. AFM micrographs of a) 80 nm of 5a on ITO, b) 80 nm of 5a on AlO_x/TTC, c) a 140 nm film of 6b polymerized on ITO, d) the same film after heating/deprotection, yielding 6a.

Transistors and diodes

DTI (5a) could be sublimed in vacuum to form device-quality films. AFM micrographs of 80 nm of 5a evaporated with a rate of 0.2 Å/s on ITO glass and AlO_x/TTC are shown in Figure 5a,b. Crystalline grains with roughly 100 nm domain size form on ITO, while on the low-surface energy TTC crystallites are considerably larger, with domains of several hundred nanometres. Devices fabricated using 5b followed by heating to yield 5a failed to give films; instead isolated crystallites were formed. This behaviour we previously found with other latent indigo pigments.¹⁴ We fabricated organic field-effect transistors using DTI in a device configuration that is known to support transport in H-bonded pigment-forming molecules. A gate electrode of evaporated aluminium is used, with a 32 nm layer of anodized alumina passivated with a 20 nm layer of tetratetracontane (C₄₄H₉₀, TTC) functioning as the composite gate dielectric (Figure 6b).26 We have reported extensively properties of this gate structure in the past. Next, 80 nm of DTI are evaporated on top with a rate of 0.1Å/s. Finally, top Au source/drain contacts are evaporated through a shadow mask to give a W/L of 2 mm/60 µm. Device characteristics were measured in dry N₂ environment using different V_{DS} values. In


Journal Name

all cases the FETs showed ambipolarity (Figure 6a). A p-type operation is easily obtained with the saturation hole current being independent of V_{DS}, evidencing a low contact resistance for hole injection. From the saturation regime, we calculate μ_h $= 0.1 \text{ cm}^2/\text{Vs}$. The n-channel, however, was strongly dependent on V_{DS}, therefore a substantial contact resistance existed for electron injection. Once a sufficiently high V_{DS} of 16 V was applied, the n-channel saturates, allowing an estimation of μ_e = 0.08 cm²/Vs. Application of different contact metals aluminium and silver did lower the contact resistance for electrons, though with a detriment for hole injection. Based on previous observations that indigo and other H-bonded pigments operate stably in air,6 we conducted stressing/lifetime experiments for DTI FETs, using a pool of eight identical devices. Cyclic measurements of 150 scans were applied in air, with a scan rate of 300 mV/s. Over 150 cycles the device p-channel shows no fatigue in terms of mobility, on/off ratio, or hysteresis (see ESI). The n-channel, visible on the first scan, rapidly decays, which is not surprising due to the high energetic position of the LUMO. The n-channel recovers when measured in N₂ atmosphere, however, indicating that the O2 causes electron trapping rather than irreversible degradation of the material. The 150 cycle procedure was repeated over 60 days. Between measurements the samples were stored in ambient laboratory environment, including room lighting. Over this 60 day stressing study, hole mobility increases slightly over the first days, and then gradually decays to 0.07 cm²/Vs (Figure 6c).

Figure 6. DTI (**5a**) OFET transfer characteristics (a) with the inset (b) showing the device architecture used for the measurement. c) OFET device lifetime study – mobility as a function of measurement days in air. Each day **150** cycles were applied.

Diodes using evaporated DTI as well as the poly(DTI) 6a,b were fabricated using ITO as a transparent substrate electrode. In the former case, a 140 nm layer of DTI was evaporated, followed by an aluminium top electrode. For poly(DTI) diodes, 140 nm film was prepared by potentiodynamic electropolymerization of 5b, followed by extensive washing with acetonitrile and water to remove residual salts, and finally heating to generate a film of 6a. An evaporated top electrode of Al or MoO_x/Ag completes the device. Current-voltage characteristics of DTI 5a and poly(DTI) 6a diodes are shown in Figure 7. Films of 6b were completely insulating in all cases and thus results are not shown. DTI demonstrated essentially no rectification, and relatively low currents. Based on the conductivity of these sandwich geometry devices, carrier mobility of the majority carrier cannot exceed the 10⁻³ cm²/Vs range. Irradiation with light from a solar simulator (80 mW/cm²) results in a pronounced photovoltaic effect and also a roughly tenfold increase in conductivity. Considering the markedly higher mobility in FET devices, it is likely that a high trap density exists in this material. This is supported by the photoconductivity effect explained by photogenerated carriers filling trap states. These observations are consistent with the similar disparity between diode and FET devices reported in other hydrogen-bonded pigment semiconductors, suggesting an important role of traps in this materials class.²⁷ In the case of poly(DTI) 6a devices, the effect of photoconductivity is more dramatic. The devices in the dark have a resistivity of ~10 $T\Omega$ ·cm. Irradiation causes an increase in conductivity by 10^4 . The high resistivity of the poly(DTI) material is explained by the lack of conjugation along the polymer chain, i.e. the indigo units can be seen as interrupting along-chain conduction. The excited state of indigo, however, is known to exist in the enol tautomeric form, which indeed supports a mesomeric structure allowing along-chain conjugation (similar to mesomeric structure of 5a_{vat}). This latent conjugation phenomenon model was proposed for indigo-containing polymers by Yamamoto.²⁸ We hypothesize that this could be the reason for the observed photoconductivity.

Figure 7. JV characteristics of ITO/DTI or poly(DTI)/AI devices, measured in the dark or under simulated solar illumination with an intensity of 80 mW.cm².

Experimental

Materials and Methods

4-Bromo-2-nitrobenzaldehyde (1) was synthesized from 1,4dibromo-2-nitrobenzene (Aldrich) using the regioselective lithiation/formylation reaction reported by Voss et al.²⁹ Compounds 2^{29} and 4^{14} were obtained according to published 1,1'-Bis(diphenylphosphino)ferrocene]procedures. dichloropalladium(II) $(Pd(dppf)Cl_2),$ Tetrakistriphenylphosphine-palladium(0), 2-Tributylstannyl-thiophene and 2-Thienylboronic acid were commercially available and used as-received (Aldrich). All solvents were distilled before use. Column chromatography: Merck silica gel 60 (SiO₂; 0.040 -0.063 mm). IR [v̄ in cm⁻¹]: Shimadzu IRTracer-100. UV-Vis: Perkin-Elmer Lambda 950 with PMT detector. NMR Bruker 300 (¹H: 300 MHz; ¹³C: 75.5 MHz). For ¹³C Experiments: C13APT (Attached Proton Test using the J_{mod} pulse program) was used to assist in peak assignment. MALDI spectra were obtained using a Bruker Autoflex III Smartbeam using linear mode. Samples were prepared by intensive mixing of a small amount of the polymerized film together with an excess of dithranol in a mortar. A small aliquot of the solid mixture was then transferred onto a MALDI target and rubbed in with a spatula. An average of at least 500 spectra was summed up to minimize errors due to the rather rough surface of the solid sample preparation. Electrochemical measurements were carried out in a dry N₂ environment using dry 0.1M tetra-nbutylammonium hexafluorophosphate in acetonitrile as electrolyte. Thin films of material on ITO functioned as the working electrode, platinum foil was used as the counter electrode, and Ag/AgCl was used as a quasi-reference electrode. Measurements were calibrated against Ferrocene. The values of the Fc/Fc⁺ vs NHE and NHE vs. vacuum level used in this work were 0.64 and -4.75 V, respectively.²⁵ ITO glass slides used for electrochemistry and diode fabrication were cleaned sequentially with acetone, isopropanol, detergent, and DI water, and finally treated with O2 plasma. Aluminum/Aluminum Oxide/TTC gate structures were prepared according to reported methods. 30,31

2-Nitro-4-(2-thienyl)benzaldehyde (3)

To a solution of 458 mg (1.9 mmol) of 1 in 60 ml of degassed toluene was added 0.6 ml (2.0 mmol) of 2-(tributylstannyl)thiophene. After 15 min, 11 mg of tetrakistriphenylphosphine-palladium(0) was added. The mixture was stirred for 16 h at 110 °C. Evaporation of the solvent gave 500 mg of crude 3, for analysis a sample was sublimed using source temperature of 85° C at a vacuum of 1×10^{-6} mbar.

2-Nitro-4-(2-thienyl)benzaldehyde (3). 1 H-NMR (CDCl₃): 7.20 (dd, ^{3}J =5.0 Hz, ^{3}J =3.7 Hz, 1 H, 4-H_{thienyl}), 7.51 (dd, ^{3}J =5.0 Hz, ^{4}J =1.0 Hz, 1 H, 5-H_{thienyl}), 7.57 (dd, ^{3}J =3.7 Hz, ^{4}J =1.0 Hz, 1 H, 3-H_{thienyl}), 7.98 (dd, ^{3}J =8.1 Hz, ^{4}J =1.0 Hz, 1 H, 5-H), 8.03 (d, ^{3}J =8.1 Hz, 1 H, 6-H), 8.30 (d, ^{4}J =1.0 Hz, 1 H, 3-H), 10.42 (s, 1 H, CHO). 13 C-NMR (CDCl₃): 120.9 (3-C_{phenyl}), 126.4 (1-C_{phenyl}), 128.4 (6-C_{phenyl}), 128.7 (5-C_{phenyl}), 128.9, 129.9, 130.5 (C_{thienyl} 3, 3', and 2', respectively), 140.2 (C_{thienyl}

phenyl), 140.3 ($C_{phenyl-thienyl}$), 150.5 (C_{NO2})187.3 (CHO). HR ESI-MS: m/z found for $[M+Na]^+$ 256.0038, m/z calculated for $[M+Na]^+$ 256.0039.

6,6'-Di(2-thienyl)-indigo (5a).

3 (~ 1.8 mmol) was dissolved in 65 ml of acetone. After cooling to -5 °C, 120 ml of 2 M KOH was added drop-wise over 2 h. After 16h stirring at room temp, the mixture was filtered. The solid was washed with water and ethanol and finally sublimed at 245 °C/1×10⁻⁶ mbar, yielding 77 mg (19 %) of **5a** as a purplish powder. IR: among others 3107 (brd, NH), 3105, 3064, 3055 (all vw), 1604, 1575, 1436 (all s). - ¹H-NMR (DMSO-d₆): 7.51 (*dd*, ${}^{3}J$ =5.0 Hz, ${}^{4}J$ =1.0 Hz, 2 H, 3,3'-H_{thienyl}), 7.30 (*d*, ${}^{3}J$ = 8.1 Hz, 2 H, 5,5'-H), 7.65-7.68 (6 H, 4,4',7,7'-H and 4,4'-H_{thienyl}), 7.71 (*d*, ${}^{3}J$ = 4.9 Hz, 2 H, 5,5'-H_{thienyl}), 10.54 (brd *s*, 2 H, NH). HR ESI-MS: m/z found for [M+H]⁺ 427.0565, m/z calculated for [M+H]⁺ 427.0569.

A sample of **5a** was transformed with Na₂S₂O₄/NaOD in D₂O into *leuco N,N'-Dideutero-6,6'-di(2-thienyl)-indigo* (**5a**_{vat}) for NMR analysis according to method reported by Voss. ³² ¹H-NMR (D₂O): 7.08 (m, 2 H, 4,4'-H_{thienyl}), 7.32 – 7.40 (4 H, 5,5'-H, 3,3'- $H_{thienyl}$), 7.36 (m, 2 H, 5,5'- $H_{thienyl}$), 7.49 (*d*, ³*J*=8.1 Hz, 2 H, 4,4'-H), 7.57 (*s*, 2 H, 7,7'-H).

1,1'-Bis(tert-butoxycarbonyl)-[6,6'-di(2-thienyl)-indolidene)indolyden]-3,3'-dione [(Bis-BOC-6,6'-di(2-thienyl)-indigo; **5b**], and the mono-substituted byproduct 1,1'-Bis(tert-butyoxycarbonyl)-[6-(2-thienyl)-6'-bromo]-indolidene)indolyden]-3,3'-dione [Bis-BOC-[6-(2-thienyl)-6'-bromo]-indigo; **5c**].

Procedure 1 - *Suzuki* coupling³³: To a degassed solution of 440 mg (0.71 mmol) of 4 in 50 ml of dimethoxyethane, 227 mg (1.8 mmol) of 2-thienyl-boronic acid was added. After 10 min stirring under N_2 , 80 mg (0.1 mmol) of Pd(dppf)Cl₂ was added. Then the mixture was heated for 30 min to slight reflux (T_{bath} 90 °C) and 2 ml of 1 M K_2CO_3 was added. Stirring and heating was continued for 1 h, then the mixture was set aside at room temperature for 16 h. Diethylether (200 ml) was added and the organic layer was washed with water. After evaporation of the solvent, the residue (570 mg, red oil) was chromatographed on silica gel with cyclohexane/AcOEt (9:1). Starting material 4 (120 mg, 44%, $R_f = 0.48$), 5b (130 mg, 29%, $R_f = 0.21$) and 5c (110 mg, 23%, $R_f = 0.32$) were isolated as red solids. Recrystallization from cyclohexane gave the analytically pure products.

Procedure 2 - Stille coupling³⁴: 496 mg (0.8 mmol) of **4** was dissolved in 60 ml of dry toluene. The mixture was degassed by 15 min N_2 bubbling. Next, 0.6 ml (2 mmol) of 2-tributylstannly)thiophene was added and N_2 bubbling was continued for 15 min. After addition of 9.2 mg (0.008 mmol) of tetrakis-triphenylphosphine palladium (0), the mixture was stirred for 16 h at 90 °C. After evaporation of volatile products,

Journal Name

the residue was chromatographed on silica gel (Cy/AcOEt, 9:1).

Starting material **4** (92mg, 18%), **5b** (170mg, 33%), **5c** (120mg, 23%).

5b. IR: among others 3107, 3074 (all vw), 2974, 2927 (all w), 1703, 1600, 1435, 1147 (all s). - 1 H-NMR (CDCl₃): 1.70 (s, tBOC CH₃, 18 H), 7.17 (dd, ^{3}J = 5.0 Hz, ^{3}J = 3.6 Hz, 2 H, 4,4°-H_{thienyl}), 7.44 (dd, ^{3}J = 5.0 Hz, ^{4}J = 0.9 Hz, 2 H, 5,5°-H_{thienyl}), 7.49 (dd, ^{3}J = 8.0 Hz, ^{4}J = 1.4 Hz, 2 H, 5.5°-H), 7.52 (dd, ^{3}J = 3.6 Hz, ^{4}J = 0.9 Hz, 2 H, 3,3°-H_{thienyl}), 7.78 (d, ^{3}J = 8.0 Hz, 2 H, 4,4°-H), 8.33 (d, ^{4}J = 1.4 Hz, 2 H, 7,7°-H). 13 C-NMR (CDCl₃): 28.2 (tBOC CH₃), 113.5 (7,7°-C), 121.6, 124.7, 125.4, 127.2, 128.6 (4,4°- and 5,5°-C, and 3,3°-, 4,4°- and 5,5°-C_{thienyl}) - only the signals of those carbon atoms attached to hydrogens are given. HR ESI-MS: m/z found for [M+H] $^{+}$ 627.1611, m/z calculated for [M+H] $^{+}$ 627.1618.

5c (mono-thienyl byproduct). IR: among others 3120 (vw), 2972, 2924 (all w), 1734, 1672, 1600, 1421, 1141 (all s). ¹H-NMR (CDCl₃): 1.64 (*s*, tBOC CH₃, 9 H), 1.69 (*s*, CH₃, 9 H), 7.16 (*dd*, ${}^{3}J = 5.1$ Hz, ${}^{3}J = 3.7$ Hz, 1 H, 4-H_{thienyl}), 7.37 (*dd*, ${}^{3}J = 8.1$ Hz, ${}^{4}J = 1.6$ Hz, 1 H, 5'-H), 7.44 (*dd*, ${}^{3}J = 5.1$ Hz, ${}^{4}J = 1.5$ Hz, 1 H, 3-H_{thienyl}), 7.50 (*dd*, ${}^{3}J = 8.0$ Hz, ${}^{4}J = 1.0$ Hz, 1 H, 5-H), 7.52 (*dd*, ${}^{3}J = 3.7$ Hz, ${}^{4}J = 1.5$ Hz, 1 H, 5-H_{thienyl}), 7.63 (*d*, ${}^{3}J = 8.1$ Hz, 1 H, 4'-H), 7.78 (*d*, ${}^{3}J = 8.0$ Hz, 1 H, 4-H), 8.30 (s, 1 H, 7'-H), 8.31 (s, 1 H, 7-H). HR ESI-MS: m/z found for [M+H]⁺ 623.0859, m/z calculated for [M+H]⁺ 623.0846.

Conclusions

We have presented synthetic routes to obtain an extended indigo derivative, 6,6'-dithienylindigo (DTI), for application as an organic semiconductor. We utilize the latent pigment technique of introducing thermolabile solubilizing groups, which allows chemical manipulation of the otherwise insoluble indigo moiety. DTI shows promising ambipolar transport behaviour in FET devices, with impressive operational stability in air. By electropolymerization we could produce poly(DTI). This semi-conjugated polymer with indigo in the main chain shows interesting photoconductivity behaviour and suggests that the *enolic* structure might lead to conjugation. The poly(DTI) shows excellent stability during electrochemical cycling, with a notably-low reduction potential. The results presented here show the promise that extended indigos and indigo-based polymers can have for organic electronics.

Acknowledgements

We are grateful for support by the Austrian Science Foundation, FWF, within the Wittgenstein Prize of N. S. Sariciftci Solare Energie Umwandlung Z222-N19 and the Translational Research Project TRP 294-N19 "Indigo: From ancient dye to modern high-performance organic electronics circuits".

Notes and references

- ^a Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University, Linz, Austria.
- Institute of Inorganic Chemistry, Johannes Kepler University, Linz, Austria
 Materials Science and Engineering, İzmir Katip Çelebi University, Izmir,
 Turkey
- ^d Institute for Analytical Chemistry, Johannes Kepler University, Linz, Austria
- ^e Institute for Chemical Technology of Organic Materials, Johannes Kepler University, Linz, Austria
- f Institute of Physics, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, 8700 Leoben, Austria.
- g Elettra Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza Trieste, Italy

Electronic Supplementary Information (ESI) available: $5a_{Vat}$ details, cyclic FET characteristics, MALDI spectra, X-ray structural data, and computational details. See DOI: 10.1039/b000000x/

- M. Seefelder, *Indigo in culture, science, and technology*, ecomed, Landsberg, Germany, 2nd edn., 1994.
- 2. H. Schmidt, Chemie unserer Zeit, 1997, 31, 121-128.
- E. Steingruber, "Indigo and Indigo Colorants" in Ullmann's Encycl. Ind. Chem., 2007
- M. Irimia-Vladu, E. D. Głowacki, P. A. Troshin, G. Schwabegger, L. Leonat, D. K. Susarova, O. Krystal, M. Ullah, Y. Kanbur, M. A. Bodea, V. F. Razumov, H. Sitter, S. Bauer, and N. S. Sariciftci, *Adv. Mater.*, 2012, 24, 375–380.
- E. D. Głowacki, L. Leonat, G. Voss, M.-A. Bodea, Z. Bozkurt, A. M. Ramil, M. Irimia-Vladu, S. Bauer, and N. S. Sariciftci, *AIP Adv.*, 2011, 1, 042132–042137.
- E. D. Głowacki, M. Irimia-Vladu, M. Kaltenbrunner, J. Gąsiorowski, M. S. White, U. Monkowius, G. Romanazzi, G. P. Suranna, P. Mastrorilli, T. Sekitani, S. Bauer, T. Someya, L. Torsi, and N. S. Sariciftci, *Adv. Mater.*, 2013, 25, 1563–1569.
- E. D. Głowacki, G. Voss, and N. S. Sariciftci, Adv. Mater., 2013, 25, 6783–6800.
- E. Wang, W. Mammo, and M. R. Andersson, Adv. Mater., 2014, 26, 1801–1826.
- R. Stalder, J. Mei, K. R. Graham, L. A. Estrada, and J. R. Reynolds, *Chem. Mater.*, 2014, 26, 664–678.
- 10. S. Qu and H. Tian, Chem. Commun., 2012, 48, 3039-3051.
- C. B. Nielsen, M. Turbiez, and I. McCulloch, *Adv. Mater.*, 2012, 25, 1859–1880.
- M. J. Robb, S.-Y. Ku, F. G. Brunetti, and C. J. Hawker, J. Polym. Sci. Part A Polym. Chem., 2013, 51, 1263–1271.
- C. Guo, B. Sun, J. Quinn, Z. Yan, and Y. Li, J. Mater. Chem. C, 2014, 2, 4289–4296.
- E. D. Głowacki, G. Voss, K. Demirak, M. Havlicek, N. Sunger, A. C. Okur, U. Monkowius, J. Gąsiorowski, L. Leonat, and N. S. Sariciftci, *Chem. Commun.*, 2013, 49, 6063–6065.
- 15. A. Baeyer and V. Drewsen, Chem. Ber., 1882, 15, 2856-2864.
- 16. P. Susse and R. Wasche, Naturwissenschaften, 1978, 65, 157.
- 17. E. F. Paulus, F. J. J. Leusen, and M. U. Schmidt, *CrystEngComm*, 2007, **9**, 131.
- 18. Z. Hao and A. Iqbal, Chem. Soc. Rev., 1997, 26, 203.
- W. Lüttke, H. Hermann, and M. Klessinger, Angew. Chemie Int Ed., 1966, 5, 598–599.

- A. Amat, F. Rosi, C. Miliani, A. Sgamellotti, and S. Fantacci, *J. Mol. Struct.*, 2011, 993, 43–51.
- D. Jacquemin, J. Preat, V. Wathelet, and E. A. Perpète, J. Chem. Phys., 2006, 124, 74104.
- 22. P. W. Sadler, J. Org. Chem., 1955, 21, 316-318.
- P. W. Sadler and R. L. Warren, J. Am. Chem. Soc., 1956, 78, 1251– 1255.
- H. Zollinger, Color Chemistry. Syntheses, Properties and Applications of Organic Dyes and Pigments, Wiley-VCH, Weinheim, 3rd edn., 2003, vol. 43.
- C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale, and G. C. Bazan, *Adv. Mater.*, 2011, 23, 2367–2371.
- E. D. Głowacki, M. Irimia-Vladu, S. Bauer, and N. S. Sariciftci, *J. Mater. Chem. B*, 2013, 1, 3742–3753.
- E. D. Głowacki, L. Leonat, M. Irimia-Vladu, R. Schwödiauer, M. Ullah, H. Sitter, S. Bauer, and N. Serdar Sariciftci, *Appl. Phys. Lett.*, 2012, 101, 023305.
- 28. T. Yamamoto and K. Kizu, J. Phys. Chem., 1995, 99, 8-10.
- 29. G. Voss and H. Gerlach, Chem. Ber., 1989, 122, 1199-1201.
- A. I. Mardare, M. Kaltenbrunner, N. S. Sariciftci, S. Bauer, and A. W. Hassel, *Phys. Status Solidi*, 2012, 209, 813–818.
- M. Kraus, S. Richler, A. Opitz, W. Brütting, S. Haas, T. Hasegawa,
 A. Hinderhofer, and F. Schreiber, J. Appl. Phys., 2010, 107, 094503.
- 32. G. Voss, Color. Technol., 2006, 122, 317-323.
- 33. A. Suzuki, J. Organomet. Chem., 1999, 576, 147-168.
- 34. J. K. Stille, Angew. Chem. Int. Ed. Engl., 1986, 25, 508-524.