This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Enhanced red upconversion luminescence by codoping Ce$^{3+}$ in β-NaY(Gd$_{0.4}$)F$_4$: Yb$^{3+}$/Ho$^{3+}$ nanocrystals

Wei Gao, Hairong Zheng*, Qingyan Han, Enjie He, Fangqi Gao, Ruibo Wang

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

In this work, hexagonal phase NaY(Gd$_{0.4}$)F$_4$: Yb$^{3+}$/Ho$^{3+}$ nanocrystals were obtained by solvothermal method. The upconversion emission tuning from green to red in NaY(Gd$_{0.4}$)F$_4$: Yb$^{3+}$/Ho$^{3+}$ nanocrystals was successfully achieved by replacing Y$^{3+}$ ions in the nanocrystal structure with Ce$^{3+}$ ions under 980 nm excitation. The red upconversion emission intensity was enhanced with Ce$^{3+}$ concentration increasing. The output colors for the samples can be clearly observed in a confocal microscopy setup. It was found that two efficient cross-relaxation processes between Ho$^{3+}$ and Ce$^{3+}$ ions had been employed to enhance red emission and suppress green emission. The possible upconversion mechanisms and conversion efficiency between Ho$^{3+}$ and Ce$^{3+}$ ions were investigated in detail. In addition, the influence of the matrix and surface properties on the upconversion emission of the samples were also discussed. The red upconversion emission of Yb$^{3+}$, Ho$^{3+}$ and Gd$^{3+}$ codoped nanocrystals in this work will have great potential applications in the biological images, magnetic resonance imaging agents, display and anti-counterfeiting applications.

1. Introduction

Rare-earth (RE) ion-doped upconversion (UC) materials have presented great potential applications in lighting, solar cell, three-dimensional display, solid-state laser, biological marker and imaging due to their unique emission properties of infrared to visible light.\cite{1-7} Especially, the hexagonal phase NaYF$_4$ crystals have been considered as a most efficient UC emission host materials because of their low phonon energy.\cite{8-14} It was reported that they are bright enough so that single UC nanocrystal with a size of 27 nm on the diameter can be observed in confocal microscopy.\cite{11} Many different synthesis methods have been employed to obtain NaYF$_4$ nanoparticles, including hydrothermal method, solvothermal routes, high-temperature thermal decomposition of trifluoroacetate precursors, and liquid-solid two-phase approaches.\cite{13-16} The structure, morphology and size of nanoparticles are successfully tuned by adjusting the reaction time, temperature, pH value, adding capping agents and codoping different ions.\cite{17-20} For example, Liu and his coworker showed that by introducing additional RE ion, such as Gd$^{3+}$ ion, at a high doping level in NaYF$_4$: Yb$^{3+}$/Er$^{3+}$ crystallites can decrease the crystallization reaction time and temperature, resulting in ultra-small hexagonal phase UC nanocrystals.\cite{21} In addition, Gd$^{3+}$ doped NaYF$_4$ nanocrystals exhibit paramagnetism at room temperature originating from the intrinsic magnetic moment of Gd$^{3+}$ ions in the host.\cite{22-23} Hence, Gd$^{3+}$ doped UC nanocrystals have been widely studied as bio-imaging and magnetic resonance imaging agents.

Obtaining a pure single UC emission has been an increasing focus and challenge. The abundance of 4f electronic states in lanthanide ions typically elicits multicolor fluorescence emission that is tunable from ultraviolet to near-infrared (NIR). Many approaches can produce multicolor UC emissions, which include doping different ions, changing crystal structure, surface modification and tuning particle size and morphology.\cite{24-27} Recently, several attempts have been made to obtain a high-purity, single-band UC red emission that is attractive for anti-counterfeiting and color display applications.\cite{28} High red-to-green emission ratio was achieved by increasing Yb$^{3+}$ concentration in Yb$^{3+}$/Er$^{3+}$ co-doped NaYF$_4$ nanocrystals.\cite{29} In addition, Mn$^{2+}$ co-doped NaYF$_4$: Yb$^{3+}$/Er$^{3+}$ nanocrystals exhibited pure single-band red UC emission because of the energy transfer between the Er$^{3+}$ and Mn$^{2+}$ ions.\cite{30} Like Er$^{3+}$, Ho$^{3+}$ is an intriguing active ion for UC emission because it has a broad fluorescence spectrum that ranges from vacuum ultraviolet to near infrared.\cite{31} Typically, the UC emission from Yb$^{3+}$ and Ho$^{3+}$ codoped systems results in an intense green emission accompanied by a weak red emission.\cite{22-24} However, few reports have been found on the red emission enhancement in Yb$^{3+}$ and Ho$^{3+}$ codoped system. The enhanced red UC emission is observed in LaF$_3$:Yb$^{3+}$/Ho$^{3+}$ nanoparticles due to the presence of organic ligands that stabilize the nanoparticles and quench green emission, and high phonon energy host of YVO$_4$ nanocrystals with high Yb$^{3+}$ concentration.\cite{33, 34} Zhang et
al. had reported that the UC emission from \(\text{Yb}^{3+}/\text{Ho}^{3+} \) co-doped cubic phase \(\text{NaYF}_4 \) nanocrystals was tuned from green to red by introducing \(\text{Ce}^{3+} \) ions. Trivalent cerium ions have a simple energy structure, and have been considered as a ideal candidate for enhancing the population of intermediate excited state \(\text{I}_2 \) of \(\text{Ho}^{3+} \) that can result in a strong red UC emission. It is well-known that the UC emission intensity of the hexagonal \(\beta\text{CNaYF}_4(\beta\text{-NaYF}_4) \) nanocrystals is much stronger than that of the cubic-phase \(\text{NaYF}_4(\alpha\text{-NaYF}_4) \) ones. Tuning UC fluorescence emission of \(\beta\text{-NaYF}_4\text{Yb}^{3+}/\text{Ho}^{3+} \) nanocrystals from green to red through codoping \(\text{Ce}^{3+} \) ions will extend their application to color display applications and biological images. However, studies on tuning UC emission in the \(\beta\text{-NaYF}_4\text{Yb}^{3+}/\text{Ho}^{3+} \) nanocrystals through codoping \(\text{Ce}^{3+} \) ions have been barely reported. In this study, we attempted to tune the UC emission in \(\beta\text{-NaYF}_4(\beta\text{-NaYF}_4):\text{Yb}^{3+}/\text{Ho}^{3+} \) nanorods through codoping \(\text{Ce}^{3+} \) ions, and systematically studied their spectral properties with a confocal microscopy setup. The UC emission mechanism and cross-relaxation (CR) processes were investigated carefully.

2. Experimental details

2.1. Materials.

All chemicals used in the current study were analytical graded used without further purification. \(\text{Y(NO}_3)_3\cdot6\text{H}_2\text{O}, \text{Yb(NO}_3)_3\cdot6\text{H}_2\text{O}, \text{Ho(NO}_3)_3\cdot6\text{H}_2\text{O} \) and \(\text{Gd(NO}_3)_3\cdot6\text{H}_2\text{O} \) are obtained by dissolving \(\text{Y}_2\text{O}_3, \text{Yb}_2\text{O}_3, \text{Ho}_2\text{O}_3 \) and \(\text{Gd}_2\text{O}_3 \), respectively. Sigma-Aldrich Chemicals Co.) in dilute nitric acid solution at elevated temperature followed by evaporating the superfusive nitric acid, respectively. \(\text{Ce(NO}_3)_3\cdot6\text{H}_2\text{O}(99.99\%) \) was purchased from Sigma-Aldrich Chemicals Co.. \(\text{HNO}_3 \) (65.0%–68.0%), \(\text{NaF} \) (98.0%), \(\text{NaOH} \) (98.0%), oleic acid (90.0%) and ethanol (99.7%) were supplied by Sinopharm Chemical Reagent Co, Ltd.

2.2. Synthesis of \(\beta\text{-NaYF}_4(\beta\text{-NaYF}_4)\text{Yb}^{3+}/\text{Ho}^{3+}/\text{Ce}^{3+} \) nanocrystals.

\(\beta\text{-NaYF}_4(\beta\text{-NaYF}_4):\text{Yb}^{3+}/\text{Ho}^{3+}/\text{Ce}^{3+} \) nanocrystals were synthesized via a solvothermal method by using oleic acid as a stabilizing agent, for which the detailed process is given in reference. All chemicals used in the current study were analytical graded used without further purification. \(\text{Y(NO}_3)_3\cdot6\text{H}_2\text{O}, \text{Yb(NO}_3)_3\cdot6\text{H}_2\text{O}, \text{Ho(NO}_3)_3\cdot6\text{H}_2\text{O} \) and \(\text{Gd(NO}_3)_3\cdot6\text{H}_2\text{O} \) are obtained by dissolving \(\text{Y}_2\text{O}_3, \text{Yb}_2\text{O}_3, \text{Ho}_2\text{O}_3 \) and \(\text{Gd}_2\text{O}_3 \), respectively. Sigma-Aldrich Chemicals Co.) in dilute nitric acid solution at elevated temperature followed by evaporating the superfusive nitric acid, respectively. \(\text{Ce(NO}_3)_3\cdot6\text{H}_2\text{O}(99.99\%) \) was purchased from Sigma-Aldrich Chemicals Co.. \(\text{HNO}_3 \) (65.0%–68.0%), \(\text{NaF} \) (98.0%), \(\text{NaOH} \) (98.0%), oleic acid (90.0%) and ethanol (99.7%) were supplied by Sinopharm Chemical Reagent Co, Ltd.

2.3. Sample characterization and spectral measurement

The powder x-ray diffraction (XRD) were measured with a D/Max2550VB/PC x-ray diffraction meter with Cu Kα (40 kV, 40 mA) irradiation (\(\lambda = 0.15406 \text{ nm} \)). The XRD spectra were recorded at a scanning rate of 8° min\(^{-1}\). The morphology of the particles was characterized by transmission electron microscopy (TEM, JEM 2100) and scanning electron microscope (SEM, Quanta 200, respectively). Fourier transform infrared spectroscopy (FTIR) was measured with a Brucher EQUINX55 spectrometer. For spectroscopic measurements, YAG: Nd\(^{3+}\) (Quanta Ray Lab-170) pulse laser and Ti sapphire femtosecond laser (Mira-900) were employed as excitation sources. The spectrometer (SP2750i, 0.008 nm) with a PIXIS 100 charge coupled device (CCD, ACTON) and a PD471 photomultiplier tube (PMT, ACTON) was used for luminescence collection and detection. The luminescence photographs were obtained through a confocal microscope (OLYMPUS-BX51) and camera (Canon 600D). The Proper notch filters were placed in front of the entrance of the monochromator to block the scattering light. All of the spectroscopic measurements are carried out at room temperature.

3. Results and discussions

3.1. XRD and TEM

The typical XRD patterns of \(\text{NaY(Gd}_{0.4}\text{F}_{3.6})\text{Yb}^{3+}/\text{Ho}^{3+}/\text{Ce}^{3+} \) nanocrystals with different \(\text{Ce}^{3+} \) concentrations are given in Fig. 1. All the strong and sharp diffraction peaks from the samples with or without \(\text{Ce}^{3+} \) are well indexed to pure hexagonal-phase \(\text{NaYF}_4 \) (JCDPS No. 16-0334). No obvious extra diffraction peaks were detected even with the increase in \(\text{Ce}^{3+} \) ion concentration to 12%, indicating the formation of a Y-Gd-Ce solid solution. In addition, it is noticed that the diffraction peaks shifted slightly to the low angle side as a result of the increase in unit-cell volume because of the substitution of \(\text{Y}^{3+}(r=0.115 \text{ nm}) \) ions by bigger \(\text{Ce}^{3+}(r=0.128 \text{ nm}) \) ions in the host lattice (Fig. 1).

Fig. 2 shows typical TEM images and EDS spectra of \(\beta\text{-NaYF}_4(\beta\text{-NaYF}_4)\text{Yb}^{3+}/\text{Ho}^{3+} \) nanoparticles with codoping different \(\text{Ce}^{3+} \) concentrations. A series of \(\text{Ce}^{3+} \)-doped \(\beta\text{-NaYF}_4(\beta\text{-NaYF}_4)\text{Yb}^{3+}/\text{Ho}^{3+} \) nanocrystal have a average diameter of 28 nm and a length of 320 nm, as illustrated in Fig. 2(a–c). These results suggested that codoping \(\text{Ce}^{3+} \) ions had no obvious effect on the size and morphology of the \(\beta\text{-NaYF}_4(\beta\text{-NaYF}_4)\text{Yb}^{3+}/\text{Ho}^{3+} \) nanorods. Further high resolution TEM (HRTEM) image of the nanorod showed an interplanar spacing of 0.52 nm.
corresponding to the [1010] planes of β-NaY(Gd0.4)F4 nanorods in Fig. 2(d). This result confirmed that the nanorods grow along the c-axis, namely, the [0001] direction. The fast Fourier transform diffraction patterns obtained from the HRTEM image confirmed that the single crystalline nature of the nanorods, as shown in inset of Fig. 2(d). The incorporation of Ce3+ ions was further proved by doing the EDS under SEM measurement for 20%Yb4/2%Ho3+/2%Ho3+/12%Ce3+-βCNaY(Gd0.4)F4: 20%Yb4/2%Ho3+/2%Ho3+/12%Ce3+-nanorods, as shown in Fig. 2(e–f). The EDS results confirmed that the main elemental components of the samples are Na, Y, Yb, Ho, Ce, Gd and F in Fig. 2(e–f), the intensity of the Y elemental peak was reduced after introduction of Ce3+, which further indicated that Y3+ ions were substituted for Ce3+ in β-NaY(Gd0.4)F4 host lattice.

3.2. Effective color tuning to the UC emission

3.2.1. UC emission and corresponding transitions

The UC luminescence emission of β-NaY(Gd0.4)F4:Yb3+/Ho3+ nanorods with codoping Ce3+ were measured with a confocal microscopy setup. Fig. 3 displays the UC emission spectra, the luminescence photographs, the peak area of the green and red emission, intensity ratio of red to green (R/G) emission, the CIE chromaticity coordinate diagram of β-NaY(Gd0.4)F4: Yb3+/Ho3+ nanorods with codoping Ce3+ concentration from 0% to 12% under NIR 980 nm excitation. The dominant emission peaks at 541 nm and 644 nm are assigned to the transitions of 5S2/F2→5I8 and 5F2→5I8 of Ho3+ ions in Fig. 3(a). Some weak blue emission (484 nm) and NIR emission (750 nm) can also be observed, which are associated with the transition of 5F1→5I8 and 5S2/F2→5I8, respectively. Interestingly, with the increase of the Ce3+ concentration from 4% to 12%, the increase of green emission is inhibited, and the red emission rise gradually, which can be affirmed by the comparison of peak area of the green and red emission in Fig. 2(b). The output color of β-NaY(Gd0.4)F4: Yb3+/Ho3+ nanorods is tuned from green to red (in inset of Fig. 3(a)), and the R/G ratio increase from 0.64 to 7.31 in Fig. 3(c). Accordingly, the CIE chromaticity coordinate (x, y) is also changed from (0.2811, 0.6624) to (0.6110, 0.3106) as the Ce3+ concentration increase from 0% to 12% in Table 1, which is an obvious indication of the luminescence color change. The region of tunable luminescence color in β-NaY(Gd0.4)F4: Yb3+/Ho3+/Ce3+ nanorods with different Ce3+ concentration is shown in Fig. 3(d).

In order to understand the observed phenomenon, the energy levels and possible relaxations and transitions of Yb3+/Ho3+/Ce3+ system were illustrated in Fig. 4. It is known that Yb3+ ions have a larger absorption cross-section for infrared light and longer excited state lifetime than that of Ho3+. Thus, the main pathway is assumed to populate the upper emitting states of Ho3+ ions should be through the energy transfer from Yb3+ to Ho3+. Under NIR 980 nm excitation, I16, I15, I14, and I13 states of Ho3+ were populated through three successive energy transfer (ET) processes from Yb3+ to Ho3+. The strong green (541 nm) and very weak NIR (750 nm) emissions can be generated through radiative relaxations from the I14 and I15 states to I13 states. The transition from I13 state to I12 ground state produces strong red UC emission at 644 nm. There are two possible processes to populate the excited state I14. One is the nonradiative transition from higher excited states of I15 to I14. The other is the population of the long-lived I12 level initially by the nonradiative transitions I15→I14 or by radiative decay of I14→I13, then, populating the I14 level of I13→I12 transition, and finally populating the I14 level through the ET process from Yb3+ to Ho3+. However, the nonradiative transition

Table 1 The calculated CIE chromaticity coordinate (x, y) of β-NaY(Gd0.4)F4: Yb3+/2%Ho3+/2%Ho3+/12%Ce3+-nanorods with different Ce3+ concentration.

<table>
<thead>
<tr>
<th>Point</th>
<th>Samples</th>
<th>CIE chromaticity coordinate</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>β-NaY(Gd0.4)F4: 20%Yb3+/2%Ho3+</td>
<td>0.2811 0.6624</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>β-NaY(Gd0.4)F4: 20%Yb3+/2%Ho3+/4%Ce3+</td>
<td>0.3805 0.5741</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>β-NaY(Gd0.4)F4: 20%Yb3+/2%Ho3+/6%Ce3+</td>
<td>0.4728 0.4504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>β-NaY(Gd0.4)F4: 20%Yb3+/2%Ho3+/8%Ce3+</td>
<td>0.5832 0.3734</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>β-NaY(Gd0.4)F4: 20%Yb3+/2%Ho3+/12%Ce3+</td>
<td>0.6110 0.3106</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 4 Energy level diagrams of Ho\(^{3+}\), Yb\(^{3+}\) and Ce\(^{3+}\) ions as well as proposed UC mechanisms.

probability strongly depends on the phonon energy of the host lattice. The multiphonon nonradiative relaxation rate \(W_{\text{NR}}(T)\) can be expressed by:

\[
W_{\text{NR}}(T) = W_0 \left[1 - \exp \left(\frac{-h \nu}{kT} \right) \right]^{\Delta E/kT}
\]

where \(W_{\text{NR}}(T)\) is the rate at temperature \(T\); \(\Delta E\) is the energy gap between two energy levels; and \(h\nu\) is the phonon energy of the host. According to the energy gap law, nonradiative transitions can barely occur when the gap between the two energy states in an activator is much larger than that of the vibration energy of the host lattice. Thus, the mentioned two nonradiative relaxation processes should not efficient because both energy gaps are about 20%Yb\(^{3+}\) and 30%Yb\(^{3+}\) attributed to the two-photon processes. To explore the mechanism of Ce\(^{3+}\) ions. Considering that the energy gap of Ce\(^{3+}\) ions is also about 3000 cm\(^{-1}\), which is similar to the nonradiation relaxation gaps of Ho\(^{3+}\) that are involved in the red emissions, the possible cross relaxation process between Ce\(^{3+}\) and Ho\(^{3+}\) could effectively increase the population of the \(\text{F}_5\) and \(\text{I}_7\) of Ho\(^{3+}\), leading to the enhancement of red emission. Specifically, the CR processes of \(5\text{F}_2/4\text{F}_4\) (Ho\(^{3+}\)) \(\rightarrow\) \(3\text{F}_4\) (Ho\(^{3+}\)) and \(\text{F}_7/2\text{F}_5\) (Ce\(^{3+}\)) \(\rightarrow\) \(\text{I}_7\) (Ho\(^{3+}\)) occurred after Ce\(^{3+}\) codoping to the \(\beta\text{-NaY(Fd}_{0.4})\text{F}_4\): Yb\(^{3+}\)/Ho\(^{3+}\) nanorods. These two resonant energy transfer processes can effectively increase the populations of \(\text{F}_5\) and \(\text{I}_7\) states from the \(\text{F}_5/\text{F}_4\) and \(\text{I}_7\) states, thereby increasing the red emission and reducing the green emission.

The steady-state rate equations were established based on the UC processes in Yb\(^{3+}\) and Ho\(^{3+}\) ions systems in order to further verify the proposed UC mechanism and explain an enhancement of the red emission due to the presence of Ce\(^{3+}\) codoping. We firstly introduce \(N_{\text{Ho}(i)}\), \(W_{\text{ex}}\) and \(W_{\text{nr}}(i, j, k, l, m)\) to denote the population densities, radiative, and nonradiative transition rates of \(\text{I}_0\), \(\text{I}_6\), \(\text{I}_5\), \(\text{I}_4\), \(\text{F}_7\), and \(\text{F}_5/\text{F}_4\) states of Ho\(^{3+}\), and \(\text{F}_2\) of Yb\(^{3+}\) ions, respectively. \(k_1\), \(k_2\) and \(k_3\) are defined as energy transfer rates from the excited Yb\(^{3+}\) ions to \(\text{I}_6\), \(\text{F}_5\), and \(\text{F}_2/\text{F}_4\) states of Ho\(^{3+}\) ions, respectively, \(r_1\) and \(r_2\) are the cross-relaxation processes between Ho\(^{3+}\) and Ce\(^{3+}\) ions and \(\text{F}_5/\text{F}_4\) states, the \(N_{\text{Ce}0}\) denotes the population density of the ground state \(\text{F}_2/2\) of Ce\(^{3+}\) ions. Considering that the radiative relaxation probability of the \(\text{I}_7\) and \(\text{I}_5\) states is very low due to the small neighborhood energy gap, we thus ignore the terms of radiation rates in the rate equations. Thus, the rate equations for the discussed system are formulated as follows:
The effect of Ce$^{3+}$ concentration on the enhancement of transitions between Ho$^{3+}$ and Ce$^{3+}$ can be further proved by observing NIR emission of Ho$^{3+}$ at 1180 nm. Fig. 6 shows the NIR emission of $^5I_{4} \rightarrow ^5I_{6}$ transition of Ho$^{3+}$ ions in β-NaY(Gd$_8$)F$_{24}$: 20%Yb$^{3+}$/2%Ho$^{3+}$ nanorods with codoping Ce$^{3+}$ concentration from 0% to 12% under 980 nm. The NIR emission intensity decreases with Ce$^{3+}$ concentration increasing, which demonstrates the occurrence of CR1 of $^5I_{2} \rightarrow ^5F_{2}$ (Ce$^{3+}$) $\rightarrow ^5F_{4}$ (Ho$^{3+}$) $\rightarrow ^5F_{2}$ (Ce$^{3+}$)). The radiative transition rates of the $^5I_{4}$ and $^5I_{6}$ states of Ho$^{3+}$ ions are supposed to be much larger than their UC emission rates. Thus, the UC emission rates can be ignored in the equations (3). According to equation (3), we can get

$$I_{\text{NIR}} = N_{\text{Ho,2}} h\nu_{\text{NIR}} \frac{W_2}{W_2 + r_1 N_{\text{Ce,0}}} N_{\text{Ho,0}} N_{\text{Ho,3}}$$

(7)

Based on the equation (7) and the measured relative fluorescent intensity in Fig. 6, we get

$$I_{\text{NIR}}(0\%\text{Ce}) = \frac{W_2 + r_1 N_{\text{Ce,0}}}{W_2 + r_1 N_{\text{Ce,0}}} = 0.52$$

(8)

The conversion efficiency of the CR1 process is

$$\eta = \frac{W_2 + r_1 N_{\text{Ce,0}}}{W_2 + r_1 N_{\text{Ce,0}}} = \frac{1 + \frac{W_2}{r_1 N_{\text{Ce,0}}}}{1 + \frac{W_2}{r_1 N_{\text{Ce,0}}}} = 80.6\%$$

(9)

This result indicates that the CR1 process of $^5I_{2} \rightarrow ^5F_{4}$ (Ce$^{3+}$) $\rightarrow ^5F_{2}$ (Ho$^{3+}$) $\rightarrow ^5F_{2}$ (Ce$^{3+}$) is very efficient.

Thus, the R/G ratio increases with the increase of r_1 and r_2. However, the r_1 and r_2 are decided by the distance of doping ions. The distance between the ions affect the energy transfer between them, therefore, with increase of Ce$^{3+}$ concentration, the value of r_1 and r_2 should increase, leading to the enhancement of red emission from Ho$^{3+}$. This agrees well with experimental observation (see Fig. 3(a)).

Fig. 6 The NIR ($^5I_{4} \rightarrow ^5I_{6}$) emission spectra of β-NaY(Gd$_8$)F$_{24}$: 20%Yb$^{3+}$/2%Ho$^{3+}$ nanorods as a function of Ce$^{3+}$ ions concentration under 980 nm excitation.

The down-conversion emission spectra (a), R/G ratio (b) and intensity decay of the green emission ($^5S_2 \rightarrow ^5P_4$) at 541 nm (d) of β-NaY(Gd$_8$)F$_{24}$: 20%Yb$^{3+}$/2%Ho$^{3+}$ nanorods with different Ce$^{3+}$ ions concentration under pulse laser 532 nm excitation. (c) The energy level diagrams of Ho$^{3+}$ and Ce$^{3+}$ ions as well as proposed emission mechanisms.

To test the occurrence of CR2 process of $^5S_2 \rightarrow ^5P_4$ (Ho$^{3+}$) $\rightarrow ^5F_{4}$ (Ho$^{3+}$) $\rightarrow ^5F_{2}$ (Ce$^{3+}$) between Ho$^{3+}$ and Ce$^{3+}$ ions. We took the 532 nm photons directly excited Ho$^{3+}$ into the 5S_2 (Ce$^{3+}$) excited states. The down-conversion emission spectra of β-NaY(Gd$_8$)F$_{24}$: 20%Yb$^{3+}$/2%Ho$^{3+}$ nanorods with different Ce$^{3+}$ concentration is shown in Fig. 7(a). It was found that the green
UC emission intensity was reduced, while the red UC emission was increased with increasing Ce$^{3+}$ concentration, and the corresponding R/G ratio was changed from 0.22 to 0.85 in Fig. 7(b). According to the energy level diagram of Ho$^{3+}$, the population of F_2 state mostly originated from $\mathcal{S}_2^5\mathcal{F}_2$ excited states through the nonradiative relaxation in Fig. 7(c). Thus, the enhancement of red emission can effectively indicate the occurrence of CR2 process of $\mathcal{S}_2^5\mathcal{F}_2$ (Ho$^{3+}$) $\rightarrow \mathcal{F}_2 (\mathcal{H}o^{3+}) + ^5\mathcal{F}_2^7 (\mathcal{C}e^{3+})$ between Ho$^{3+}$ and Ce$^{3+}$. The conversion efficiency of the CR2 process can be calculated based on the following equation:

$$\eta_2 = 1 - \frac{\tau(12\% Ce^{3+})}{\tau(0\% Ce^{3+})}$$

where τ and τ' are the decay time of Ho$^{3+}$ with and without the presence of Ce$^{3+}$ in the sample, respectively. The measured fluorescence decay times of $\mathcal{S}_2^5\mathcal{F}_2$ state are 154.6 µs and 98.4 µs for 0% and 12% Ce$^{3+}$ (Fig. 7(b)), respectively. Thus, the efficiency η_2 is 36.3% for 12% Ce$^{3+}$ ions doped sample. This result indicates that the CR2 process plays the assistant role for the CR1 process to covert the green UC emission into red UC emission.

4. 2. 3. The possible influence of the surface and matrix properties

It is well know that the UC efficiency of nanocrystals depends on the surface impurity and matrix properties, which mean that the presence of organic ligands on the surface of the samples could also result in the enhancement of red emission. Hence, it is necessary to measure FTIR spectrum for identifying the chemical bonds at the sample surface. Fig. 8 presents the FTIR spectrum with different Ce$^{3+}$ concentration. Several vibration bands were observed from β-NaY(Yb$^{3+}$)$_2$Ho$^{3+}$ nanorods with different Ce$^{3+}$ concentration. The bands in the regions 1350 cm$^{-1}$ to 1700 cm$^{-1}$ and 2800 cm$^{-1}$ to 3050 cm$^{-1}$ corresponded to the vibrations of the CO and CH$_2$ groups in the oleic acid, respectively; whereas the broad band at around 3450 cm$^{-1}$ is ascribed to the O–H stretching vibration that originated from the oleic acid and water. These results show the existence of the characteristic vibrations of the oleic acid ligands.

![Image](image-url)

Fig. 8 FTIR spectra of the β-NaY(Yb$^{3+}$)$_2$Ho$^{3+}$ nanorods with different Ce$^{3+}$ concentration from 0% to 12%.

Fig. 9 UC emission spectra and luminescence photographs of β-NaYF$_4$:20%Yb$^{3+}$/2%Ho$^{3+}$ microplates (a) and microprisms (b) with $x=0\%$, 4%, 6%, 8%, 12%. (c) and (d) are the R/G ratio and CIE chromaticity diagrams as a function of Ce$^{3+}$ concentration.

NaYF$_4$ particles are regular microplates and microprisms, and codoping of Ce$^{3+}$ have no effect on the morphology of β-NaYF$_4$ crystals. The spectral measurement on the UC emissions from Ho$^{3+}$ in two groups of β-NaYF$_4$: Yb$^{3+}$/Ho$^{3+}$ crystals with different Ce$^{3+}$ concentration. The UC emission spectra and luminescence photographs of β-NaYF$_4$: Yb$^{3+}$/Ho$^{3+}$ microplates and microprisms codoping with Ce$^{3+}$ ions also were prepared for studying the morphology and matrix dependence of the observed color tuning with Ce$^{3+}$ ions. The XRD, SEM, EDS and CIE chromaticity (x, y) of the β-NaYF$_4$: Yb$^{3+}$/Ho$^{3+}$ microplates and microprisms with codoping Ce$^{3+}$ concentration of 0%, 4%, 6%, 8% and 12% are shown in Fig. S1†, S2† and Table S1†. The stronger diffraction peaks of XRD patterns (Fig. S1†) of β-NaYF$_4$: Yb$^{3+}$/Ho$^{3+}$ microplates and microprisms with codoping Ce$^{3+}$ ions indicates that they have high crystallinity. Fig. S2† shows that β-
tuned to red by codoping Ce$^{3+}$ ions, but the tunable regions of UC emission are different for different host morphologies. Therefore, the tunable fluorescence emission not only depends on the sensitized ion, but also relies on the morphology and the host matrix.

4. Conclusions

The UC luminescence emission were successfully tuned in β-NaY(Gd$_{0.46}$)F$_4$: Yb$^{3+}$/Ho$^{3+}$ nanorods by introducing Ce$^{3+}$ ions. The effects of Ce$^{3+}$ ions on the UC luminescence of the nanorods were studied with 980 nm excitation, and the correspondi ng color change of UC emission from βCNaYF$_4$:Ce$^{3+}$ was examined. The conversion efficiency of CR1 and CR2 was calculated based on steady-state equations, which indicated that the CR2 process plays the assistant role for the CR1 process to covert the green UC emission into red UC emission. Further observation on the color change of UC emission from β-NaYF$_4$: Yb$^{3+}$/Ho$^{3+}$ microplates and microprisms through codoping Ce$^{3+}$ ions suggested that Ce$^{3+}$ is an effective sensitizer to tune UC emission for extending their application in display and biological images, and the color tuning range and emission intensity also were affected by host material and morphology of particle samples.

The work is supported by the National Science Foundation of China (Grant 11174190), the Fundamental Research Funds for the Central Universities (Grants GK201101006 and GK201304002).

Notes and references

This journal is © The Royal Society of Chemistry [year]