Journal of Materials Chemistry B

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsB

Cite this: DOI: 10.1039/xoxxooooox

Received ooth January 2012,

Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

ARTICLE

Folic Acid Modified Clay/Polymer Nanocomposites for Selective Cell Adhesion

F.B. Barlas,^{*a*} D. Ag Seleci,^{*a*} M. Ozkan,^{*b*} B. Demir,^{*a*} M. Seleci,^{*a*} M. Aydin,^{*c*} M.A. Tasdelen,^{*c,d*} H. M. Zareie,^{*e*,f} S. Timur,^{*a,g*,*} S. Ozcelik^{*b*} and Y. Yagci^{*c,h*,*}

Folic acid (FA) modified poly(epsilon-caprolactone)/clay nanocomposite (PCL/MMT-(CH₂CH₂OH)₂-FA) conceding selective cell adhesion and proliferation was synthesized and characterized as a cell culture and biosensing platform. For this purpose, first FA modified clay (MMT-(CH₂CH₂OH)₂-FA) was prepared by treating organo-modified clay, Cloisite 30B [MMT-(CH₂CH₂OH)₂] with FA in chloroform at 60 °C. Subsequent ring opening polymerization of ε -caprolactone in the presence of tin octaate (Sn(Oct)₂) using MMT-(CH₂CH₂OH)₂-FA at 110 °C resulted in the formation of MMT-(CH₂CH₂OH)₂-FA with exfoliated clay structure. The structures of intermediates and final nanocomposite were investigated in detail by FT-IR spectral analysis and DSC, TGA, XRD, SEM and AFM measurements. The combination of FA, PCL and clay provides a simple and versatile route to surfaces that allows controlled and selective cell adhesion and proliferation. FA receptor- positive HeLa and negative A549 cells were used to prove the selectivity of the modified surfaces. Both microscopy and electrochemical sensing techniques were applied to show the differences in cell adherence on the modified and pristine clay platforms. This approach is expected to be adapted into various bio- applications such as 'cell culture on chip', biosensors and design of the tools for targeted diagnosis or therapy.

Introduction

Poly(epsilon-caprolactone)/clay (PCL/clay) nanocomposites have attracted much attention due to the biocompatibility and biodegradability of the aliphatic polyester matrix and the high property enhancements that could result from the layered silicate dispersion.^{1, 2} There are three common approaches for the preparation of these nanocomposites: *in-situ* polymerization, solution casting, and melt processing, which are known to lead to intercalated and/or exfoliated structures.³ Recently, several coupling reactions were also proposed as an alternative route to fabricate such clay based nanocomposites having various structurally different macromolecular chains.⁴⁻⁹ In the in-situ polymerization technique, epsilon-caprolactone (CL) as a monomer, together with alcohol functional initiator with stannous octanoate $(Sn(Oct)_2)$ as a catalyst, are intercalated within the silicate layers and the polymerization is initiated by heating the mixture at 110 °C.⁹ The chain growth in the clay galleries triggers the clay exfoliation and hence the nanocomposite formation.10-18

In biomedical research, cultivation of cells on a substratum is one of the most crucial experimental procedures and extensively used in bio-investigations. In order to utilize polymer–clay nanocomposites, they need to have designed mechanical properties as well as favourable interactions with biological interfaces.¹⁹ The cultivation of various kinds of cells was carried out to investigate embryology,

cytology, and tissue regeneration on scaffolds or to assess biocompatibility and in-vitro toxicity of newly developed drug candidates, medical devices, as well as materials. For instance, in vitro cytocompatibility of Laponite cross-linked poly(ethylene oxide) hydrogel films using MC3T3-E1 mouse pre-osteoblast cells were reported.¹⁹ In the other study, thermo-sensitive poly(Nisopropyl acrylamide) nanocomposite gels were used as a soft and wet surface material with the capability of thermally controlled cell adhesion and detachment without needing proteolytic enzyme treatment.²⁰ Cell adhesion and spreading on porous poly(lactic acid)montmorillonite nanocomposites and clav-gelatin-chitosan nanocomposite films were also investigated in the literature.^{21, 22} On the other hand, controlling and guiding cell adhesion on biomaterials are important for a variety of bio-applications. Biocompatibility can be improved by limiting non-specific adsorption of proteins and promoting specific cell-matrix interactions which are important due to their effects on regulation of cell function and tissue homeostasis and cell shape.23-26

Recently, folic acid (FA) intercalated montmorillonite (MMT) were successfully used as targeted surface for cell culture applications to discriminate the adhesion of folate receptor positive and negative cell lines.²⁷ The FA modified clay not only enhanced specificity for cell adhesion, but also exhibit unique properties such as good mechanical and chemical stabilities, high surface area and low toxicity. We describe here, FA modified PCL/clay nanocomposites

Experimental

Materials. Organo-modified clay, Cloisite 30B [MMT-(CH₂CH₂OH)₂] was purchased from Southern Clay Products (Gonzales, TX, USA) The organic content of the organomodified MMT, determined by Thermo Gravimetric Analysis (TGA), was 21 wt %. Before use, the clay was dried under vacuum at 110 °C for 1 h. Tin(II) 2-ethyl-hexanoate (Sn(Oct)₂, Aldrich, 95 %) and folic acid (FA, Aldrich, 97 %) were used as received. Epsilon-caprolactone (CL, Aldrich, 97 %) was vacuum distilled over calcium hydride. Commercial grade solvents were purified by conventional drying and distillation procedures. Phosphate buffered saline (PBS, pH 7.4), 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), 4,6-diamino-2-phenylindol (DAPI), tetrahydrofuran (THF), sodium dodecyl sulphate (SDS), formaldehyde and bovine serum albumin (BSA) were purchased from Sigma. Cell culture supplies including Dulbecco's Modified Eagle Medium (DMEM), fetal calf serum (FCS Gold) and penicillin/streptomycin (P/S, 100×) were purchased from Lonza (Basel, Switzerland).

Modification of MMT-(CH_2CH_2OH)₂ with FA. MMT-(CH_2CH_2OH)₂, 176 mg, 0.1 mmol, OH- content] and FA (88 mg, 0.2 mmol) were added in 50 mL chloroform. The reaction mixture was heated up to 60 °C and stirred 48 h. After cooling to room temperature and removing the solvent by filtration, modified MMT (MMT-(CH_2CH_2OH)₂-FA) washed with chloroform and water three times and finally dried under vacuum.

Synthesis of Poly(\mathcal{E} -caprolactone)/MMT (PCL/MMT) nanocomposites containing FA. (MMT-(CH₂CH₂OH)₂-FA) (20 mg, 0.17 mmol corresponding to 1.0 % of the monomer by weight) as the initiator was added in Schlenk tubes equipped with a magnetic stirrer and dried in an oil bath at 90 °C, 1 h with vacuum pump. 1.94 mL (2.0 g, 17 mmol) sample of monomer (CL), [Sn(Oct)₂] (1/300 molar ratio with respect to monomer) and 2.0 mL of dry toluene were added under nitrogen. The CL polymerizations were carried out at 110 °C. After 24 h the mixtures were diluted with THF and poured into a 10-fold excess of cold methanol. The products were collected after filtration and dried at room temperature in a vacuum. Composites with higher clay contents were prepared under similar experimental conditions.

Characterization. Fourier transform infrared (FT-IR) spectra were recorded on a Perkin-Elmer FT-IR Spectrum One B spectrometer. Molecular weights were determined by gel permeation chromatography (GPC) using an instrument consisting of a Viscotek GPCmax Autosampler, a pump, three ViscoGEL GPC columns (G2000H_{HR}, G3000H_{HR} and G4000H_{HR}), and a Viscotek differential refractive index (RI)

detector with a THF flow rate of 1.0 mL min⁻¹ at 30 °C. The RI detector was calibrated with polystyrene standards having narrow molecular weight distribution. Data were analyzed using Viscotek OmniSEC Omni-01 software. Before the GPC measurement, the polymer was cleaved from clay by LiBr refluxing in THF for about 24 h, followed by centrifugation and filtration through a filter. Differential scanning calorimetry (DSC) was performed on a Perkin-Elmer Diamond DSC with a heating rate of 20 °C/min under nitrogen flow (20 mL/min). Thermogravimetric analysis (TGA) was performed on a Perkin-Elmer Diamond TA/TGA with a heating rate of 10 °C/min under nitrogen flow (200 mL/min). Surface morphology was monitored with a FEI Quanta250 FEG scanning electron microscope (SEM). An accelerating voltage of 5.0 kV was applied each sample, and spot size of 3 was used. X-ray diffraction (XRD) measurements were carried out with Panalytical X'Pert Pro Materials Research Diffractometer with CuK α radiation (λ =1.5406 A°). The XRD data was collected in a step scanning mode in the range from 5.0° to 50°. The zeta potential of the synthesized nanocomposite samples were measured by Malvern Zetasizer Nano ZS. 1.0 mL sample was loaded into a cell, and zeta potential was measured simultaneously three times and in triplicate. Atomic force microscopy (AFM) measurements were conducted by using Nanosurf flexAFM (Liestel, Switzerland).

Cell culture on clay matrices. A549 and HeLa cells were grown in the DMEM containing 10 % FCS and 1.0 % P/S. All cells were cultivated in a medium at 37 °C in a humidified environment with 5.0 % CO2. Cell seeding density and passage numbers used for both cell lines were 30 000 cell/mL and 10. Cell adhesion on clay matrices was observed via fluorescence microscope and proliferation studies using the MTT Assay.²⁸ MMT-(CH2CH2OH)2, PCL/MMT-(CH2CH2OH)2, PCL/MMT-(CH₂CH₂OH)₂-FA (5.0 % FA) (NC-5) and PCL/MMT-(CH₂CH₂OH)₂-FA (8.0 % FA) (NC-8) were compared among themselves to observe the differences in their properties as cell culture materials. Therefore, 1.0 mg of each clay mineral was suspended in 50 µL THF and 950 µL PBS, then 50 µL of the suspension (per well) was added to 96 well tissue cultured polystyrene plates (TCPS) (Sarstedt). Plates were dried for 24 h at room temperature. Afterward, clay covered plates were sterilized under UV radiation for 3 h and used for cell culture experiments. In the proliferation assay, cells which were cultivated directly on TCPS without clay matrices were considered as negative control. Each trial was repeated 5 times. Cells were incubated for 1 h, 17 h, 24 h, 48 h, 72 h and 96 h. At the end of each cultivation time, cells were treated with 110 μ L, 10 % MTT solution (5.0 mg/mL PBS)/well plates, in medium for 4 h. Then, SDS solution (100 µL, 1.0 g SDS in 10 mL 0.01 M HCl) was added and after 24 h incubation, UV-Visible absorption was measured at 570 nm with 630 nm as reference wavelength using a microplate reader (Bio-Tek Instruments, Inc., Winooski, VT, USA). Furthermore, each cell was stained with DAPI to visualize cell nuclei. For this aim, cell staining medium was removed and cells were washed once with PBS,

then, cells were treated with a DAPI solution (1.0 mg/mL) for 15 min at 37 °C, then washed again with PBS several times. Fluorescence of the stained samples was monitored using an Olympus BX53F fluorescence microscope equipped with a CCD camera (Olympus DP72). For DAPI, an U-MWU excitation filter, BP330-385 (exciter filter), BA420 (barrier filter) were used.

Afterwards, adhered cell density on the surfaces was calculated as cell/mm² from the captured images which were taken from at least 4 or 5 different regions using HeLa and A549 cells after nuclei staining, via Image J Software.

Bright-Field microscopy imaging. To investigate the morphological alteration of adhered cells on different surfaces (NC-8, PCL/MMT-(CH₂CH₂OH)₂ as well as TCPS as control, bright-field microscopy images were taken by using an Andor Revolution Confocal Laser Microscope (Olympus IX-71 fluorescence microscopy). Each sample (1.0 mg mL⁻¹ in 50 μ L THF and 950 μ L PBS) was coated onto TCPS μ -Dishes (Ibidi GmbH, Germany) except control. After drying, UV sterilization was performed for 3 h and HeLa cells were grown for 3 days on the surfaces. Prior to bright-field imaging, cells were washed with PBS, then fixed using 4.0 % formaldehyde (dissolved in PBS) for 30 min and rinsed with PBS several times.

Electrochemical measurements. electrochemical All experiments were carried out on a Palmsens potantiostat (Palm Instruments, Houten, Netherlands). A three electrode system consist of an Ag/AgCl reference electrode, platin electrode as the auxiliary electrode and a 3.0 mm diameter glassy carbon electrode (GCE) as working electrode, was used. Prior to measurements, GCE was polished with alumina slurry followed by sonication in 1:1 distilled water: Ethanol mixture for 5 min. After that, mirror like GCE surfaces were coated with 15 µL of 1.0 mg mL⁻¹ clay samples (dissolved in 900 µL PBS, pH 7.4 and 100 μ L THF) and 5.0 μ L of 1.0 mg mL⁻¹ BSA (in PBS buffer). Electrodes were allowed to dry about 1 h. Finally, an appropriate amount of the cells in PBS was dropped onto the clay modified GCE surfaces and incubated 2 h at ambient conditions. HeLa (folate positive) and A549 (folate negative) cell lines were applied during the experiments. Cyclic voltammetry (CV) (between -0.4 V- 0.6 V) and differential pulse voltammetry (DPV) (between -0.2 V - 0.6 V) techniques were performed after each modifications using $[Fe(CN)_6]^{3-/4-}$, as a water soluble redox probe (10 mM). Cell binding to the surface caused the decreases in the response signals which were correlated with the cell loaded onto the surface. Differences between the current signals were calculated as follows;

 $\Delta I=I_o-I_c$ (where I_o is the mean current at zero cell concentration and I_c is the mean current at any concentration) by the corresponding to cell binding onto the clay covered surfaces.

Statistical analysis. All experiments were repeated 5 times. All data were expressed as average \pm SD (standard deviation) unless particularly outlined. A one-way analysis of variance (ANOVA) was performed with Tukey test for multiple comparisons in statistical evaluation. The difference between

two groups was considered to be significant when the P value was less than 0.05 and highly significant when the P value was less than 0.01 or 0.001.

Results and Discussion

Synthesis and characterization of nanocomposites. Folic acid (Folate, FA), which is composed of a pterin ring, p-amino benzoic acid and glutamic acid moieties, has been used widely as a targeting ligand to deliver therapeutics to cancer cells because of its ability to react with the membrane-anchored protein called as FA receptor. Use of FA in targeting strategies is advantageous because it is nontoxic, non-immunogenic, inexpensive and stable. Conjugation of FA molecules with various nanoparticle types via polymer spacer units has been extensively investigated.²⁹ In order to impart its existing advantages, initially, the FA salt was physically adsorbed at the edges and interlayers of commercially available Cloisite 30 B (Natural MMT clay fully modified with an organic surfactant containing two hydroxyl groups) in a manner similar to that described previously. These hydroxyl groups on the clay surface allowed the grafting of initiators and the growth of PCL chains from the clay surface, favoring the exfoliation of the platelets (Scheme 1).

FT-IR, XRD, and TGA techniques have been used to characterize modification of the MMT clay with FA. As shown in Figure 1, the bands for pure FA between 3600 and 3400 cm⁻¹ are due to the hydroxyl (OH) stretching bands of glutamic acid moiety and NH group of pterin ring. It also exhibited a very strong absorption band at 1696, 1513 and 1485 cm⁻¹ due to the stretching vibration of (C=O) and a characteristic absorption band of the phenyl and pterin ring. The pristine MMT-(CH₂CH₂OH)₂ showed typically broad O-H and Si-O stretching bands at 3633 and 1010 cm⁻¹. Besides these verifications for MMT-(CH₂CH₂OH)₂ clay, the spectra show all the characteristic groups for FA.

OH

OH

4000

3500

3000

Journal Name

2000

1500

1000

Wavelength (cm⁻¹) Figure 1. FT-IR spectra of FA, MMT-(CH₂CH₂OH)₂, MMT-(CH₂CH₂OH)₂-FA, and the nanocomposite (NC-8).

2500

The modification of MMT-(CH_2CH_2OH)₂ with FA was also investigated by XRD and TGA methods (Table 1). The basal spacing (d₀₀₁) of commercial and modified clay layer was found to be 1.84 nm and 1.90 nm. The increment of interlayer spacing indicates an intercalated system with insertion of FA molecules into clay layers. The weight loss of MMT-(CH_2CH_2OH)₂ and MMT-(CH_2CH_2OH)₂-FA were found to be 20.3 and 41.3 wt% as a result of degradation of organic content of commercial clays. The Both XRD and TGA results confirmed that the FA molecules were successfully incorporated into the MMT interlayer.

Table 1 Polymerization conditions and thermal properties of PCL/MMT-
(CH ₂ CH ₂ OH) ₂ -FA nanocomposites and their components.

Entry	Con. ^a	$M_n^{\rm b}$ (g/ mol)	$M_{ m w}/M_{ m n}^{ m b}$	$T_{\rm m}^{\rm c}$ (°C)	Weight loss Temperature ^d (°C)		Char Yield ^d (%)
					%10	%50	
MMT-	-	-	-	-	570	-	79.7
MMT- FA	-	-	-	-	285	-	58.7
NC-1 ^e	91	13400	1.24	56.8	302	327	1.2
NC-5	93	8700	1.28	56.3	305	328	4.6
NC-8	96	5500	1.35	55.7	310	330	8.5

^a Determined by gravimetrically.

^b Molecular weight and distribution were determined by gel permeation chromatography

^c Determined by DSC and analyses under a nitrogen flow at a heating rate of 10 °C/min.

^d Determined by TGA analysis under a nitrogen flow at a heating rate of 10 °C/min.

^e The number indicates MMT-FA loadings.

Ring opening polymerization of CL initiated by MMT- $(CH_2CH_2OH)_2$ -FA (Scheme 1) was carried under various conditions typical for such polymerizations. The molecular weight results and reaction conditions were summarized in Table 1. With an increase in nanoclay initiator amount, there was an increase in polymerization rate, which results in the slightly higher conversion and lower the molecular weights of the resulting polymers. The molecular weight distribution remained narrow (1.24-1.35) and unimodal during the

polymerization. After the polymerizations, the XRD peak of MMT-(CH₂CH₂OH)₂-FA disappeared in the X-ray diffraction pattern for all nanocomposite samples, which indicates the formation of exfoliated structures of the clay. The DSC thermograms, performed on nanocomposites showed a slight reduction of the melting temperature with the increase of the clay content, suggesting that the degree of crystallinity was affected by the restricted mobility of the chains (Figure 4). The thermal degradation temperatures of the nanocomposites with different organic clay loadings were very close to each other, and a slight increase with % 10 and % 50 weight loss temperatures was observed. Notably, the final char yields of the nanocomposites were increased from 1.2 % to 8.5 % by increasing clay loadings.

Figure 2. X-ray diffractions of MMT-(CH₂CH₂OH)₂-FA and the nanocomposites (NC-1, NC-5 and NC-8).

Figure 3. TGA thermograms of MMT-(CH₂CH₂OH)₂, MMT-(CH₂CH₂OH)₂-FA and the nanocomposites (NC-1, NC-5 and NC-8).

Page 5 of 11

Journal Name

Figure 4. DSC traces of the nanocomposites (NC-1, NC-5 and NC-8).

Zeta potential of MMT-(CH₂CH₂OH)₂, PCL/MMT-(CH₂CH₂OH)₂ and NC-8 are given in Table 2. The surface potential of MMT-(CH₂CH₂OH)₂ is found as highly negative. Less negative value was observed after modification with PCL and finally, FA intercalation caused a remarkable decrease in the surface potential of the nanocomposite. SEM micrographs of the nanocomposites are given in Figure 5. The surface morphology of commercially available Cloisite 30B and PCL/MMT-(CH₂CH₂OH)₂ nanocomposites are shown in Figure 5A and B, respectively. After treatment of polymer with clay, small clay aggregates are observed on the surface of nanocomposite (Figure 5 B). In addition, SEM micrograph of FA intercalated PCL/MMT-(CH₂CH₂OH)₂ nanocomposite was given in Figure 5C. It is clearly observed that the PCL/MMT-(CH₂CH₂OH)₂ nanocomposite surface exhibits a rough surface after this modification step. Moreover, the surface morphologies with higher magnification (20 000X) were given in Figure S1 (as supplementary data).

Table 2 Zeta potential values. Mean Zeta potantial Width Area Sample potential (mV) (mV) (%) (mV)MMT-(CH₂CH₂OH)₂ -28.10 -28.10 100 3.22 PCL/ MMT-100 -24.40-24.404.72 (CH₂CH₂OH)₂ NC-8 -9.94 -9.94 100 6.85

Figure 5. SEM images of MMT-(CH₂CH₂OH)₂ (A), PCL/MMT-(CH₂CH₂OH)₂ (B) and NC-8 (C) with 10 000X magnification.

AFM was also used to evaluate morphology of the nanocomposite surfaces as well. Figure 6 shows AFM images

of MMT-(CH₂CH₂OH)₂, PCL/MMT-(CH₂CH₂OH)₂ and NC-8. AFM images were obtained by depositing the samples on silicon wafer. Tapping mode was used during the measurements.

Figure 6. AFM images of MMT-(CH_2CH_2OH)₂ (A), PCL/MMT-(CH_2CH_2OH)₂ (C), and NC-8 (E) nanocomposite. A, C and D images are 5x5 μ m and the insets in B image is 2x2 μ m, D image is 1.5x1.5 μ m and F image is 1x1 μ m.

Additionally, the roughness of the $(MMT-(CH_2CH_2OH)_{2,})$ PCL/MMT- $(CH_2CH_2OH)_2$ and NC-8) was assessed by measuring the roughness parameters (Table 3).

Journal Name

Table 3 The roughness measurements of clay, polymer clay nanocomposite, and polymer clay folic acid nanocomposite (roughness average (S_a) , mean value (S_m) , root-mean-square roughness (S_q) , valley depth (S_v) , peak height (S_p) , peak-valley height (S_y)).

···· F·· (···)) F····	- 0 - (-	P/7 F		J · (- J))·		
Sample	Sa (nm)	Sm (nm)	Sq (nm)	Sv (nm)	Sp (nm)	Sy (nm)
MMT- (CH ₂ CH ₂ OH) ₂	37.0	34.5	43.5	-28.0	82.0	110.5
PCL/MMT- (CH ₂ CH ₂ OH) ₂	23.0	23.5	23.5	9.0	32.0	23.5
NC-8	29.0	29.0	29.5	10.2	39.0	28.5

Table 3 presents the roughness values of MMT-(CH₂CH₂OH)₂, PCL/MMT-(CH₂CH₂OH)₂ and NC-8 nanocomposite. They were measured in terms of roughness average (Sa), mean value (Sm), root-mean-square roughness (Sq), valley depth (Sv), peak height (Sp), peak-valley height (Sy). The roughness values were calculated using integrated software for image analysis. Here, the peak-valley height is an estimate of z-values which is short or wide and tall or narrow. The average roughness (Sa) of MMT-(CH₂CH₂OH)₂, PCL/MMT-(CH₂CH₂OH)₂ and NC-8 nanocomposite was 37.0 nm, 23.0 nm, 29.0 nm, respectively. All values were obtained with $1x1 \mu m$ scan area. The AFM results also support the SEM images. Here, surface roughness of PCL/MMT-(CH₂CH₂OH)₂ increases with the addition of FA.

Cell proliferation. flexibility, The biocompatibility, biodegradability and mechanical stability of the nanocomposites are very advantageous allowing their use in various biomedical applications. These features are important in the design of implants and drug delivery systems, biosensors, in vitro diagnostics and cell culture matrices. Enhanced cell adhesion and proliferation were observed on the intercalated structure of MMT-gelatin-chitosan for the stromal stem cells.²² Lewkowitz-Shpuntoff et al. used other nanocomposites made from ethylene vinyl acetate and Cloisite and reported clay dependent growth of human dermal fibroblasts on the polymer nanocomposite surfaces.³⁰ Recently MMT was modified with N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride and human bone marrow mesenchymal stem cells were used to evaluate cell growth on this matrix.³¹ Besides, poly(glycolic acid), PCL, poly(lactic acid) and these copolymers are very promising scaffolds for tissue engineering studies because of good biocompatibility and degradation.³²⁻³⁴ Therefore, PCL has been considered as a potential substrate for drug delivery systems³⁵, scaffolds for supporting fibroblast and osteoblast growth^{36, 37} and as a matrix for the cell growth.^{38, 39}

In the present work, MMT-(CH₂CH₂OH)₂ was modified with PCL to enhance biocompatibility and with FA to target folat receptor (FR) rich cancer cells. After characterization, clay suspensions were dried on the surface of 96 well plates. FR overexpressed HeLa and FR poor A549 cells were used for testing the cell adhesion properties of pristine clay and modified clay matrices.⁹ Proliferation behaviors of HeLa and A549 cells on the surface of clay layers were investigated with

MTT assay. Higher amount of the cell was observed on PCL/MMT-(CH₂CH₂OH)₂ for both cell lines (In Figure 7A and B). These are expected results due to the effect of introduction of biocompatible PCL to MMT-(CH2CH2OH)2 into the structure. Figure 7A demonstrates that the cell amount of HeLa on NC-8 is increasing in compared to the control cells which are grown directly on TCPS well plates. Also, better cell proliferation on NC-8 was observed in comparison to NC-5 (p<0.05). We assume that the main reason for the better proliferation behaviour of HeLa on NC-8 with respect to NC-5 is due to the presence of more FA in the clay structure. On the other side no significant difference was observed on the proliferation behaviour of A549 cells on PCL/MMT-(CH₂CH₂OH)₂ NC-5 and NC-8 (Figure 7B). After 48 h, both HeLa and A549 cells were proliferated on nanocomposite surfaces between time intervals, significantly (p<0.05 for 48 – 72 h and 72 – 96 h).

Figure 7. Proliferation behaviour of HeLa (A) and A549 (B) on the surface of MMT-(CH_2CH_2OH)₂, PCL/MMT-(CH_2CH_2OH)₂, NC-5, NC-8 and positive control cells cultivated on the 96-well plate surface.

Furthermore, DAPI was used to visualize adhered cells on the matrices via cell nuclei staining. The inefficient adhesion of both cell lines on the MMT- $(CH_2CH_2OH)_2$ is observed after 72 h cultivation time as shown in Figure 8 A and B. Both cell lines on PCL/MMT- $(CH_2CH_2OH)_2$ in higher amount compare to

MMT-(CH₂CH₂OH)₂. In the case of A549, there isn't any significant difference in proliferation features between PCL/MMT-(CH₂CH₂OH)₂, NC-5 and NC-8. But on NC-5 and especially on NC-8 FR, positive HeLa cells grew favorably. All fluorescence microscopic investigations are congruent with the proliferation results.

Figure 8. Fluorescence images of DAPI stained HeLa (A) and A549 cells (B) cultivated on TCPS, $MMT-(CH_2CH_2OH)_2$, $PCL/MMT-(CH_2CH_2OH)_2$, NC-1, NC-5 and NC-8 after 72 hours.

To obtain more informative data from the fluorescent images, further analysis based on cell density (cell/mm²) was accomplished using the Image J Software. Figure 9 illustrates the cell density analysis of both A549 and HeLa cells upon varying modified surfaces. It appears that both NC-5 and NC-8 surfaces have created a significant difference between HeLa and A549 cells (p<0.01 for NC-5 and p<0.001 for NC-8). Furthermore, the increase of FA amount in the nanocomposite structures caused the selective cell adhesion in compared to MMT-(CH₂CH₂OH)₂ and PCL/MMT-(CH₂CH₂OH)₂ surfaces. Despite the fact that A549 cells grew better on PCL/ MMT-(CH₂CH₂OH)₂ surface (p<0.01). However, there is no considerable change among NC-1, NC-5 and NC-8 surfaces.

Figure 9. Cell Density analysis using the DAPI stained fluorescent cell images after 72 h cultivation via Image J software.

Bright-field microscopy imaging. HeLa cells that were grown on PCL/MMT-(CH₂CH₂OH)₂, NC-8 and control group were visualized by bright-field microscopy to understand if there is any considerable change on the morphology of the cells (Figure S2, In supplementary data). It can be stated that NC-8 coated surface did not affect the general morphology of HeLa cell by comparing to the control group which are cultivated on TCPS.

Electrochemical studies. Electrochemical techniques are considered as good alternative to design biosensors for labelfree detection of the cells.40 Detection principles for cell analysis via electrochemical platforms are mainly based on creating a self-assembled monolayer on the electrode.^{41,42} These surfaces could be adapted properly to 'Lab-on-a-Chip' or microfluidic based systems.⁴³ On the other hand, decision on the immobilization matrix affects the selectivity of biosensor for the analysis, significantly. Herein, after the successful cell adhesion experiments, NC-8 was applied to create a novel selective platform for the cultivation of folate positive HeLa cells. CV and DPV experiments were performed using ferricyanide as a redox mediator. Figure 10A shows the oxidation and reduction peaks of bare and MMT-(CH₂CH₂OH)₂, PCL/MMT-(CH₂CH₂OH)₂ and NC-8 modified GCE surfaces, sequentially. The cationic nature of MMT-(CH₂CH₂OH)₂ clay exhibited sharper and higher redox peaks in compared to the bare GCE due to the stronger attraction of negatively charged $[Fe(CN)_6]^{3-/4-}$ on the surface. DPV graphs also showed the similar response characteristics. A dramatic decrease in the peak current was observed when PCL intercalated clay was covered on the electrode surface due to the rather inefficient electron transfer properties. Similar electrochemical characteristics were also obtained with NC-8 (Figure 10). As can be seen from the Figure 10B, the peak current values was found as 54.35 μ A (Ep = 0.2 V) for bare GCE, 114.4 µA (Ep = 0.18 V) for MMT-(CH₂CH₂OH)₂, 31.8 μA (Ep = 0.2 V) for PCL/MMT-(CH₂CH₂OH)₂ and 22.6 μA (Ep = 0.19 V) for NC-8, respectively.

Figure 10. Electrochemical behaviour of bare GCE (a), $MMT-(CH_2CH_2OH)_2$ (b), PCL/MMT-(CH_2CH_2OH)_2 (c) and NC-8 (d) at Cylic voltammetry (A) and Differential pulse voltammetry (B) in phosphate buffer saline, pH 7.4 with the presence of 10 mM [Fe(CN)6]^{3,/4-} at 50 mV/s.

Afterwards, cell sensing studies were carried out via CV and DPV techniques. Cyclic voltammograms of bare GCE (Fig 10A(a)), GCE/NC-8 (Fig 10A(b)), A549 (1x10⁴ cells)/NC-8/GCE (Fig 11A(c)) and HeLa (1x10⁴ cells)/NC-8/GCE (Fig 11A(d)) were in an agreement with each other in the presence of 10 mM [Fe(CN)6]^{3-/4-} at 50 mV/s. Redox peaks of CVs are as followed; 64.47 μ A (Ep_c = 0.28 V) for GCE, 48.08 μ A (Ep_c = 0.32 V) for GCE/NC-8, 33.7 μ A (Ep_c = 0.45 V) for GCE/NC-8/A549 and $18.72 \ \mu A$ (Ep_c = 0.52 V). A drop in the peak currents and shifting in the peak potentials (Epc (cathodic) and Ep_a (anodic)) showed successful cell binding onto the NC-8 surface. On the other hand, FR overexpressed HeLa cells display better adherence than FR negative A549 cells as well. To prove the cell capture of NC-8; both DPV and CV techniques were used as previous works in which the affinity type sensors were reported.⁴⁴ After treatment of NC-8 modified electrode with the HeLa cells, a calibration curve was obtained using the decrease in the current signals (ΔI) depending on the cell amount within DPV measurements. The linear relationship was defined by the equation of y = 4.466x-8.285 (R²=0. 999, y

shows ΔI (μA) and x shows the logarithm of the cell amount) between $1x10^2-1x10^4$ cells/mL. As shown in Figure 11A and B, treatment of cells caused decrease in the current response. To control the selectivity of NC-8/GCE surface, same amount of A549 and HeLa cells ($1x10^4$) were compared. Figure 11B displays the DPV responses of FR negative A549 ($\Delta I=4.8 \ \mu A$) and FR positive HeLa cells ($\Delta I=9.54 \ \mu A$). Moreover, within the addition of HeLa cells onto the NC-8 surface, a shift in the peak potentials were observed due to the strong adherence between HeLa cells and FA groups. Hence it can be claimed that NC-8 is an appropriate platform for the selective and label free cell detection for the further cell sensing approaches.

Figure 11. (A) Cyclic voltammograms (B) Differential Pulse Voltammograms of bare GCE (a), GCE/NC-8 (b), GCE/NC-8/10⁴ A549 cells (c) and GCE/NC-8/10⁴ HeLa cells (d) in phosphate buffer saline, pH 7.4 with the presence of 10 mM $[Fe(CN)6]^{3/4}$ at 50 mV/s.

Conclusions

In conclusion, a promising material that allows selective cell adhesion and proliferation was synthesized and characterized as a cell culture and biosensing platform. Besides, it provides an efficient way for the detection of FR positive cells *via* electrochemical transduction as well as optical monitoring. This principle could be adapted for targeted detection of the other cells where different proteins are overexpressed in the case of different diseases. The advantage of this strategy resides in the fast and easy surface modification with the targeting ligands.

Acknowledgements

Ibidi GmbH is acknowledged for their supports to the cell culture studies.

Notes and references

^a Department of Biochemistry, Faculty of Science, Ege University, 35100 Bornova-Izmir, Turkey.

^b Department of Chemistry, Faculty of Science, Izmir Institute of Technology, 35430 Urla-Izmir, Turkey.

^c Department of Chemistry, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.

^d Department of Polymer Engineering, Faculty of Engineering, Yalova University, 77100 Yalova, Turkey.

^e Department of Materials Science and Engineering, Izmir Institute of Technology, 35430 Urla-Izmir, Turkey.

^f Institute for Nanoscale Technology, University of Technology Sydney, Australia

^g Ege University, Institute of Drug Abuse Toxicology & Pharmaceutical Sciences, 35100-Bornova, Izmir, Turkey.

^h Center of Excellence for Advanced Materials Research (CEAMR) and Department of Chemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.

- B. Lepoittevin, M. Devalckenaere, N. Pantoustier, M. Alexandre, D. Kubies, C. Calberg, R. Jerome and P. Dubois, *Polymer*, 2002, 43, 4017-4023.
- 2. M. A. Tasdelen, Eur. Polym. J., 2011, 47, 937-941.
- 3. M. A. Tasdelen, J. Kreutzer and Y. Yagci, *Macromol. Chem. Phys.*, 2010, **211**, 279-285.
- J. Chen, H. Wang, W. Luo, J. Xiang, L. Zhang and B. Sun, *Colloid. Polym. Sci.*, 2010, 288, 173-179.
- Y.-S. Ye, Y.-C. Yen, C.-C. Cheng, Y.-J. Syu, Y.-J. Huang and F.-C. Chang, *Polymer*, 2010, **51**, 430-436.
- 6. H.-W. Cui and S.-W. Kuo, *RSC Adv.*, 2012, **2**, 12148-12152.
- M. A. Tasdelen, W. Van Camp, E. Goethals, P. Dubois, F. Du Prez and Y. Yagci, *Macromolecules*, 2008, 41, 6035-6040.
- M. Aydin, M. A. Tasdelen, T. Uyar, S. Jockusch, N. J. Turro and Y. Yagci, J. Polym. Sci., Part A: Polym. Chem., 2013, 51, 1024-1028.
- B. Lepoittevin, N. Pantoustier, M. Devalckenaere, M. Alexandre, D. Kubies, C. Calberg, R. Jerome and P. Dubois, *Macromolecules*, 2002, 35, 8385-8390.
- A. Oral, M. A. Tasdelen, A. L. Demirel and Y. Yagci, J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 5328-5335.
- A. Oral, M. A. Tasdelen, A. L. Demirel and Y. Yagci, *Polymer*, 2009, 50, 3905-3910.
- 12. H. Akat, M. A. Tasdelen, F. Du Prez and Y. Yagci, *Eur. Polym. J.*, 2008, **44**, 1949-1954.
- 13. M. Aydin, M. A. Tasdelen, T. Uyar and Y. Yagci, J. Polym. Sci., Part A: Polym. Chem., 2013, **51**, 5257-5262.
- C. Dizman, S. Ates, T. Uyar, M. A. Tasdelen, L. Torun and Y. Yagci, *Macromol. Mater. Eng.*, 2011, **296**, 1101-1106.
- K. D. Demir, M. A. Tasdelen, T. Uyar, A. W. Kawaguchi, A. Sudo, T. Endo and Y. Yagci, J. Polym. Sci., Part A: Polym. Chem., 2011, 49, 4213-4220.
- C. Altinkok, T. Uyar, M. A. Tasdelen and Y. Yagci, J. Polym. Sci., Part A: Polym. Chem., 2011, 49, 3658-3663.
- Z. Yenice, M. A. Tasdelen, A. Oral, C. Guler and Y. Yagci, J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 2190-2197.
- A. Nese, S. Sen, M. A. Tasdelen, N. Nugay and Y. Yagci, *Macromol. Chem. Phys.*, 2006, 207, 820-826.
- A. K. Gaharwar, P. J. Schexnailder, B. P. Kline and G. Schmidt, Acta Biomater., 2011, 7, 568-577.

- 20. K. Haraguchi, T. Takehisa and M. Ebato, *Biomacromolecules*, 2006, **7**, 3267-3275.
- G. Ozkoc, S. Kemaloglu and M. Quaedflieg, *Polym. Compos.*, 2010, 31, 674-683.
- H. Zhuang, J. P. Zheng, H. Gao and K. D. Yao, J. Mater. Sci. Mater. Med., 2007, 18, 951-957.
- 23. F. Grinnell, Trends Cell Biol., 2003, 13, 264-269.
- 24. A. Abbott, *Nature*, 2003, **424**, 870-872.
- C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides and D. E. Ingber, Science, 1997, 276, 1425-1428.
- R. McBeath, D. M. Pirone, C. M. Nelson, K. Bhadriraju and C. S. Chen, *Dev. Cell*, 2004, 6, 483-495.
- R. Bongartz, D. Ag, M. Seleci, J.-G. Walter, E. E. Yalcinkaya, D. O. Demirkol, F. Stahl, S. Timur and T. Scheper, *J. Mater. Chem. B*, 2013, 1, 522-528.
- D. Ag, R. Bongartz, L. E. Dogan, M. Seleci, J.-G. Walter, D. O. Demirkol, F. Stahl, S. Ozcelik, S. Timur and T. Scheper, *Colloids Surf.*, *B*, 2014, **114**, 96-103.
- K. Kaaki, K. Hervé-Aubert, M. Chiper, A. Shkilnyy, M. Soucé, R. Benoit, A. Paillard, P. Dubois, M.-L. Saboungi and I. Chourpa, *Langmuir*, 2011, 28, 1496-1505.
- H. M. Lewkowitz-Shpuntoff, M. C. Wen, A. Singh, N. Brenner, R. Gambino, N. Pernodet, R. Isseroff, M. Rafailovich and J. Sokolov, *Biomaterials*, 2009, 30, 8-18.
- 31. M. Aliabadi, R. Dastjerdi and K. Kabiri, *Biomed Res. Int.*, 2013, Article ID: 749240.
- S. Y. Lee, J. H. Oh, J. C. Kim, Y. H. Kim, S. H. Kim and J. W. Choi, *Biomaterials*, 2003, 24, 5049-5059.
- N. Isogai, S. Asamura, T. Higashi, Y. Ikada, S. Morita, J. Hillyer, R. Jacquet and W. J. Landis, *Tissue Eng.*, 2004, 10, 673-687.
- 34. K. W. Ng and D. W. Hutmacher, Biomaterials, 2006, 27, 4591-4598.
- 35. Z. K. Zhong and X. Z. S. Sun, *Polymer*, 2001, **42**, 6961-6969.
- D. W. Hutmacher, T. Schantz, I. Zein, K. W. Ng, S. H. Teoh and K. C. Tan, *J. Biomed. Mater. Res.*, 2001, 55, 203-216.
- M. C. Serrano, R. Pagani, M. Vallet-Regi, J. Pena, A. Ramila, I. Izquierdo and M. T. Portoles, *Biomaterials*, 2004, 25, 5603-5611.
- M. Gumusderelioglu, S. Dalkiranoglu, R. S. T. Aydin and S. Cakmak, J. Biomed. Mater. Res. A, 2011, 98A, 461-472.
- 39. S. Y. Kim, J. Appl. Polym. Sci., 2011, 121, 1921-1929.
- 40. S. Andreescu and O. A. Sadik, Methods, 2005, 37, 84-93.
- 41. R. Wang, J. Di, J. Ma and Z. Ma, *Electrochim. Acta*, 2012, **61**, 179-184.
- 42. J. Zhao, L. Zhu, C. Guo, T. Gao, X. Zhu and G. Li, *Biosens. Bioelectron.*, 2013, **49**, 329-333.
- M. Moscovici, A. Bhimji and S. O. Kelley, *Lab Chip*, 2013, 13, 940-946.
- W. Cheng, L. Ding, J. Lei, S. Ding and H. Ju, *Anal. Chem.*, 2008, 80, 3867-3872.

A promising material, folic acid modified poly(epsilon-caprolactone)/clay nanocomposite that allows selective cell adhesion and proliferation was synthesized and characterized as a cell culture and biosensing platform.