This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Silver and sulfadiazine loaded nanostructured silica materials as potential replacement of silver sulfadiazine

Ágnes Szegedia, Margarita Popovab, Krassimira Yonchevac, Judit Makkd, Judith Mihálya, Pavletta Shestakovab

Key Words: silver sulfadiazine, nanoporous silica, MCM-41, SBA-15, antimicrobial effect

Abstract
Silver sulfadiazine (AgSD) is the leading topical antibacterial agent for the treatment of burn wound infections. Antibacterial effect of AgSD is limited by its poor aqueous solubility, and antibacterial activity develops only by decomposition of AgSD to silver ions and sulfadiazine. In this study it is first time demonstrated, that application of silver modified nanoporous silica carriers (MCM-41 or SBA-15) loaded with sulfadiazine (SD) instead of silver sulfadiazine could overcome the above mentioned disadvantages. By direct or post synthesis methods 5-15 nm sized silver nanoparticles can be stabilized in the channels or on the outer surface of nanoporous silica supports, and besides the empty channels can be loaded by SD molecules. The SD loaded silver modified materials show sustained release properties and similar or even better antimicrobial properties than AgSD. Adsorption of AgSD on nanoporous silica particles significantly improves its water solubility.

1. Introduction
Silver sulfadiazine (AgSD) is an effective and widely used antimicrobial agent to avoid bacterial infections and external contaminations.1,2 Topical antibiotic therapy is essential for treatment of burns. Silver sulfadiazine is the leading topical agent to control bacterial
infections in second-degree burn wounds. AgSD binds to cell components including DNA and
causes membrane damage. AgSD is the silver salt of sulfadiazine, being a polymeric type
molecule in which silver ion is tetracoordinated and surrounded by three different
deprotonated sulfadiazine molecules, whereas each sulfadiazine molecule is bound to three
different silver ions. The polymeric nature of AgSD contributes also to its very low
solubility in aqueous systems (3.4 mg/L at pH=6.8). Insolubility can result in minimum toxic
potential to microorganisms, and in difficulties to incorporate it to polymeric/inorganic
supports. However, according to Fox antibacterial activity develops only by decomposition of
AgSD to silver ions and sulfadiazine. The silver ion slowly dissociated from AgSD is the
antimicrobially active part of the compound, whereas sulfadiazine has a supportive effect, but
its concentration can be subinhibitory. Therefore nowadays research is focusing on the
enhancement of the solubility and the antibacterial efficacy by formulating AgSD as
nanoparticles, nanosuspensions or by its incorporation to different types of natural or
synthetic polymer, lipid or dendrimer based drug delivery platforms. Also biocompatible polymer wound dressing materials (semipermeable films, foams, hydrogels,
hydrocolloids and xerogels) are intensively investigated in order to accelerate wound healing
by preventing both fluid loss and bacteria infection by controlled antibacterial release.

In the recent years nanoporous silica based drug delivery systems has also been
developed. Nanoporous silica carriers (SBA-15 or MCM-41) are biocompatible materials
and have the capability both to load nanosized metal particles into the channels and to be
functionalized with organic groups. The functionalization of the silica surface (inside the
channels and/or the outer surface) with organic groups not only can enhance the adsorption of
drug molecules but facilitates the interaction with biopolymers in order to produce organic-
inorganic composite materials with tailor made drug delivery properties. Thus the effect of
controlled drug release can be combined with the antibacterial effect of metallic nanoparticles, such as silver. Silver nanoparticles can be stabilized in the channels or on the outer surface of mesoporous silica supports, and besides the empty channels can be loaded by sulfadiazine molecules. With this bottom-up approach a drug delivery system possessing the advantages of AgSD with improved bioavailability and antibacterial effect can be designed. Silver nanoparticle containing nanoporous silica materials can be easily synthesized by direct synthesis or by post-synthesis modification (template ion-exchange) methods. In this study silver nanoparticle containing mesoporous silica Ag-SBA-15 and Ag-MCM-41 carriers were loaded with sulfadiazine in order to prepare a drug delivery system overcoming the disadvantages of AgSD, possessing improved bioavailability and solubility. To the best of our knowledge this is the first attempt to substitute AgSD with silver and sulfadiazine loaded nanoporous silica materials, possessing high antibacterial activity.

2. Experimental section

2.1 Synthesis of Si-MCM-41 and Ag-MCM-41 materials

Spherical nanosized (100 nm ±50) MCM-41 particles were prepared according to the procedure of Huh et al. This sol-gel procedure is carried out at 80°C in water solution with NaOH as a catalyst. The silica source was tetraethyl orthosilicate (TEOS), and hexadecyltrimethyl-ammonium bromide (C_{16}TMABr) was applied as template. The relative molar composition of the reaction mixture was: 1 TEOS: 0.12 C_{16}TMABr: 0.31 NaOH: 1190 H_{2}O. The formed gel was aged at 80°C for 2 h, than washed with distilled water until neutral pH, and dried at ambient. Silver nanoparticles were loaded to the silica carrier by template ion-exchange method (TIE) suggested by Iwamoto et. al, and Gac et. al. According to Iwamoto et. al. by TIE method the different types of transition metals can be incorporated into the structure of MCM-41 in different amounts (1.5-7 wt.%, Si/Me ~ 100-20), depending
on the chemical nature of the metal. In the case of silver 5.5 wt.% final silver content could be achieved with Si/Ag=5 ratio in ion-exchange solution. The procedure was as follows: the template containing MCM-41 material was ion-exchanged by refluxing it at 80°C with 0.036 M AgNO$_3$ solution (50 mL/g MCM-41) for 20 h, and then filtered on 0.2 µm membrane filter, and washed with distilled water until chloride free. The ion-exchanged material was heat treated in air at 550°C for 5 h with a heating rate of 1°C/min. Silver containing MCM-41 sample prepared by template ion-exchange method was designated as Ag-MCM-41.

2.2 Synthesis of Si-SBA-15 and Ag-SBA-15 supports

Pure silica SBA-15 was synthesized according to the original procedure of Zhao et al.29 applying Pluronic 123 triblock copolymer (BASF, P123, EO$_{20}$PO$_{70}$EO$_{20}$, M$_w$=5800) as a template and TEOS as a silica source in the acidic media of 2N HCl.

Mesoporous Ag-SBA-15 material was synthesized by direct hydrothermal synthesis also in the presence of P123 as a template and TEOS as a silica source by modifying the procedure of Zhu et al.25 However, to avoid the precipitation of AgCl, HNO$_3$ was applied as acidic media. In a typical synthesis procedure 4 g of P123, 120 g of deionized water and 18.8 g of 65 wt. % nitric acid were mixed and stirred for 1 h at 40°C. 0.34 g of silver nitrate (Si/Ag=20) was added to the solution and stirred for 1 h at the same temperature in the dark. Then, 8.4 g of TEOS was slowly added to the solution and stirred for 20 h at 40°C in the dark. The final molar ratio of the synthesis mixture was: 1 TEOS: 0.017 P123: 0.05 AgNO$_3$: 4.93 HNO$_3$: 177.9 H$_2$O. The precipitated white suspension was aged at 100°C for 48 h in a Teflon lined stainless steel autoclave without stirring. The product was filtered and washed with deionized water until nitrate free. The template was removed by calcination in air at 450°C for 5 h with a heating rate of 1°C/min. Silver containing SBA-15 sample prepared by direct one-pot synthesis method was designated as Ag-SBA-15.
2.3 Loading of sulfadiazine and silver sulfadiazine on silver modified and non-modified nanoporous materials

Sulfadiazine (SD) and AgSD loading was carried out in a mixture of acetone and methanol (1:1) at 37°C applying 250 mg of SD or AgSD per 250 mg support. 250 mg SD was dissolved in 120 mL of solvent mixture, whereas AgSD in 250 mL. After incubation for 24 h, the mixtures were centrifuged at 15,000 rpm, rinsed with distilled water, separated by a second centrifugation, and finely dried at room temperature under vacuum. SD loaded Ag-MCM-41 and Ag-SBA-15 samples were designated as Ag-MCM-41/SD and Ag-SBA-15/SD, respectively. AgSD loaded samples were designated as MCM-41/AgSD and SBA-15/AgSD.

2.4 Characterization

X-ray patterns were recorded by a Philips PW 1810/3710 diffractometer with Bregg-Brentano parafocusing geometry applying monochromatized CuKα (λ=0.15418 nm) radiation (40 kV, 35 mA) and a proportional counter. Metallic silver, sulfadiazine and silver sulfadiazine were identified based on JSPDS ICDD database or on the XRD pattern of the parent commercial drug. The corresponding ICDD card numbers were: Ag4f 04–0783, SD 39-1841, and AgSD 37-1555. Crystallite size of metallic silver was determined by the Sherrer equation evaluating the FWHM values with full profile fitting method.

Nitrogen physisorption measurements were carried out at 77 K using Quantachrome Autosorb 1C apparatus. The specific surface area was calculated by the BET method in the range of relative pressures from 0.02 to 0.1. The pore-size distribution was calculated from desorption branch of the isotherms with the BJH method. Silica samples were pre-treated at 350°C, whereas drug loaded materials at 80°C for 5 h before measurements.

Silver content of the prepared samples was determined by Atomic Absorption Spectroscopy (AAS), applying AgNO₃ standard solution after digesting the silver containing samples in HF and HNO₃.
TEM images were taken by using a MORGAGNI 268D TEM (100 kV; W filament; point-resolution = 0.5 nm) electron microscope. Samples were suspended in small amount of ethanol and a drop of suspension was deposited onto copper grid covered by carbon supporting film and dried at ambient.

Thermogravimetric measurements were performed with a Setaram TG92 instrument with a heating rate of 5 K/min in nitrogen flow.

Attenuated Total Reflection Infrared (ATR-FTIR) spectra were recorded by means of a Varian Scimitar 2000 FTIR spectrometer equipped with a MCT (mercurycadmium-tellur) detector and a single reflection ATR unit (SPECAC “Golden Gate”) with diamond ATR element. In general, 128 scans and 4 cm-1 resolution were applied. For all spectra ATR-correction was performed (Varian ResPro 4.0 software).

MAS NMR spectra were recorded on a Bruker Avance II +600 NMR spectrometer operating at 600.13 MHz proton frequency (150.90 MHz for 13C), using 4 mm solid state CP/MAS dual probe head. The samples were loaded in 4 mm zirconia rotors and spun at magic angle spinning (MAS) rate of 6 kHz in all experiments. 13C NMR spectra were acquired with 8 K time domain data points, spectrum width of 50 kHz, 256 scans and a recycle delay of 5 s, using a cross polarization pulse sequence with total suppression of side bands (cptoss) from Bruker Topspin library. The spectra were processed with an exponential window function (line broadening factor 10) and zero filled to 16 K data points.

2.5 In vitro release studies

For in vitro release studies, 10 mg of the drug loaded silica particles were incubated in 200 ml phosphate buffer (pH=5.5) at 37°C under stirring (100 rpm). At appropriate time intervals, 5 ml samples were withdrawn and replaced by fresh buffer. The withdrawn samples were
centrifuged at 15,000 rpm for 15 min and the concentration of the released drug was determined by UV-spectrophotometry at a wavelength of 262 nm (Hewlet Packard 8452A).30,13

2.6 In vitro antibacterial tests

Antibacterial activity of silver and SD containing samples was measured on agar plates inoculated with *Pseudomonas aeruginosa* (ATCC 9027), *Escherichia coli* (ATCC 8739), *Staphylococcus aureus* (ATCC 6538), and *Streptococcus pyogenes* (ATCC 19615) strains using the agar diffusion test.

The fresh bacterial suspensions were made of frozen bacterial cultures. *E. coli, S. aureus* and *P. aeruginosa* were grown in triptone soya broth (TSB, DSMZ 545) at 37.0 ± 1.0 °C for 24 h. Water suspension of *S. pyogenes* was prepared of freshly isolated colonies on PPLO agar (beef heart infusion agar, Difco) agar after incubation at 37.0 ± 1.0 °C for 24 h. Before agar plates were inoculated with bacterial strains the BIOLOG Gram positive blue standard was used to match the turbidity of bacterial culture suspensions (~ 10⁶ colony forming units per mL [CFU/mL]). 100 µL of the prepared bacterial suspension (~10⁶ CFU/mL) was spread on Petri dish containing nutrient agar medium (DSMZ 1), and on PPLO agar medium for *S. pyogenes*, respectively.

Two methods were applied to compare the antibacterial properties of the studied samples. By the first method, 12 mm diameter discs (weight about 15-20 mg) were pressed aseptically of the silver and SD containing samples, and were gently placed on the surface of the wet agar plates. By the second, well diffusion method two cavities were made in the agar plates using a cork borer (10 mm diameter). The cavities were filled with 200 µl sterilized distilled water suspension of the samples (10 mg/ml).

The agar plates were incubated in a refrigerator (4 h, ~ 9°C, promoting diffusion of antibacterial samples and inhibiting bacterial growth) before placed in a thermostat (24 and 48
3. Results and discussion

3.1 Characterization of silver containing nanoporous silica materials

Low and high angle XRD powder patterns of pure silica and silver containing SBA-15 and MCM-41 materials, and their SD and AgSD loaded varieties are shown in Fig. 1. XRD pattern of Ag-SBA-15 sample at low 2θ° region show the formation of typical, well ordered 2D hexagonal (p6mm) structure (Fig. 1 inset) with the intense (100) reflection and the appearance of the higher indexed (110) and (200) peaks. Compared to a pure silica SBA-15 some intensity decrease can be observed. XRD patterns at higher angles show the presence of a separate metallic silver phase. Ag-MCM-41 samples prepared by template ion-exchange method also show the typical patterns of highly ordered hexagonal phase. The intensity of
(100) reflection is lower than that of parent silica variety. Reflections of metallic silver can also be observed at higher angles, but their intensity is smaller than on Ag-SBA-15 sample. According to AAS results (Table 1) the silver content of Ag-MCM-41 sample is slightly lower than that of Ag-SBA-15. The appearance of metallic silver on the pattern is an indication of the formation of silver crystallites bigger than ~ 5 nm, according to the Sherrer equation.31,32 These nanoparticles can be found as a separate phase among the silica particles or attached to the outer surface of the silica support.

By comparing the intensity of Ag0 reflections of the prepared samples with that of a mechanical mixture of pure silica and metallic silver (not shown), it roughly corresponds to the expected value by the metal content of the materials (about 7 and 5.5 wt.% for Ag-SBA-15 and Ag-MCM-41 sample, respectively). However, confinement of silver nanoparticles inside the channels of silica host, and also the incorporation of silver ions into the silica wall in terminal position of the silanol groups as Ag–O–Si≡O\textsubscript{3} species cannot be excluded. In contrast to other two and trivalent transition metals (Cu, Ni, Co, Fe), monovalent metals cannot strongly interact with the silica structure during the heat treatment in the template removal step.33 They can be reduced by the decomposition products of template molecules and the formed small metallic particles can migrate to form bigger silver particles. Formation of ionic silver species connected to the silica framework is more probable in Ag-SBA-15 sample, due to the more homogeneous distribution of silver ions by the sol-gel synthesis method and to the thicker walls of SBA-15 structure.

No significant changes, only a small decrease can be observed in the unit cell and pore size of Ag-MCM-41 sample (Table 1) compared to the pure silica variety. This can be due to the deterioration effect of ion-exchange procedure. Heating the sample in water solution at 80°C for 20 h can result in dissolution of silica and the decrease of ordering of honeycomb like structure. Incorporation of Ag into the structure of SBA-15 is associated with more
Table 1. Composition and textural properties of the studied samples

<table>
<thead>
<tr>
<th>Samples</th>
<th>Ag content (^a) [mmol/g(_{\text{calc}})]</th>
<th>SD content [mg/g]</th>
<th>(d_0)^(b) [nm]</th>
<th>BET surf. area [m(^2)/g]</th>
<th>Total pore vol. [cm(^3)/g]</th>
<th>PD(^c) [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCM-41</td>
<td>-</td>
<td>-</td>
<td>4.4</td>
<td>1175</td>
<td>0.97</td>
<td>2.7</td>
</tr>
<tr>
<td>SBA-15</td>
<td>-</td>
<td>-</td>
<td>10.2</td>
<td>970</td>
<td>1.20</td>
<td>6.4</td>
</tr>
<tr>
<td>Ag-MCM-41</td>
<td>0.52</td>
<td>-</td>
<td>4.3</td>
<td>927</td>
<td>0.76</td>
<td>2.6</td>
</tr>
<tr>
<td>Ag-SBA-15</td>
<td>0.66</td>
<td>-</td>
<td>10.6</td>
<td>698</td>
<td>1.08</td>
<td>6.6</td>
</tr>
<tr>
<td>Ag-MCM-41/SD</td>
<td>0.52</td>
<td>305</td>
<td>4.3</td>
<td>233</td>
<td>0.18</td>
<td>2.3</td>
</tr>
<tr>
<td>Ag-SBA-15/SD</td>
<td>0.66</td>
<td>458</td>
<td>10.6</td>
<td>302</td>
<td>0.54</td>
<td>6.3</td>
</tr>
<tr>
<td>MCM-41/AgSD</td>
<td>1.03</td>
<td>260</td>
<td>4.4</td>
<td>233</td>
<td>0.18</td>
<td>n.d.</td>
</tr>
<tr>
<td>SBA-15/AgSD</td>
<td>1.22</td>
<td>307</td>
<td>10.2</td>
<td>316</td>
<td>0.40</td>
<td>4.1</td>
</tr>
</tbody>
</table>

\(^a\) Determined by AAS method after digestion in HF and HNO\(_3\);
\(^b\) Unit cell parameter \((a_0 = 2d_{100}(3^{1/2}))\);
\(^c\) Mean pore diameter calculated by the BJH method.

significant changes. The unit cell size and the pore size is increased, which can be either due to the isomorphous substitution of silicon atoms by the bigger silver ions, or to the change of synthesis medium from HCl to HNO\(_3\).

The above observations were supported also by the N\(_2\) adsorption data (Fig. 2). Textural parameters are summarized in Table 1. The nitrogen physisorption isotherms of pure silica and silver modified MCM-41 materials show the typical IV type physisorption isotherm with a capillary condensation step of nitrogen between 0.2 and 0.3 relative pressures. Compared to parent silica material the specific surface area and the total pore volume of Ag-MCM-41 sample are slightly lower, supporting the structure deterioration idea. The N\(_2\) adsorption isotherms of Ag-SBA-15 sample belong to the IV type with a H1 type hysteresis loop, typical for SBA-15 structures. The decrease of specific surface area and pore volume of Ag-SBA-15 sample compared to the silica one is minor and probably can be due to some pore blocking effect of small silver nanoparticles.

The modification by silver does not influence the original morphology of MCM-41 and SBA-15 materials as evidenced by TEM investigations (Fig. 3). Ag-MCM-41 shows the typical 100 nm spherical particles and the channel system is well preserved. Silver nanoparticles with
Figure 2. N$_2$ physisorption isotherms of pure silica, silver containing and sulfadiazine loaded varieties of nanoporous silica materials

Figure 3. TEM images of Ag-MCM-41 (A, B) and Ag-SBA-15 (C, D) samples
different dispersities, among 5-20 nm can be observed on the images. These results are in accordance with XRD results showing the presence of separate silver phase on the outer side of the particles. TEM images of Ag-SBA-15 sample exhibits similar picture. 5-20 nm sized silver nanoparticles on the external surface, and smaller 5 nm particles inside the channels can be observed.

From the antibacterial point of view the release of Ag$^+$ ions from the antibacterial material is essential.34 Silver ions can be released either from silver nanoclusters by their oxidation with H$_3$O$^+$ ions in water34, or by the cleavage of Ag$^+$ ions connected to the silica wall through oxygen atoms. From this point of view solubility of the silica host also plays an important role. It is well known that due to their thinner walls and lower silica condensation rate MCM-41 type silica materials show less stability towards water dissolution than SBA-15 ones.35 Therefore higher amount of silver release is to be expected from silver containing MCM-41 materials. The silver ion dissolution capacity of the prepared samples was checked by stirring 0.2 g of Ag-SBA-15 and Ag-MCM-41 in 50 ml water for 24 h at 37±2°C. For Ag-MCM-41 sample 4.7 mg Ag$^+/g_{calc}$, whereas for Ag-SBA-15 2.9 mg Ag$^+/g_{calc}$ was detected by AAS method. These values correspond to 9 and 4.5% of the total silver content of the samples, respectively. Comparing these silver ion release values to other type of Ag/SiO$_2$ materials it represents average among the disperse values can be found in literature. For example Kawashita et. al36 have found 0.2 mg/g silver ion release for silver doped glasses whereas Lu et. al. by37 determined 8.5 mg/g by silver nanoclusters encapsulated in porous silica nanospheres. These data support that in MCM-41 material the dissolution of silver is easier, silver ions and metallic particles are not so strongly bound to the silica host due to the post synthesis modification method. In SBA-15 support, because of the direct synthesis method, silver can be found embedded in the silica wall in the form of Ag–O–Si≡ ionic species or confined inside the channels as small nanoparticles. These facts can explain the lower amount
of released silver ions from Ag-SBA-15, but the higher silver content of the sample can compensate its lower release rate.

3.2 Adsorption of sulfadiazine and silver sulfadiazine

Sulfadiazine was adsorbed on silver containing samples by dissolving SD in the mixture of methanol and acetone. SD penetrated into the channels of silica carrier and partial pore filling was achieved, evidenced by the N\textsubscript{2} physisorption data (Fig. 2, Table 1). Correcting the pore volume data by the actual amount of silica carrier 65-70 \% pore filling for MCM-41 samples, and 10-30\% can be calculated for SBA-15 support. According to the XRD patterns of the SD loaded silica materials (Fig 1 B) the remaining amount of SD can be found as a separate phase in the sample. Appearance of a small amount of AgSD can be also detected on Ag-MCM-41/SD sample. FT-IR investigations show that the loaded sulfadiazine does not react with the silica walls, mainly physical adsorption occurs. The surface silanol groups of silica are too weak acids to protonate the amino groups of sulfadiazine, therefore no strong interaction between SD and silica matrix can be expected. As reported in our previous work 24, surface functionalization of silica support by carboxylic groups can enhance the adsorption capacity and sustained release can be achieved by the electrostatically bonded sulfadiazine due to the formation of COO−NH\textsubscript{3}+ groups with the amino groups of sulfadiazine.

Ag-SBA-15/SD shows similar FT-IR spectral features like free SD (Fig. 4): NH\textsubscript{2} bending of free amino groups (δ\textsubscript{NH\textsubscript{2}} at 1652 cm−1), phenyl skeletal vibrations (ν\textsubscript{CC} at 1574 and δ\textsubscript{CCH} at 1487 cm−1) and pyrimidine skeletal vibrations (δ\textsubscript{CCH} at 1439 and δ\textsubscript{HCN} at 1406 cm−1). The band at 1322 cm−1 belongs to the symmetrical stretching of SO\textsubscript{2} groups.38,24 However in the spectrum of Ag-MCM-41/SD small new bands (shoulders) at 1553 and 1501 cm−1 appear. These bands are to be found in the spectrum of AgSD and can be assigned to the shifted ring vibrations of pyrimidine due to the presence of Ag+ ions. Appearance of the latter bands is an
Figure 4. FT-IR spectra of SD loaded Ag-silica materials and AgSD loaded nanoporous silica samples

indication that a part of adsorbed SD is in the close vicinity of silver nanoparticles or silver ions remained connected to the silica walls inside the channels of Ag-MCM-41 after the template removal, in accordance with XRD results. It has to be noted that no spectral changes can be detected for adsorbed SD in non-modified pure silica MCM-41.

AgSD was also adsorbed on pure silica materials to compare the physico-chemical and antimicrobial properties with SD loaded silver modified varieties. N$_2$ physisorption data (Table 1) show that despite its extremely low solubility AgSD can penetrate into the channels of silica carriers and almost total pore filling in MCM-41 and partial pore filling for SBA-15 carrier can be detected. However, according to XRD patterns (Fig. 1 B) the majority of AgSD can be found outside the channels. This is more pronounced for MCM-41 material, probably due to its lower pore volume and smaller pore size, hindering the penetration of the large polymeric molecule. N$_2$ physisorption data indicate total pore filling, however it might be that AgSD blocks only the entrances of pores.

Interaction of adsorbed AgSD with the silica carrier was investigated by FT-IR method. In AgSD silver ion is coordinated to the deprotonated amine nitrogen, to the sulfonyl oxygen and to the pyrimidine nitrogen in the same chain. Each silver ion is coordinated to further
Figure 5. 13C NMR spectra of SD loaded Ag-SBA-15 and AgSD loaded MCM-41 sample compared to pure SD and AgSD, respectively.

pyrimidine nitrogen, forming a polymeric chain structure.39 The FT-IR spectrum (Fig. 4) of AgSD shows different features compared to SD. The phenyl skeletal vibrations are shifted towards higher wavenumbers and the C-C stretching vibrations of the aromatic ring are splitted (1597 and 1581 cm$^{-1}$). Other characteristic AgSD vibrational bands can be found at 1552, 1501 and 1412 cm$^{-1}$ assigned to pyrimidine skeletal vibrations. Spectra of AgSD loaded MCM-41 and SBA-15 samples show similar spectral bands like free AgSD, indicating that AgSD is physisorbed on silica carriers.

Interaction of adsorbed AgSD with the silica carrier and of SD with Ag-containing mesoporous support was investigated by 13C NMR. Fig. 5 A and B show the 13C spectra of pure AgSD and the AgSD loaded on MCM-41 material, respectively. The two spectra demonstrate similar spectral patterns; however most of the signals of AgSD loaded silica material are shifted downfield. These chemical shift changes are indicative for the new
structural and chemical environment of AgSD molecules as a result of their incorporation into silica matrix. More significant differences between the 13C spectra of the two samples are observed in the spectral region between 156 – 161 ppm, where the two peaks corresponding to C2 and C4 atoms from pyrimidine moiety are shifted upfield and in addition a broad resonance partially overlapped with these signals appear in the spectrum of AgSD loaded into the silica carrier. The particular spectral pattern in the region between 156 – 161 ppm could be explained by the distribution of AgSD molecules within the pores and on the outer surface. Fig. 5 C and D show the 13C NMR spectra of pure SD and SD adsorbed on silver modified SBA-15 material (Ag-SBA-15). Comparing these spectra it can be observed that all 13C signals are shifted downfield by an average of 0.32 ppm in SD/Ag-MCM-41 material. This result indicates that SD molecules in silver modified SBA-15 material are predominantly adsorbed in the pores. 13C NMR investigations are in a good agreement with the XRD and FT-IR data.

The amount of sulfadiazine loaded in the mesopores of MCM-41 and SBA-15 and their Ag-modified analogues was quantified using thermogravimetry (TG). The Ag-MCM-41 sample showed lower adsorption capacity (30.5 wt.%) for SD in comparison to its AgSBA-15 analogue (45.8 wt.%) (Fig. 6 A). MCM-41 is made of 100 nm spherical particles, and among the particles secondary mesopores can be found. Therefore higher SD adsorption capacity should be expected for Ag-MCM-41. Also nitrogen physisorption experiments show high pore filling values. Thus, the lower SD adsorption capacity can be explained only by the blocking of pore entrances due to the narrower pores of Ag-MCM-41 host. Interaction of SD with silver ions on the outer surface of MCM-41 can also contribute to this pore blocking effect. The loading of AgSD on MCM-41 and SBA-15 silicas resulted in 26.0 wt.% and 30.7 wt.% adsorbed sulfadiazine, respectively (Fig. 6B). Taking into account that in contrast to SD only 70 % of AgSD can be decomposed by thermal treatment up to
Figure 6. TG curves of SD loaded Ag-MCM-41 and Ag-SBA-15 samples (A) and AgSD loaded pure silica MCM-41 and SBA-15 materials

600°C (metallic silver remain on the surface after decomposition of organic material), the above values correspond to 78 and 92 % of the loaded drug. The AgSD content is higher on MCM-41 compared to SD loaded on Ag-MCM-41, and similar on SBA-15 and Ag-SBA-15 carriers. These results show that similarly efficient SD loading can be achieved by the application of Ag-functionalized silica carriers.

3.3 In vitro release of SD and AgSD

The in vitro release of silver sulfadiazine from MCM-41 and SBA-15 samples and sulfadiazine from silver-modified ones was studied in a phosphate buffer (pH=5.5). The latter pH value is widely applied for in vitro experiments for dermatological formulations. The drug release profiles are presented in Fig. 7. As seen in Fig. 7, non-encapsulated AgSD is poorly dissolved in the selected medium, which could be expected considering its poor water solubility.
Figure 7. In vitro release of SD from Ag-MCM-41 and Ag-SBA-15 carriers and AgSD release from MCM-41 and SBA-15 samples

In contrast, the loading of AgSD on mesoporous carriers resulted in improved dissolution rate (Fig. 7 A). This can be explained by the lower crystallinity of the loaded AgSD, a part of it can be in nanocrystalline or in amorphous form. The formation of nanocrystalline or amorphous particles is predetermined by the adsorption of AgSD on the high surface of mesoporous silica and by the penetration into the pore system. Comparing the different nanoporous carriers, faster release of AgSD was registered from SBA-15 particles that can be explained by the larger size of the pores. Improvement of AgSD dissolution rate is advantageous because the better solubility of the drug can enhance its antibacterial activity. Similarly, the release of sulfadiazine from Ag-modified SBA-15 carrier was faster compared to MCM-41 one (Fig. 7 B). However, non-loaded sulfadiazine showed similar release profile to that of loaded into Ag-SBA-15 carrier. Adsorption of sulfadiazine on Ag-modified MCM-41 carrier resulted in a prolonged release. The improved solubility of AgSD and the reduced burst release of both SD and AgSD on MCM-41 can be advantageous in the development of topical drug delivery system for wound treatment.
The stability of the drug delivery system was checked by exposing the samples to direct daylight for 5 days. Repeated drug delivery experiments did not show significant differences between the parent and irradiated samples.

3.4 Antibacterial efficacy of SD loaded Ag-MCM-41 and Ag-SBA-15 samples

Our silver containing samples were tested against the most commonly found burn wound bacteria such as strains of ATCC *Escherichia coli* 8739, *Staphylococcus aureus* 6538, *Pseudomonas aeruginosa* 9027, and *Streptococcus pyogenes* 19615. Results of antibacterial investigations are summarized in Table 2 and 3, and some example photos of agar plates are shown in Fig. 8. Silver containing nanoporous silica materials and SD itself have some inherent antibacterial properties. Therefore these samples were investigated as control ones. In most cases investigating *Escherichia coli* and *Pseudomonas aeruginosa* strains, two zones appeared inside the cultures, i.e. a double ring could be observed. The inner zone was clear, where the bacteria could not grow at all (1-2 mm wide), whereas the exterior, wider zone was less translucent (5-10 mm). Here the growing of bacteria was inhibited compared to the parent population.

Table 2. Antibacterial activity of Ag-MCM-41, Ag-SBA-15 and SD loaded MCM-41 samples

<table>
<thead>
<tr>
<th>Bacterial strains</th>
<th>Zone of inhibition [mm]</th>
<th>Ag-MCM-41</th>
<th>Ag-SBA-15</th>
<th>MCM-41/SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli ATCC 8739</td>
<td>1</td>
<td>5</td>
<td>1+1</td>
<td>1</td>
</tr>
<tr>
<td>Staphylococcus aureus ATCC 6538</td>
<td>3</td>
<td>5.5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa ATCC 9027</td>
<td>2</td>
<td>2</td>
<td>1+2</td>
<td>2</td>
</tr>
<tr>
<td>Streptococcus pyogenes ATCC 19615</td>
<td>3</td>
<td>7</td>
<td>3.5</td>
<td>6</td>
</tr>
</tbody>
</table>

Not totally clean inhibition zone

Table 3. Antibacterial activity of SD loaded Ag-MCM-41, Ag-SBA-15 materials and AgSD loaded MCM-41 and SBA-15 samples

<table>
<thead>
<tr>
<th>Bacterial strains</th>
<th>Zone of inhibition [mm]</th>
<th>Ag-MCM-41/SD</th>
<th>Ag-SBA-15/SD</th>
<th>MCM-41/AgSD</th>
<th>SBA-15/AgSD</th>
</tr>
</thead>
</table>

19
<table>
<thead>
<tr>
<th></th>
<th>disc</th>
<th>susp.</th>
<th>disc</th>
<th>susp.</th>
<th>disc</th>
<th>susp.</th>
<th>disc</th>
<th>susp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli ATCC 8739</td>
<td>1+7</td>
<td>1+6</td>
<td>1+7</td>
<td>1+7</td>
<td>1+7</td>
<td>1.5+10</td>
<td>1.5+6.5</td>
<td>2+5</td>
</tr>
<tr>
<td>Staphylococcus aureus ATCC 6538</td>
<td>1.5</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa ATCC 9027</td>
<td>1+7</td>
<td>1+6</td>
<td>1.5+4.5</td>
<td>1.5+5</td>
<td>1+7</td>
<td>0.5+7.5</td>
<td>1+6</td>
<td>1.5+5</td>
</tr>
<tr>
<td>Streptococcus pyogenes ATCC 19615</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3.5</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 8. Photos of agar plates inoculated with *Escherichia coli* (ATCC 8739), and *Pseudomonas aeruginosa* (ATCC 9027) illustrating the inhibition zones for Ag-MCM-41/SD, AgSD/MCM-41, Ag-SBA-15/SD and AgSD/SBA-15 samples investigated by the pressed discs method.

The silver containing nanoporous silica control samples demonstrated identical or smaller inhibition zones than the SD loaded varieties. SD loaded pure silica MCM-41 showed no antimicrobial effect, except for *E. coli*. However, in this case there was no totally clear inhibition zone, only a less translucent one. Ag-SBA-15 based samples exhibited smaller
inhibition zones than Ag-MCM-41 ones, probably in correlation with the higher silver
dissolution rate of the latter one (4.7 mg/g for Ag-MCM-41 compared to 2.9 mg/g for Ag-
SBA-15). SD loaded Ag-MCM-41 and Ag-SBA-15 samples showed similar, in some cases
bigger inhibition zones than AgSD loaded pure silica ones. According to the photos of agar
plates (not shown), when the diameter of inhibition zones was identical the outer, less
transparent zone was much clearer for the Ag-MCM41/SBA-15/SD samples compared to
AgSD loaded MCM-41 and SBA-15 ones. These results indicate that SD loaded silver
nanoporous silica samples equally or even better effective in bacterial inhibition than AgSD.
Our experiments supported also the well-known fact, that ionic silver, being a heavy metal
with relatively broad antibacterial spectrum, have stronger effect on antibacterial activity than
pure SD. The beneficial effect of silver is so strong that agar plates showed the original
inhibition zones even after 7 days incubation (Fig. 8).

4. Conclusions

In this study it was shown that silver modified MCM-41 and SBA-15 materials are suitable
carriers for drugs, such as sulfadiazine to design a drug delivery system with improved
bioavailability and antibacterial activity. It was found that nanoporous silica materials can be
easily modified by direct or post-synthesis methods to prepare silver nanoparticles inside the
channels or on the outer surface of the particles. By these methods the amount of incorporated
silver can be controlled in a relatively wide concentration range, between 0-10 wt. %. The
silica host can stabilize these silver nanoparticles and water soluble silver ions are released.
The empty channels of the silica support is suitable for the storage of relatively high amount of
drug molecules. We demonstrated for the first time, that comparing the SD release and
antimicrobial properties, AgSD can be effectively replaced by SD loaded Ag-MCM-41 or Ag-
SBA-15 materials. Adsorbing AgSD on pure nanoporous silica materials significantly improved its water solubility.

Acknowledgements

Financial support by the Bulgarian-Hungarian Inter-Academic Exchange Agreement is greatly acknowledged.

Notes and references

aResearch Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences, 1117 Budapest, Magyar tudósok körútja 2., Hungary
E-mail: szegedi.agnes@ttk.mta.hu

bInstitute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

cFaculty of Pharmacy, 2 Dunav Str., 1000 Sofia, Bulgaria

dEötvös Loránd University, Department of Microbiology, Budapest, Hungary

Sulfadiazine loaded silver nanoporous silica carriers have similar antibacterial properties as silver sulfadiazine.