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Multifunctional Semiconducting Polymer Dots for 
Imaging, Detection, and Photo-Killing of Bacteria 

Yi Wan1, Laibao Zheng2, Yan Sun1, and Dun Zhang†1, and Wei Liu3 

The diagnosis and kill of bacterial infections and medical implants remain a key challenge in 
medicine and environment safety. Motivated by these properties and by present clinical 
requirement, numerous diagnostic and therapeutic nanomaterials have emerged. Here, a family 
of agents, termed antibiotic-based multifunctional semiconducting polymer dots (Pdots), which 
can detect bacteria with high sensitivity and selectively damage gram-positive bacteria or 
gram-negative bacteria, are reported. The multifunctional Pdots that exhibit good flexibility 
and stability at room temperature are usually smaller, and can be easily modified to 
biomolecules. The highlights of this work lie in that the developed bioconjuguated Pdots 
system simultaneously possess the abilities of detection, imaging, and pathogen photo-killing. 
This study not only demonstrates a facile approach to fabricate a bioconjugated probe for 
bacteria detection, but also provides a powerful and reliable platform to photo-killing of 
pathogens, thus rendering potential broad antibacterial applications, bacteria diagnosis, and 
live-image assays. 
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fluorospectrometer with a xenon lamp excitation source. UV-vis 
absorption spectra of Pdots were taken in water with a Hitachi U-
2900 spectrophotometer. The white light source (400-800 nm) was 
provided by a metal halogen lamp (500 W). Scanning electron 
microscopy (SEM) images were recorded on a JEOL JSM-6700F. 
The photo-killing assay for bacteria was performed in photochemical 
work station (XuJiang Electromechanical Plant XPA-7). 

Preparation of Semiconducting Polymer Dots 

A polymer functionalized with side-chain carboxylic acid group 
(PFBT) was synthesized using a method reported with 
modification.29 The Pdots were obtained from PFBT using the 
reprecipitation method. 0.2 mL PFBT (1 mg m L-1) in THF stock 
solution was injected into 10 mL H2O under sonication for 20 min. 
The tetrahydrofuran (THF) was then removed by purging with Ar on 
a 90 ºC hotplate for 1 hour. The resulting Pdot solution was filtered 
through a 0.2 μm membrane filter to remove any aggregates formed 
during preparation.  

Antibiotics bioconjugation 

Bioconjugation was prepared by using the 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimidehydrochloride (EDC)-catalyzed 
reaction between carboxyl Pdots29. In detail, 0.1 mL of polyethylene 
glycol (5%) and 0.1 mL of 2-[4-(2-Hydroxyethyl)-1-
piperazinyl]ethanesulfonic acid (HEPES) buffer (pH7.2, 1 mol L-1) 
were added to 4 mL of Pdots solution. Then, 0.5 mL of vancomycin 
or polymyxin B (5 mg mL-1) was added to the solution and mixed on 
a vortex. After that, 0.1 mL of freshly-prepared EDC solution (5 mg 
mL-1) was added to the solution, and the mixture was stirred for 2 
hours at room temperature. Vancomycin-Pdots (Van-Pdots) and 
Polymyxin B-Pdots (PB-Pdots) mixture were dialyzed for 2 days to 
remove excess antibiotics using phosphate buffered saline (PBS, 
pH7.4, 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM 
KH2PO4) water under stirring. To the Van-Pdots or PB-Pdots mixture 
was added 50 μL of Triton X-100 in MilliQ water (2.0 wt%) and 
subsequently transferred to a centrifugal ultrafiltration tube and then 
concentrated to 0.5 mL by centrifugation.  

Bacterial Culture 

All bacteria were offered from the Key Laboratory of Experimental 
Marine Biology. Bacteria were seeded and cultured in suspension 
using the following media: S. aureus, P. aeruginosa and E. coli in 
Luria-Bertani media; V. fischeri, B. cereus and B. firmus in yeast 
extract medium; E.tarda and V. alginolyticus in yeast extract peptone 
dextrose medium. For these bacteria, a single colony was inoculated 
in bacterial medium at 30 °C overnight, shaking at 200 rpm. After 
centrifugation (4,000 rpm) for 10 min and PBS washing, the 
bacterial cells were diluted to the desired concentration or optical 
density in phosphate buffer. Bacterial cell numbers were estimated 
by plating onto standard agar plates.  

Bacterial Labeling, Detection and Imaging 

Bacterial cells were first washed with PBS containing 2 mg m L-1 
bovine serum albumin. For direct labelling with Van-Pdots or PB-
Pdots, bacterial cells were incubated with 5 μg mL-1 conjuagte Pdots 
in PBS for 30 min at room temperature. Excess unbound Pdots were 
removed by washing the bacterial cells in three times. For 
competition assays, 0-20 μmol L-1 vancomycin or PB was added to 5 
μg m L-1 conjuagte Pdots. Increased relative fluorescence (RFU%) 

values are estimated as RFU%=(Fsample-Fcontrol)/Fcontrol×100, where 

Fsample and Fcontrol are intensity values of bacterial sample and PBS 
sample, respectively. All labeling experiments were carried out at 
three times to obtain the reproducibility of our approach. For 
fluorescence microscopy, bacterial cells-conjuguated Pdots complex 
were fixed in 10% PFA for 30 min.  

SEM charaterization for bioconjugated Pdots and bacteria cells 

1 mL (1.2×107  cfu mL-1) of each pathogen (S. aureus and P. 
aeruginosa) were incubated with 1 mL Van-Pdots (5 μg mL-1) and 
PB-Pdots for 10 min at room temperature, respectively, then 
immediately fixed with glutaraldehyde (2.5%, 5 mL) solution for 1 
hour. The films were dehydrated by adding ethanol in a graded series 
(30%-100%) and then dried. The microbes were observed by FE-
SEM for morphology changes. 

Antibacterial Experiments 

The photokilling properties of Van-Pdots and PB-Pdots were 
measured by incubation with bacterial cell suspensions at room 
temperature for 20 min in the dark. After being exposed to white 
light (400-800 nm) for 20 min, the bacterial cells were washed with 
PBS two times. Bacterial pellets were diluted with PBS. A series of 
tenfold dilution were prepared, and plated out on Luria Bertani agar. 
The plates were incubated for 48 h at 30 oC, and colony-forming 
units were counted. A bacterial sample without Pdots was used as a 
control. The results are expressed as Kill%=(Ncontrol-Nsurvivor)/Ncontrol

×100, where Nsurvivor is bacterial counts of a specimen incubated 

with conjugated Pdots and Ncontrol is the number of control in absence 
of conjugated Pdots.  

Results and discussion 

Synthesis and Charaterization of polymers and Bioconjugeted 
Pdots 

The synthesis of carboxylic acid-functionalized semiconducting 
polymer was carried out in three steps (Figure S1), including the 
synthesis of 2,7-dibromo-9,9-bis(3-(tert-butyl propanoate))fluorene, 
copolymerization of three monomers, and removal of the protecting 
tert-butyl groups using trifluoroacetic acid.23, 29 The purity and 
identity of product were confirmed via 1H NMR (Figure S2). The 
presence of carboxylic acid groups in the polymer was further 
characterized by FT-IR spectra (Figure S3). FT-IR analysis of 
carboxylic acid-functionalized polymer shows O-H stretching (a 
broad band at 3250-3750 cm-1 centered around 3650 cm-1), surface 
carboxylic groups O=C-O (1320 cm-1) and epoxy C-O (1250 cm-1).   
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Figure 1 Transmission electron microscopy (left) and dynamic light 
scattering (right) measurements of  Van-Pdots (a) or polymyxin B 
sulfate (b). Scale bars is 50 nm. 
 

 

 
Figure 2 Fluorescence microscopy images of S. aureus (a, b) and P. 
aeruginosa (c, d) labeled with Van-Pdots (a, c) or PB-Pdots (b, d), 
respectively. The bacterial count is 1.2×107  cfu mL-1. 
 
A reprecipitation method is used to dissolve the hydrophobic 
polymer in an organic solvent, such as THF. Pdots were prepared by 
injection of a polymer suspended in a THF solution into water under 
ultrasonication. After removing the organic solvents by evaporation, 
water-dispersible Pdots can be obtained. Bioconjugations were 
prepared using the EDC-catalyzed reaction between carboxyl Pdots 
and vancomycin or polymyxin B. Absorption and fluorescence 
spectra of the Pdots recorded in water are shown in Figure S5 and 
their spectroscopic properties are given in Table S1. All spectra had a 
maximun absorption around 475 nm and a maximum fluorescence 
emission around 535 nm. They showed a quantum yield around 14. 
The size of Pdots was charaterized by TEM (Figure S4) and DLS 
(Figure S6). The sizes depend on the precursor polymer 
concentration and injection THF volume. Up to now, there are two 
methods, miniemulsion and reprecipitation, to fabricate water-
dispersible Pdots.30 As for the miniemulsion method, amphiphilic 
surfactant molecules are used to prepare water-miscible micelles that 
contains the hydrophobic polymer. Unlike the miniemulsion strategy, 

Pdots prepared by reprecipitation are usually smaller (5-150 nm), 
and can be easily modified to biomolecules.31  

 

 

 
Figure 3 SEM images of S. aureus (a) or P. aeruginosa (c) labeled 
with Van-Pdots (b) or PB-Pdots (d), respectively. Scale bar is 200 
nm. 

 
Selective Recognition and Imaging using Bioconjugeted Pdots 

To demonstrate recognition and bio-imaging capabilities of the 
particles, S. aureus and P. aeruginosa were chose as the target cell 
incubated with bioconjugeted Pdots. The proposed principle of 
selective recognition and imaging is illustrated in Scheme 1. For 
gram-positive bacteria, S. aureus, the binding of vancomycin-Pdots 
(Van-Pdots) to bacteria was obtained via a five point hydrogen bond 
interaction with the terminal D-Ala-D-Ala moieties of the 
NAM/NAG-peptides.30 For gram-negative bacteria, P. aeruginosa, 
the binding of polymyxin B-Pdots (PB-Pdots) to bacteria achieved 
an electrostatic attraction for the positively charged amino groups in 
the cyclic peptide portion.31 Figure 2 shows fluorescence 
microscopic images of S. aureus and P. aeruginosa incubated with 
Van-Pdots or PB-Pdots, respectively. These results suggest that the 
bioconjugeted Pdots could selectively recognize and image S. aureus 
and P. aeruginosa. Scanning electron microscopy (SEM) was further 
able to show the presence of bioconjugated Pdots, coated across the 
surface of bacteria cells (Figure 3). On the basis of these results we 
formed a hypothesis that bioconjugeted Pdots have the potential to 
selective image different bacteria. 

Over the past few years, many research groups have developed novel 
approaches to fabricate the nanoprobe for bacterial imaging. For 
example, Ning et al., presented a family of maltodextrin-based 
imaging probes to detect bacteria in vivo with high sensitivity and 
specificity.4 Oosten et al., explored the use of fluorescently labelled 
vancomycin for real-time in vivo imaging of bacterial infections and 
a human post-mortem implant model.32 There is a disadvantage for 
previous examples, which significantly impedes their broad 
application due to poor photostability. Recently, Wang et al., report a 
cationic poly(p-phenylene vinylene) derivate with polyethylene 
glycol side chains which is used for selective recognition, imaging, 
and killing of bacteria over mammalian cells.27 Unfortunately, there 
is no specificity for different bacteria. Bioconjugeted Pdots appear to 
be a good alternative one to replace the small probe, due to their 
excellent photostability and thermal stability. 

a 

b 

a b 

c d 

a b 

c d
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Figure 4 Detection sensitivity using PB-Pdots (a) and Van-Pdots (b) 

for S. aureus (■) and P. aeruginosa (●) as a function of bacteria 

concentration. Fluorescence response patterns (c) conjugated Pdots 

complex in the presence of bacteria (1.2×107 cfu mL-1).  

 

 

Bacterial Detection and Determination via Bioconjugeted Pdots 

Bioconjugeted Pdots have been mainly used for detection of 
bacterial strains from other insensitive cells.33-36 The bacteria 
concentrations from 3.1×102 to 5.0×107 cfu mL-1 were prepared by 
serial dilution in PBS. Figure 4 shows fluorescence response 
obtained for Van-Pdots and PB-Pdots incubated with different 
bacterial concentrations. The fluorescence response increased 
regularly with the increase of the bacteria concentrations, indicating 
that Van-Pdots or PB-Pdots were absorbed onto the surface of 
bacterial cells to produce a bioprobe-bacterial cells complex. The 
results for bacteria detection showed that the concentration of 
bacteria and the response were highly correlated (Figure 4a and 4b). 
A linear relationship between the response and the logarithm of the S. 
aureus concentration using Van-Pdots was obtained for 
concentrations ranging from 1.0×104 to 1.0×106 cfu mL-1, with a 
slope of 60.9 and a correlation coefficient of 0.994 (Figure 4a). 
Figure 4b shows a linear relationship between the response and the 
logarithm of the P. aeruginosa concentration using PB-Pdots, with a 
slope of 342.8 and a correlation coefficient of 0.997. The different of 
slope for bacteial detection using Van-Pdots and PB-Pdots, 
respectively, may due to that the PB-Pdots shows more binding site 
for bacterial cells. Polymyxin B alters bacterial outer membrane 
permeability by binding to a negatively charged site in the 
lipopolysaccharide layer.37 However, the hydrophilic molecule of 
vancomycin only can form hydrogen bond interactions with D-
alanyl-D-alanine moieties.38 The minimum numbers of bacterial 
detection by bioconjugeted Pdots were also performed. To evaluate 
the limit of detection and broad applicability of the bioconjugeted 
Pdots platform in biologically relevant systems, we analyzed various 
concentrations of multiple species spiked in PBS. Figure 4a 
demonstrates that the Van-Pdots is capable of detecting as few as 3.1

×104 cfu mL-1 for S. aureus. Figure 4b demonstrates that the PB-

Pdots is capable of detecting as few as 1.0×104 cfu m L-1 for P. 

aeruginosa.  

The specificity of bioconjugeted Pdots for bacteria was further 
performed. Figure 4a indicates that there is a minor change in the 
fluorescence response of the Van-Pdots immersed in P. aeruginosa 
for 30 min. Van-Pdots immersed in S. aureus have a twofold increase 
in fluorescence intensity compared with control sample. PB-Pdots 
immersed in P. aeruginosa have a sixfold increase in the 
fluorescence intensity (Figure 4b). We next examined how 
effectively different bacteria strains could be detected. The following 
eight bacteria were tested: S. aureus, P. aeruginosa, E. coli, 
V.fischeri, B. cereus, B. firmus, E.tarda and V. alginolyticus. Figure 
4c shows that the nanoprobes have a high selectivity for gram-
positive bacteria or gram-negative bacteria. The obtained variations 
for eight species in the fluorescence intensities were due to different 
D-Ala-D-Ala content across bacterial strains39.  
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Figure 5 Competition assays between antibiotic and antibiotic-
functionlized Pdots using fluorescence measurements. For 
comparison, Normalized intensity=RFUsample/RFU0, where RFUsample 

is response intensity values of bacterial sample (1.2×107 cfu mL-

1)and bioconjuated Pdots incubated with some concentration of 
antibiotic, and without antibiotic (RFU0) respectively. 

A competitive inhibition assay to examine the influence of binding 
properties of antibiotic and antibiotic-functionlized Pdots were 
estimated (Figure 5). As the concentration of antibiotic increased, the 
binding efficacy of target bacteria sharply decreased. However, the 
control system did not show any effect with the nanoprobes during a 
short treatment periods. For a system of Van-Pdots and gram-
positive bacteria (Figure 5a), the binding of vancomycin to D-Ala-D-
Ala via an extensive first principles investigation based on accurate 
Hartree−Fock and density functional theory simulations was found 
to be stronger by about 3−5 kcal mol-1.40 The inhibition binding 
constant was c.a. 6 μmol L-1 for vancomycin-trans-cyclooctene and 
gram-positive bacteria.39 Our results show that the inhibition binding 
constant for Van-Pdots and S. aureus is c.a. 0.4 μmol L-1, which is 
far less than that of Van-TCO and S. aureus. For the system of PB-
Pdots and gram-negative bacteria (Figure 5b), the inhibition binding 
constant for PB-Pdots and P. aeruginosa is c.a. 1.1 μmol L-1. The 

pull-down assay based on agarose-immobilized polymyxin B 
demonstrate that the binding of bacterial lipopolysaccharides by 
polymyxin B is approximately 1−3μmol L-1,41 which was similar to 
that of PB-Pdots. 

Though antibiotics, such as vancomycin and polymyxin B, show less 
specificity/selectivity than monoclonal antibodies, it is very 
attractive as a ligand allowing affinity capture of a wide range of 
microbial cells with antibiotic functionalized nanoparticle for 
bacteria detection. Previous work in our group suggested that 
vancomycin-functionalised nanoparticles for selective detection of 
bacteria can significantly improve biosensing limit of detection 
under an external magnetic field.42 Vancomycin-resistant enterococci 
and other Gram-positive bacteria can be captured and detected using 
biofunctional magnetic nanoparticles or dendrimer-Based 
multivalent nanoplatform at concentrations of 10 cfu mL-1 within an 
hour.43-45 Weissleder and coworkers describe a bioorthogonal 
modification of small molecule antibiotics (vancomycin and 
daptomycin), which bind to the cell wall of gram-positive bacteria. 
Compared to abovementioned covalent nanoparticle conjugates, the 
bioorthogonal method demonstrated 1–2 orders of magnitude greater 
sensitivity for bacteria detection.39 

Photo-killing Properties of Bioconjugeted Pdots 

Traditional methods for bacterial inactivation, such as chlorination, 
ultraviolet (UV) sterilisation, and ozone, effectively inhibit and kill 
pathogenic bacteria. During the past decade, the application of 
nanomaterials in medicine distinctly increased, which resulted in 
raising hopes for using nanoparticles as alternative antimicrobial 
agents.46-52 Our group previously reported the synthesis of 
vancomycin-functionalised nanoparticles and their enhanced 
bactericidal activities.53 The improvement of bactericidal activity 
under UV irradiation is due to the targeting capacity of Van-
functionalised nanoparticles for the bacteria. 

Whether bioconjugated Pdots could fulfill the purpose of selective 
photo-killing? Fig. 6a and 6b further verified that Van-Pdots and PB-
Pdots showed a selective photo-killing for Van-sensitive bacteria, S. 
aureus and PB-sensitive bacteria, P. aeruginosa, respectively. It was 
almost completely killed within 1 h in Van-Pdots or PB-Pdots under 
white light irradiation. The partial inactivation of Van-insistent 
bacteria or PB-insistent bacteria occurred under the same condition. 
These results indicated that bioconjugated Pdots were capable of 
selective phototoxicity to specific bacteria. The antibacterial activity 
of bioconjugated Pdots can be due to two mechanisms, including the 
singlet oxygen and other reactive oxygen species in the presence of 
photosensitizer and oxygen under white light irradiation and the 
binding of antibiotic and D-Ala-D-Ala of bacterial cell’s surface.27 
Figure S7 showed that the nanoprobes for eight bacteria have a 
relative selective photo-killing for gram-positive bacteria or gram-
negative bacteria. The obtained variations for eight species in 
relative antibacterial intensities were due to the discrimination of 
bacterial strains and the direct interaction for Pdot and bacterial cells. 
Figure S8 illustrated that in the bioconjugated Pdots concentration 
range of 0-0.12 μmol L-1, the killing efficiency is less than 10%, 
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even with white light illumination. In other word, bioconjugated 
Pdots itself show a good biocompatibility in low concentration.  
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 Figure 6 Photo-killing properties of S. aureus (1.2×105 cfu mL-1) 

and P. aeruginose (1.2×105 cfu mL-1) after incubation with Van-

Pdots (a) and PB-Pdots (b) under white light illumination for 1 hour. 

Functionalised molecules modified onto surface of nanoparticles to 
enhance antimicrobial activities have recently gained academic 
interest. A synthesis of vancomycin-capped Au nanoparticles and 
their enhanced in vitro antibacterial activities that act as a rigid 
polyvalent inhibitor of vancomycin-resistant enterococci have been 
reported.54 Qi et al, demonstrated that vancomycin-modified 
mesoporous silica nanoparticles can efficiently target and kill gram-
positive bacteria preferentially over macrophage-like cells.55 Park et 
al., investigate the antimicrobial activity of conjugates of the peptide 
antibiotic polymyxin B to Au nanoparticles and CdTe quantum 
dots.56 These results show that it is possible to create antimicrobial 
agents using concentrations of functionalized quantum dots that do 
not harm mammalian cells. 

 

Conclusions 

In summary, the Pdots combined with vancomycin or polymyxin B 
is specific and sensitive enough for the trace image and detection of 
bacteria. Because the experimental setup requires only bioprobe, the 
developed approach is simple and cost-efficient, which means that it 
can be employed in the on-site detection of gram-positive bacteria 
and gram-negative bacteria at hospitals, and even homes for food 
safety monitoring. Multifunctional Pdots dispersions also exhibited 
selective antibacterial activity toward gram-positive bacteria and 
gram-negative bacteria. As far as we know, this is the first developed 
multifunctional Pdots that combines recognition, imaging, detection, 
and antimicrobial properties in a single system to offer an effect for 
the selective analysis of bacteria and photo-killing function.   
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Multifunctional semiconducting polymer dots probe, which can detect bacteria with high 

sensitivity and selective damage pathogen. 
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