This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Bifunctional TiO\textsubscript{2} Underlayer for α–Fe\textsubscript{2}O\textsubscript{3} Nanorod based Photoelectrochemical Cells: Enhanced Interface and Ti4+ Doping

Alagappan Annamalaia, Pravin S Shindea,b, Arunprabaharan Subramaniana, Jae Young Kimb, Jin Hyun Kimb, Sun Hee Choib, Jae Sung Leeb and Jum Suk Janga*

A thin, compact TiO\textsubscript{2} underlayer for hematite-based photoelectrochemical cells was prepared by simple spin coating and showed a dramatic increase in device performance and photocurrent density. The introduction of TiO\textsubscript{2} underlayers induced a noticeable change in nanostructure. In contrast to the conventional strategies based on underlayers, the compact TiO\textsubscript{2} underlayers can both act as a charge recombination barrier and also as a source for titanium dopants. One could simply take advantage of fortuitous doping of Sn from FTO into hematite lattice during the activation step, and is converted into intentional doping of Ti4+ from the TiO\textsubscript{2} underlayer into the hematite lattice. Ti4+ doping in hematite lattice is highly probable during sintering of FTO/TiO\textsubscript{2}/α–Fe\textsubscript{2}O\textsubscript{3} photoanodes at 800°C, which has been confirmed by XPS measurements. Based on electrochemical studies, it is evident that the TiO\textsubscript{2} underlayer effectively suppresses charge recombination at the FTO/α–Fe\textsubscript{2}O\textsubscript{3} interface and provides possible Ti4+ doping apart from Sn diffusion from FTO substrates when sintered at high temperatures (800°C). In contrast, only charge recombination was suppressed at lower sintering temperatures (550°C). This is the first report on elemental doping of Ti4+ from the TiO\textsubscript{2} underlayer when sintered at high temperature.

Introduction

Hematite (α–Fe\textsubscript{2}O\textsubscript{3}) is a promising candidate as a semiconductor photoanode for photoelectrochemical (PEC) water splitting due to its favorable band gap (2.2 eV), extraordinary chemical stability and abundance.1-3 However, hematite photoanodes suffer from short hole diffusion length and extremely poor conductivity, which are some of the major drawbacks yet to be overcome.4 One-dimensional (1-D) nanostructures of hematite have shown significantly improved photocurrent densities and can reduce the diffusion problem.5

Charge recombination is another common issue in PECs that limits the device performance.6 Recombination takes place mainly at the transparent conducting oxide (TCO)/electrolyte and TCO/photoanode interfaces.7 It is widely speculated that a dead layer exists near the TCO/photoanode interface, which has a detrimental effect on device performance.8 A way to prevent this is by applying a metal oxide layer (blocking layer) on the TCO surface before the hematite photoanode.9,10 This so-called blocking layer physically blocks the reaction of the photoinjected electrons at the TCO/α–Fe\textsubscript{2}O\textsubscript{3} interface.

The blocking layer concept is attractive not only for PECs, but also in the area of dye sensitized solar cells (DSSCs), where metal oxide thin films successfully prevent charge recombination.11 Suitable metal oxide semiconductors selected as effective blocking layers must have a low resistivity, a high work function, proper band alignment, and high transparency. Ultra-thin underlayers of Nb\textsubscript{2}O\textsubscript{5},9 SiO\textsubscript{2},9,10 Ga\textsubscript{2}O\textsubscript{3},12 ATO13, and TiO\textsubscript{2}9,14 have been reported only for ultrathin hematite photoanodes. The principle behind these ultrathin blocking layers is to block charge recombination at the TCO/hematite interface, and thus improve the water splitting efficiency.9 Among the above-mentioned semiconductor metal oxides, TiO\textsubscript{2} is the most suitable candidate as a blocking layer and has been investigated most frequently in the case of DSSCs.15 Besides the blocking effect, a higher density of TiO\textsubscript{2}, together with a larger contact area and improved adherence between the TiO\textsubscript{2} layer and FTO surface provides better electron pathways from the hematite to FTO substrates, which facilitates electron transfer and subsequently improves the electron transfer and charge collection efficiency.15

Ultra-thin underlayers have been reported only for ultrathin hematite photoanodes since extremely thin (10–40 nm) hematite absorbers are used to minimize charge recombination due to the short diffusion lengths of photoexcited charge carriers.5 In this paper, we demonstrate enhanced photocurrent efficiency with a TiO\textsubscript{2} underlayer for 400-nm α–Fe\textsubscript{2}O\textsubscript{3} nanorod array-type photoanodes, as Ga\textsubscript{2}O\textsubscript{3} underlayers did not show any improvement in PEC properties of 700-nm thick hematite.
photoanodes.12 TiO2 underlayers on FTO substrates were prepared by a simple spin coating method. Spin coating is simple and complementary to atomic layer deposition (ALD), since it does not require a complicated, high vacuum, and expensive system and it is easy to apply for any type of compact metal oxide blocking layers. Enhanced performance in hematite photoanodes (even at low sintering temperature) were observed when TiO2 blocking layers were introduced between the FTO substrate and hematite nanostructures. To the best of our knowledge, none of these underlayers have been investigated for other types of photoanodes other than ultrathin hematite photoanodes; furthermore, none have been treated with high temperature sintering to induce elemental doping from the underlayer. The performance enhancement is attributed mainly to improved interfacial properties at the FTO/TiO2/α–Fe2O3 interface and possible Ti4+ doping taking place from the TiO2 underlayer not associated with Sn diffusion from FTO substrates when sintered at high temperature (800°C). In the following, the hematite photoanodes with a TiO2 underlayer are designated as FTO/TiO2/α–Fe2O3, and those without a TiO2 underlayer are designated as FTO/α–Fe2O3.

Experimental Section

Preparation of TiO2 Underlayers.

Fluorine-doped tin oxide (FTO) glasses (2.2 mm thick, 8 Ω /sq) were cleaned with distilled water and ethanol. For a compact TiO2 underlayer the cleaned FTO glasses were coated with titanium disopropoxide bis(acetylacetonate) solution by the spin-coating (1500 rpm for 30 sec), which was then heated at 250°C for 30 min.

Hydrothermal Synthesis of α–Fe2O3 Photoanodes.

Hematite nanorods on FTO glass and TiO2 modified FTO glass were prepared by a simple hydrothermal method as reported by Vayssieres et al.16 In a typical experiment, a piece of cleaned FTO glass was placed within a vial containing a solution consisting of 0.4 g FeCl3•6H2O and 0.85 g NaNO3 at pH 1.5 (adjusted by HCl). The hydrothermal reaction was conducted at 100°C for 6 h. After cooling down to room temperature, the FTO glass was rinsed several times with distilled water and then dried at 60°C. Annealing at 550°C for 4 h was carried out for the phase transition from β–FeOOH to pure α–Fe2O3. Then the 550°C sintered samples were subjected to high temperature sintering.

Characterization

X-ray diffraction (XRD) patterns of all the samples were collected using an X-ray diffractometer (Rigaku RINT 2500) with CuKα radiation. The surface morphology of the samples was analyzed using field emission scanning electron microscopy (FESEM, JEOL JSM 700F). The oxidation states of dopants were studied using X-ray photoelectron spectroscopy (EscaLab 220-IXL, VG Scientific, monochromated Al Kα). The thickness of TiO2 underlayer films was measured using a spectroscopic ellipsometer (J. A. Woollam Co. M-2000). HR-[S]TEM, Jeol, JEM 2200FS, 200 kV) with electron energy loss spectroscopy (EELS) mapping capabilities has been used to study the elemental doping of Sn and Ti at the National Center for Nanomaterials Technology, Postech, Korea. X-ray absorption fine structure (XAFS) measurements were conducted to investigate local structures of Fe2O3 photoanodes on 7D beamline of Pohang Accelerator Laboratory (PLS-II, 3.0GeV0, Korea). The incident beam was monochromatized using a Si(111) double crystal monochromaters and detuned by 30% to minimizer higher harmonics. The spectra for K-edges of Fe (Eg=7112 eV) were taken in a fluorescence mode at room temperature under helium atmosphere. The obtained data were analysed with Athena in the IFEFFIT 1.2.11 suite of software programs.17

Photoelectrochemical measurements

All photoelectrochemical measurements were carried out in 1M NaOH (pH=13.8) electrolyte using Ivium compactstat potentiostat with a Platinum coil as counter electrode and Ag/AgCl as reference electrode. Photocurrent-potential (J-V) curves were swept at 50 mVs−1 from -0.7 to +0.7 vs. Ag/AgCl. For measuring the incident photon-to-current conversion efficiencies (IPCE), a 300 W xenon lamp (Newport, 6258) was coupled to a grating monochromator (Newport, 74125) operating in the wavelength range from 330 to 600 nm, and the incident light intensity was measured with a UV silicon detector (Newport, 71675). The photoelectrode was biased at +0.6 or +1.0 V (vs. Ag/AgCl) during all IPCE measurements. Impedance spectroscopy measurements were performed using an impedance analyzer (Ivumstat). The impedance spectra were measured over a frequency range of 1×102 to 3×106 Hz at 25°C under open circuit conditions with amplitude of 10 mV and under a bias illumination of 100 mW cm−2.

Results and discussion

Fig. 1. Surface morphology of photoanodes: FTO/α–Fe2O3 nanorods sintered at (a) 550°C, (b) 800°C, and FTO/TiO2/α–Fe2O3 nanorods sintered at (c) 550°C and (d) 800°C.
Fig. 1 (FESEM images) depicts the morphology of hematite nanostructures on a TiO$_2$ underlayer that is distinct from that grown on bare FTO substrates. The FTO/α–Fe$_2$O$_3$ photoanodes in Figs. 1a and 1b possess a similar morphology to that of previous reports. A noticeable change in nanostructure was observed when a compact TiO$_2$ underlayer was introduced between the FTO substrate and α–Fe$_2$O$_3$ nanostructures. FTO/TiO$_2$/α–Fe$_2$O$_3$ photoanodes consist of irregular clusters and possess a similar morphology to that of FTO/α–Fe$_2$O$_3$ photoanodes, shown in Figs. 1c and 1d. The distinct morphology of FTO/TiO$_2$/α–Fe$_2$O$_3$ photoanodes originates from the inclusion of the TiO$_2$ underlayer. The Gibbs adsorption isotherm states that any adsorption phenomenon at the water – oxide interface will decrease the surface tension for nucleation and growth in an aqueous solution. Thus, it is reasonable that the morphology and orientation of FTO/TiO$_2$/α–Fe$_2$O$_3$ photoanodes depends on growth conditions that are expected to change upon introduction of TiO$_2$ underlayers. The considerable difference in the FTO/TiO$_2$/α–Fe$_2$O$_3$ morphology, induced by the TiO$_2$ underlayer, can be explained by a different nucleation and growth process. No diffraction peaks of Ti or other impurity phases other than α–Fe$_2$O$_3$ were observed in both FTO/α–Fe$_2$O$_3$ and FTO/TiO$_2$/α–Fe$_2$O$_3$ photoanodes, as shown in Fig. S1 †.

Fig. 2. (a) Fe K-edge XANES spectra and (b) Fourier-transforms of Fe K-edge EXAFS for FTO/α–Fe$_2$O$_3$ and FTO/TiO$_2$/α–Fe$_2$O$_3$ photoanodes and reference Fe$_3$O$_4$ powder.

Local electronic structures around the Fe atom are all the same, but more ordering is observed for FTO/α–Fe$_2$O$_3$, which is in accordance with the morphology characteristics, as shown in Fig. 2. While the electronic structure was examined with Fe K-edge XANES (X-ray absorption near-edge structure) spectra, the geometrical structure depicting neighboring environment around a central Fe atom could be explored by analyzing the Fe K-edge EXAFS (Extended x-ray absorption fine structure) data. In the Fourier transformed data, the increase in the intensities of the first and the second peaks directly correlates with decreasing the Debye-Waller factor because the coordination numbers of Fe-O (1st shell) and Fe-Fe & Fe-O (2nd shell) are invariant. The Debye-Waller factor, indication of structural disorder, decreases in the sequence of Fe$_3$O$_4$ (powder) > FTO/TiO$_2$/Fe$_3$O$_4$ > FTO/Fe$_3$O$_4$. The materials with lower Debye-Waller factors represent a well ordered atomic structure/arrangement. We observed an increase in Debye-Waller factor for FTO/TiO$_2$/Fe$_3$O$_4$ photoanodes, which might be due to an increase of static disordering resulting from the TiO$_2$ underlayer.

The absence of any indication of Ti or additional peaks in the XRD spectrum and the lack of differences in the Fe K-edge XANES spectra imply that the modifications due to TiO$_2$ underlayers are limited to the FTO/α–Fe$_2$O$_3$ interface. The presence of a TiO$_2$ layer on the surface of FTO substrates was confirmed by UV-vis spectroscopy, as shown in Fig. S2(a) †.

Images derived from TEM and EDS mapping of the hematite showed the presence of Ti across the FTO/α–Fe$_2$O$_3$ interface region (see Fig. S3 †). This is further evidence of the formation of a TiO$_2$ underlayer at the FTO/α–Fe$_2$O$_3$ interface.

X-ray photoelectron spectroscopy (XPS) was employed to elucidate the incorporation of Ti$^{4+}$ dopants from TiO$_2$ underlayer into α–Fe$_2$O$_3$ nanostructures when sintered at 800°C. From the survey scan of XPS, some Ti peaks were observed for the 800°C sintered samples, as shown in Fig. 3a. The 550°C sample does not show any Ti within the detection limit from the surface of the α–Fe$_2$O$_3$ photoanodes, while the 800°C samples showed distinct peaks at 457.9 and 463.7 eV, confirming the presence of Ti$^{4+}$ ions in the α–Fe$_2$O$_3$ nanostructures.

Fig. 4. Typical low-magnification TEM image of FTO/TiO$_2$/α–Fe$_2$O$_3$ photoanodes annealed at 800°C, and its respective elemental mapping images from EELS analysis.
Additional Sn peaks can also be observed for both 550°C and 800°C sintered photoanodes. Sn peaks originated from Sn diffusion from the FTO substrate. When sintered at 800°C, Sn from the FTO substrates is fortuitously doped into the α–Fe₂O₃ photoanodes, a similar intentional Ti⁴⁺ doping is observed for 800°C sintered FTO/TiO₂/α–Fe₂O₃ photoanodes, however further research is needed to confirm this explanation. The elemental mapping images (Fig. 4) show that both the elemental Sn and Ti were uniformly distributed over the α–Fe₂O₃ nanorods. The Ti distribution may not be perfectly uniform, but it’s distributed over the entire nanorod morphology.

Fig. 5 (a) depicts the photocurrent response of FTO/α–Fe₂O₃ and FTO/TiO₂/α–Fe₂O₃ photoanodes sintered at 550 and 800°C in the dark and under illumination. The concentration of the TiO₂ sol determines the thickness of the TiO₂ thin film formed on the surface of the FTO substrates. Based on ellipsometric measurements, the thicknesses of the TiO₂ underlayers for 5 to 25 mM sol concentrations were found to be between 5 and 9 nm, respectively.

Further, the photocurrent increased with increasing TiO₂ sol concentration up to 10 mM, as shown in Figs. S4 and S5 †. At lower TiO₂ sol concentrations, the surface of the FTO substrate was not fully covered, leaving islands of TiO₂. However, a higher concentration resulted in thicker TiO₂ films, a decrease in photocurrent, and an anodic shift of the photocurrent onset potential (Fig. S4 †). Previously observed photo-activity of 550°C sintered hematite nanorods on FTO substrates without a TiO₂ underlayer was poor (0.029 mA/cm² at 1.23 V vs. RHE). However, hematite nanorods with a TiO₂ underlayer sintered at 550°C showed a relatively larger photocurrent of 0.77 mA/cm² compared to that of FTO/α–Fe₂O₃ photoanodes of 0.8 mA/cm² at 1.23 V vs. RHE. Sivula et al. reported that a high temperature sintering process (800°C) called “activation of hematite” is required to enhance the photo-activity of pristine hematite photoanodes. At a 10 mM TiO₂ sol concentration, the FTO/TiO₂/α–Fe₂O₃ photoanodes showed a much higher photocurrent of 1.28 mA/cm² compared to that of FTO/α–Fe₂O₃ photoanodes of 0.8 mA/cm² at 1.23 V vs. RHE, respectively (Fig. S5 †).

For 550°C sintered FTO/TiO₂/α–Fe₂O₃ photoanodes, the improved photocurrent could be due to the suppression of electron back injection from FTO to hematite photoanode leading to better charge collection and higher photocurrent. TiO₂ underlayer acts as a barrier layer preventing the electron recombination at the FTO/α–Fe₂O₃ interface, as TiO₂ has a large conduction band compared to FTO or hematite. It is assumed that the better interfacial properties and the blocking layer effect of FTO/TiO₂/α–Fe₂O₃ photoanodes enhances electron transport and charge collection. However, the exact nature of the underlayers for improved PEC performance is still unclear and needs further detailed studies. On the other hand, for FTO/TiO₂/α–Fe₂O₃ photoanodes sintered at 800°C, enhanced electron transport properties due to Ti⁴⁺ doping is highly probable. A similar fortuitous doping is highly probable when FTO/TiO₂/α–Fe₂O₃ photoanodes were sintered at 800°C for hematite activation. From Fig. 6, a decrease in dark
current is observed for 550 and 800°C sintered FTO/TiO\(_2\)/α–Fe\(_2\)O\(_3\) photoanodes compared to FTO/α–Fe\(_2\)O\(_3\) photoanodes at similar sintering conditions. Such variation in dark current may be attributed to improvements in electron transport properties at the FTO/TiO\(_2\)/α–Fe\(_2\)O\(_3\) interface by blocking the electron back transfer from hematite to the FTO conducting substrates.\(^2\)

![Nyquist plots of FTO/α–Fe\(_2\)O\(_3\) and FTO/TiO\(_2\)/α–Fe\(_2\)O\(_3\) photoanodes sintered at 550 and 800°C using 1 M NaOH under 1-sun illumination conditions. The inset of the Nyquist plot represents the equivalent circuit for EIS.](image)

Additional incident photon-to-current-efficiency (IPCE) measurements were carried out for 800°C sintered FTO/α–Fe\(_2\)O\(_3\) and FTO/TiO\(_2\)/α–Fe\(_2\)O\(_3\) photoanodes, as shown in Fig. 5b, to evaluate the spectral response for water splitting between 300 to 650 nm at 1.4 V RHE. In comparison to FTO/α–Fe\(_2\)O\(_3\), the FTO/TiO\(_2\)/α–Fe\(_2\)O\(_3\) photoanodes showed higher IPCE values in the whole visible spectrum, indicating higher quantum yield for TiO\(_2\) underlayer samples. Further, the FTO/TiO\(_2\)/α–Fe\(_2\)O\(_3\) photoanodes demonstrate an IPCE as high as 23.3% at 340 nm for 1.4 V vs. RHE. This IPCE result indicates a positive effect of TiO\(_2\) underlayers on water splitting efficiency.

| Table 1. Output of the Equivalent Circuit Model for the FTO/α–Fe\(_2\)O\(_3\) and FTO/TiO\(_2\)/α–Fe\(_2\)O\(_3\) photoanodes annealed at 550 and 800°C using 1M NaOH, under 1 sun standard illumination conditions from the Nyquist plot. |
|----------------|----------------|----------------|----------------|----------------|
| (R/Ω) (CPE/F) | FTO/α–Fe\(_2\)O\(_3\) (550°C) | FTO/TiO\(_2\)/α–Fe\(_2\)O\(_3\) (550°C) | FTO/α–Fe\(_2\)O\(_3\) (800°C) | FTO/TiO\(_2\)/α–Fe\(_2\)O\(_3\) (800°C) |
| R\(_S\) | 28.3 | 14.1 | 39.5 | 24.2 |
| R\(_{CT1}\) CPE\(_1\) | 1.03 x 10\(^5\) | 7.21 x 10\(^4\) | 1.39 x 10\(^5\) | 1.86 x 10\(^5\) |
| R\(_{CT2}\) CPE\(_2\) | 5.97 x 10\(^4\) | 9.35 x 10\(^3\) | 2.72 x 10\(^4\) | 3.55 x 10\(^4\) |

Using electrochemical impedance spectroscopy (EIS), the charge transport kinetics and the interfacial properties of both 550 and 800°C sintered FTO/α–Fe\(_2\)O\(_3\) and FTO/TiO\(_2\)/α–Fe\(_2\)O\(_3\) photoanodes were studied. The improvement in electrical contact between the FTO substrate and hematite nanostructure can be experimentally deduced from the EIS measurement.\(^3\)

All EIS spectra were fitted using ZView software with the equivalent circuit shown in Fig. 7. In brief, from Table 1 (Fig. S6 †), the sheet resistance (R\(_S\)) is reduced from 29 to 15 Ω for 550°C and 40 to 25 Ω for 800°C sintered photoanodes. A lower R\(_S\) indicates that the conductivity of FTO/TiO\(_2\)/α–Fe\(_2\)O\(_3\) is higher compared to that of the FTO/α–Fe\(_2\)O\(_3\) photoanodes. The charge transport resistance at the FTO/TiO\(_2\) interface (R\(_{CT1}\)) decreased with the TiO\(_2\) underlayer from 516 to 39 Ω for 550°C and 98 to 59 Ω for 800°C sintered photoanodes, while charge transport resistance of the α–Fe\(_2\)O\(_3\) and the α–Fe\(_2\)O\(_3\)/electrolyte interface decreased from 5978 to 991 Ω for 550°C and 113 to 45 Ω for 800°C sintered photoanodes for FTO/TiO\(_2\)/α–Fe\(_2\)O\(_3\), respectively. The charge transport resistance value (R\(_{CT1}\)) was drastically reduced after introducing the TiO\(_2\) underlayer (for both 550 and 800°C sintering), suggesting that the interfacial resistance at the FTO/α–Fe\(_2\)O\(_3\) interface was significantly reduced. This decrease in R\(_{CT1}\) could be attributed to improved adhesion between the hematite nanostructures and FTO substrate by incorporating a TiO\(_2\) underlayer and reduced electron-charge recombination via effective charge collection. A dramatic decrease in R\(_{CT2}\) was observed for 800°C sintered FTO/TiO\(_2\)/α–Fe\(_2\)O\(_3\) photoanodes compared to 550°C sintered FTO/TiO\(_2\)/α–Fe\(_2\)O\(_3\) photoanodes, indicating that there is an increase in the number of charge carriers with Sn diffusion into the hematite lattice for 800°C sintered FTO/α–Fe\(_2\)O\(_3\) photoanodes. Further, elimination of the dead layer at the FTO/α–Fe\(_2\)O\(_3\) interface occurs as a result of Ti\(^{4+}\) doping for FTO/TiO\(_2\)/α–Fe\(_2\)O\(_3\) photoanodes. Fortuitous doping of Sn from FTO into hematite lattice observed during the activation step.\(^23,24\) is successfully converted into an intentional doping of Ti\(^{4+}\) from the TiO\(_2\) underlayer into the hematite lattice, which is highly probable at 800°C sintering conditions.

![Scheme 1. Schematic representation of TiO\(_2\) underlayer effect on hematite photoanodes.](image)

(a) and (b) FTO/α–Fe\(_2\)O\(_3\) sintered at 550 and 800°C, (c) and (d) FTO/TiO\(_2\)/α–Fe\(_2\)O\(_3\) sintered at 550 and 800°C, respectively.
In addition, a higher Debye-Waller factor was observed for 800°C sintered FTO/TiO$_2$/α–Fe$_2$O$_3$ photoanodes, the most probable cause might be the presence of structural disordering with Ti$^{4+}$ doping due to introduction of an interfacial TiO$_2$ underlayer. Thus, both the suppression of electron back injection from FTO to the hematite and interfacial doping of Ti$^{4+}$ during high temperature sintering seem to be likely reasons for improved performance of the TiO$_2$ underlayer photoanodes, while only suppression of electron back injection from FTO to hematite for 550°C sintered FTO/TiO$_2$/α–Fe$_2$O$_3$ photoanodes occurs, as explained in Scheme 1. In order to investigate whether there is a similar effect on surface treated FTO/α–Fe$_2$O$_3$ photoanodes, we compared the surface treated samples with bare FTO/α–Fe$_2$O$_3$ photoanodes, as shown in Fig. S7 †. We observed a mild increase in photocurrent as well as an undesired anodic shift in the onset potential of Ti-doped FTO/α–Fe$_2$O$_3$ photoanodes. Thus, the TiO$_2$ underlayer effect is far superior to that of TiO$_2$ surface treated FTO/α–Fe$_2$O$_3$ photoanodes.

Conclusions

In summary, simple spin coating was used to prepare thin, compact TiO$_2$ blocking layers on FTO substrates as an alternative to the complex ALD method. By varying the TiO$_2$ sol concentration, we optimized the TiO$_2$ compact layers for use as underlayers. We also conclude that the TiO$_2$ underlayer significantly alters the morphology of hematite 1-D nanostructures. Fortuitous doping of Sn from FTO into hematite lattice during the activation step, is successfully converted into intentional doping of Ti$^{4+}$ from the TiO$_2$ underlayer into the hematite lattice has been confirmed by XPS measurements. We showed that the TiO$_2$ underlayer dramatically enhances the PEC water oxidation performance. This performance enhancement was a combination of improved interfacial properties (FTO/TiO$_2$/α–Fe$_2$O$_3$) and intentional Ti$^{4+}$ doping into α–Fe$_2$O$_3$ apart from Sn diffusion from FTO substrates at high temperature, while only improved interfacial properties (FTO/TiO$_2$/α–Fe$_2$O$_3$) at low temperature sintering conditions. These improvements result in excellent charge transport and collection efficiency. This the first report on the effect of TiO$_2$ underlayers for thicker hematite nanorods rather than the ultrathin hematite photoanodes widely used.

Acknowledgements

This research was supported by the Basic Science Research Programs through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A6A3A04038530), and by research funds of Chonbuk National University in 2014.

Notes and references

* Division of Biotechnology, Advanced Institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Republic of Korea

† Electronic Supplementary Information (ESI) available: [Detailed characterization of TiO$_2$ underlayers (XRD, UV and TEM-EDS) and TiO$_2$ underlayer optimization for PEC cells]. See DOI: 10.1039/c000000x/

The TiO₂ underlayer effectively suppresses charge recombination at the FTO/α-Fe₂O₃ interface and allows Ti⁴⁺ doping apart from Sn diffusion from FTO substrates when sintered at high temperatures (800°C), thus enhancing the charge transport and collection while only charge recombination is suppressed at lower sintering temperatures (550°C).