Journal of Materials Chemistry A

^{Journal of}
Materials Chemistry A

Synthesis and Photocatalytic Properties of Metastable β-Bi2O3 Stabilized by Surface-Coordination Effects

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Synthesis and Photocatalytic Properties of Metastable β-Bi2O3 Stabilized by Surface-Coordination Effects

Hai-Ying Jiang*a, b***, Peng Li***^a* **, Guigao liu***^a* **, Jinhua Ye****a, c* **, and Jun Lin****^b*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX ⁵**DOI: 10.1039/b000000x**

Metastable semiconductor, β -Bi₂O₃, was successfully synthesized with the precursor of Bi₂O₂CO₃ in this study, which showed much higher photocatalytic activity in the photooxidation of isopropyl alcohol (IPA) than thermal stable α-Bi₂O₃. The prepared samples were characterized by X-ray diffraction (XRD), field

- 10 emission scanning electron microscope (FE-SEM), and high-resolution transmission electron microscope (HRTEM). Based on the previous study, a surface $CO₃²$ coordination effect was proposed to understand the formation mechanism of $β$ -Bi₂O₃ at room temperature. This speculation was supported by the surface chemical states' differences between α - and β -Bi₂O₃, which were studied by Fourier transform infrared spectroscope (FT-IR), X-ray photoelectron spectroscope (XPS) and thermogravimetric-differential thermal
- 15 analysis (TG-DTA). Meanwhile, the energy band structures of α and β -Bi₂O₃ were measured with ultraviolet-visible diffuse reflection spectrascope (UV-vis DRS) and valence band X-ray photoelectron spectroscope (VB-XPS); the electronic structures were calculated using the plane-wave density functional theory (DFT) with the CASTEP program package. At last, the photo-induced charge separation efficiency and photocarriers' lifetime of α -Bi₂O₃ and β -Bi₂O₃ were studied by steady state and dynamic

 20 photoluminescence (PL). Based on the results, the higher photocatalytic activity of β-Bi₂O₃ than that of α -Bi₂O₃ was attributed to its higher visible light harvest, the formation of O₂ with strong oxide ability, higher charge separation efficiency, and larger surface areas.

1. INTRODUCTION

- ²⁵In the past decades, semiconductor photocatalysis attracted increasing attentions as a potential green technology to solve environmental pollution and energy shortage¹. TiO₂, as the most known photocatalysts², has been extensively studied in the applications of the environmental cleaning and energy conversion
- ³⁰due to its unique properties, such as chemical inertness, strong oxide ability, long-term stability against photo & chemical corrosion, cost effectiveness, and nontoxic². However, the relatively wide band gap (3.2 eV) limits its photo-absorption to the only UV-light, hindering its practical applications in our daily life³.
- 35 As a result, a serious of narrow band-gap semiconductors (≤ 3.0) eV) have been developed to realize the efficient utilization of visible light, which accounts for about 40 % of the total sunlight⁴⁻⁶. $Bi₂O₃$ crystals have been demonstrated to be a family of potential photocatalysts due to their appropriate band gaps⁷.
- 40 Bi₂O₃ has six polymorphic forms, monoclinic α phase , tetragonal β- phase, body-centered cubic γ- phase, face-centered cubic δ- phase, tetragonal ε- phase, and triclinic ω- phase. Among them, $α$ - phase is the most stable phase at room temperature; δphase is the stable phase at high temperature (730 $^{\circ}$ C - 825 $^{\circ}$ C); the
- 45 other four phases, i. e. β, γ, ε, and ω- phase, are metastable phase⁸.

It was found that photocatalysts with different crystal structures show quite different photocatalytic performances⁹. The previous study shows that α -Bi₂O₃, β -Bi₂O₃ and δ -Bi₂O₃ exhibit good photocatalytic activities in the degradation of pollutants⁷. Up to 50 now, α-Bi₂O₃ was mostly studied because of its thermal stability and easy preparation $10-13$. However, the most active polymorph was proved to be β -Bi₂O₃^{7, 14-16}. Since it is a metastable phase, much less research was reported. In the recent literatures, $β$ -Bi₂O₃ was successfully prepared by using $Bi_2O_2CO_3$ as a precursor⁷.

⁵⁵Nevertheless, the formation mechanism is still unclear, and it's difficult to controllably stabilize this metastable phase at room temperature. Therefore, it is important and meaningful to address this issue through a detailed research on the formation mechanism of $β$ -Bi₂O₃ at room temperature.

 60 In this study, $α$ -Bi₂O₃ and $β$ -Bi₂O₃ were selectively synthesized with the same precursor of $Bi₂O₂CO₃$ under different calcination temperatures. The prepared samples were characterized by X-ray diffractometer (XRD), field-emission electron microscope (FE-SEM) and high-resolution transmission electron microscope ⁶⁵(HRTEM). The energy band structures of the samples were studied by the UV-visible diffuse reflectance spectroscopy (UV-vis DRS), valence band X-ray photoelectron spectroscopy (VB-XPS), combined with the theoretical calculations. The photocatalytic properties were studied by the oxidation of IPA over α -Bi₂O₃ and

 β -Bi₂O₃ under visible light irradiations. The formation mechanism of β -Bi₂O₃ at room temperature was studied by the surface chemical states' differences of α -Bi₂O₃ and β-Bi₂O₃, using Fourier transform infrared (FT-IR) spectrophotometer, X-ray

- 5 photoelectron spectroscope (XPS) and thermogravimetric-differential thermal analysis (TG-DTA). At last, the photo-induced charge separation efficiency and photocarriers' lifetime of α -Bi₂O₃ and β-Bi₂O₃ were studied by steady state and dynamic photoluminescence (PL), which are important and
- ¹⁰meaningful for explaining the higher photocatalytic activity of $β$ -Bi₂O₃ than α-Bi₂O₃ in the photooxidation of isopropyl alcohol (IPA).

2. EXPERIMENTAL SECTION

2.1 Material Preparation.

- 15 α-Bi₂O₃ and β-Bi₂O₃ were synthesized with Bi₂O₂CO₃ as the precursor. A typical preparation procedure of $Bi₂O₂CO₃$ was as follows¹⁷: Firstly, 5.21g of Bi $(NO₃)₃ \cdot 5 H₂O$ was dissolved in 27 mL of dilute $HNO₃$ (1 M), while 6.78 g of $Na₂CO₃$ was dissolved in 107 mL of ultrapure water; Secondly, the $Na₂CO₃$ solution was
- $_{20}$ added into the Bi $\rm (NO₃)₃$ solution dropwise under constant stirring. At this step, large amounts of white precipitate was formed; Next, the suspension was stirred for 15 minutes, and further maintained at 60° C for 12 hours without stirring; Finally, the product was collected and washed with ultrapure water and ethanol several
- 25 times before being dried at 60 °C for 6 hours. Here, $Bi_2O_2CO_3$ was successfully prepared. In order to get α -Bi₂O₃ and β -Bi₂O₃, the prepared $Bi_2O_2CO_3$ was heated to 400 °C and 350 °C respectively with a rate of 10° C·min⁻¹, and remained for 30 minutes.

2.2 Sample Characterizations.

- 30 The crystal structures of the precursor and $Bi₂O₃$ samples were determined with an X-ray diffractometer (X'pert Powder, PANalytical B. V., Netherlands) with Cu - Kα radiation. Field-emission electron microscope (FE-SEM) was performed to observe the morphologies on a JEOL 6701F microscope.
- ³⁵High-resolution transmission electron microscope images were recorded with a high-resolution transmission electron microscope (HRTEM, Tecnai G2F30). The diffuse reflection spectra were measured with an integrating sphere equipped ultraviolet-visible (UV-vis) recording spectrophotometer (UV-2500PC, Shimadzu
- 40 Co., Japan) using BaSO₄ as reference and the optical absorption spectra were converted from the diffuse reflection spectra according to the Kubelka-Munk equation. The specific surface areas were determined with a surface analyzer (BEL Sorp-mini II, BEL Japan Co., Japan) through nitrogen adsorption and desorption
- ⁴⁵isotherms at 77K by the Brunauer-Emmett-Teller (BET) method. The FT-IR spectra were obtained with a Fourier transform-infrared (FT-IR) spectrophotometer (IRPrestige-21, Shimadzu Co., Japan). X-ray photoelectron spectroscopy (XPS) was performed on an ESCALAB 250Xi spectrometer equipped with 300W Al Kα
- ⁵⁰radiation, while all binding energies were referenced to the C1s peak (284.6 eV) of the surface adventitious carbon. Thermogravimetric-differential thermal analysis (TG-DTA; Shimadzu, DTG-60H, Japan) was used to study the details in the calcination process of $Bi₂O₂CO₃$ at different temperatures. Steady ⁵⁵state and dynamic PL of samples were measured using an
- excitation wavelength of 325 nm diode laser, respectively, on a

2.3 Photocatalytic oxidations of IPA.

- ⁶⁰The photocatalytic oxidations of gaseous IPA were carried out to evaluate the photocatalytic activities of $Bi₂O₃$ samples. The experiments were carried out under visible light irradiation $(420 \text{nm} \le \lambda \le 800 \text{nm})$. The light source was a 300 W Xe-arc lamp (10 A imported current, focused through a 50×50 mm² shutter 65 window) equipped with wavelength cut-off filters and a water filter. 100 mg of $Bi₂O₃$ powder was bespread uniformly on a glass dish with an area of 9 cm². A certain amount of gaseous IPA (\sim 1400 ppm) was injected into the vessel and kept for 2 hour in the dark before irradiations. During the irradiation by visible light, 0.5 ml ⁷⁰of the gas was sampled everyone 1 hour intervals. The products
- were analyzed with a gas chromatograph (GC-2014, Shimadzu, Japan) with a flame ionization detector (FID). Furthermore, the adsorption of IPA in dark over α -Bi₂O₃ and β -Bi₂O₃ were also carried out without light irradiation, as well as the self-degradation 75 of IPA under visible light irradiation (420nm $\leq \lambda \leq 800$ nm) without any catalyst.

2.4 Theoretical Calculation.

The band structures of α - and β -Bi₂O₃ were calculated using the plane-wave density functional theory (DFT) with the CASTEP ⁸⁰program package. The core electrons were replaced by ultrasoft pseudopotentials with a plane-wave basis cutoff energy of 380.0 eV, and the interactions of exchange and correlation were treated within the framework of the local density approximation (LDA). The FFT grids of basis in all the models were $40 \times 54 \times 48$ and 54 $s_5 \times 54 \times 40$ for α -Bi₂O₃ and β -Bi₂O₃, respectively. The k-point sets of $3 \times 2 \times 2$ for α - Bi₂O₃ and $2 \times 2 \times 2$ for β -Bi₂O₃ were used.

3. RESULTS AND DISCUSSIONS

3.1 Crystal structures.

The crystallographic phases of the prepared $Bi₂O₃$ and precursor ⁹⁰samples were characterized by X-ray diffraction (XRD). As described in Fig. 1, the precursor shows a good single orthorhombic crystal phase of $Bi₂O₂CO₃$, and all the peaks are accordance with the standard database $(ICSD No. 70-8631)^{18}$. When the precursor was calcined for 30 minutes at 350 $^{\circ}$ C, the 95 crystal changed to $β$ -Bi₂O₃ in tetragonal crystal corresponding to the ICSD file of No. $27-0050^{19}$. With an increase of the calcination temperature to 400 °C, the crystal gradually changed to α -Bi₂O₃

Fig. 1 XRD patterns of $Bi_2O_2CO_3$, α - Bi_2O_3 and β - Bi_2O_3

5

35

Fig. 2 Schematic crystal structures of $Bi_2O_2CO_3$, α - Bi_2O_3 and $β$ -Bi₂O₃

after 30 minutes. All the diffraction peaks could approximately be indexed to a monoclinic α -Bi₂O₃ (ICSD No. 41-1449)¹⁹. The schematic crystal structures of $Bi_2O_2CO_3$, β-Bi₂O₃ and α-Bi₂O₃^{18,} ¹⁹ were displayed in Fig. 2. Therefore, α -Bi₂O₃ and β-Bi₂O₃ can be

10 selectively prepared by $Bi_2O_2CO_3$ at different calcination temperatures.

The crystal structures of the precursor and $Bi₂O₃$ samples were further confirmed by field-emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy.

- 15 From Fig. 3, we can see that $Bi₂O₂CO₃$ precursor is constituted by large amounts of nanosheets [Fig. 3 (A)]; $β$ -Bi₂O₃ sample is composed of the nanosheets and smaller nanoparticles [Fig. 3 (B)]; α -Bi₂O₃ sample mainly consists of the nanoparticles with the size of about 300 nm [Fig. 3 (C)]. The morphology changes of the
- $_{20}$ samples probably results from the decomposition of $Bi₂O₂CO₃$ precursor²⁰. As exhibited in Fig. 3 (D), two sets of orthorhombic fringes with the lattice spacing of 0.293 nm and 0.278 nm could be indexed to the (103) and (110) planes of orthorhombic $Bi_2O_2CO_3$. Fig. 3 (E) shows that the lattice space is measured to be 0.295 nm,
- ²⁵matching with the space of the (211) crystal plane of tetragonal β -Bi₂O₃. From Fig. 3 (F), the lattice with a space of 0.332 nm is observed, which is corresponded to the (111) planes of monoclinic α -Bi₂O₃. In addition, the BET surface areas of α -Bi₂O₃ and β -Bi₂O₃ were measured to be 3.6 and 4.5 m²/g, respectively.

³⁰**3.2 Energy band structures.**

The UV-vis absorption spectra of α -Bi₂O₃ and β -Bi₂O₃ samples are

Fig. 3 SEM and HRTEM of $Bi_2O_2CO_3$ [(A) and (D)], α - Bi_2O_3 [(B) and (E)] and β -Bi₂O₃ [(C) and (F)].

Fig. 4 UV-vis absorption spectra of the as-prepared α -Bi₂O₃ and β -Bi₂O₃; The inset is the corresponding Tauc Plots curves.

⁴⁰ **Fig. 5** Calculated band structures of α -Bi₂O₃ (A) and β -Bi₂O₃ (B).

displayed in Fig. 4, and both of the samples show high visible light responses. The absorption edges of α -Bi₂O₃ and β -Bi₂O₃ are about 430 nm and 520 nm, respectively. The band gaps (E_g) of α -Bi₂O₃ 45 and β-Bi₂O₃ are determined by the following equation²¹ (Tauc equation):

$(ahv)^n = A(hv - E_g)$

In this equation, α , ν , A and E_g are the absorption coefficient, light frequency, proportionality constant, and band gap. The value of the ⁵⁰index *n* depends on the property of the materials: for the direct band-gap semiconductors, $n = 2$; for the indirect band-gap semiconductors, $n = 1/2^{22}$. According to the electronic structures calculation of α -Bi₂O₃ and β -Bi₂O₃, α -Bi₂O₃ is an indirect semiconductor [Fig. 5 (A)], and β -Bi₂O₃ is a direct semiconductor 55 [Fig. 5 (B)]. Therefore, the value of n is determined to be $1/2$ for α -Bi₂O₃, while it is 2 for β -Bi₂O₃. Based on the results, we can get the Tauc plots of $(ahv)^n$ *vs.* photo energy, as shown in the inset of Fig. 4. The band gaps of α -Bi₂O₃ and β -Bi₂O₃ are estimated from the tangent lines to be 2.82 eV and 2.55 eV, respectively. The ω calculated band gaps of α -Bi₂O₃ and β -Bi₂O₃ in Fig. 5 are 2.08 eV and 1.76 eV, which are smaller than the experimental value. This difference may be caused by the limitation of the LDA functional that underestimates the band gaps in semiconductor simulation. Both the experimental and theoretical results show that $β$ -Bi₂O₃ 65 possesses a narrower band gap than α -Bi₂O₃, and the narrower

band gap indicates a higher visible light absorption. Furthermore, VB-XPS were also carried out to study the energy band structures of α -Bi₂O₃ and β -Bi₂O₃. As shown in Fig. 6, the

energy differences between the Fermi levels and the valence bands π of α-Bi₂O₃ and β-Bi₂O₃ are almost the same, and the value is + 1.35 eV. According to the earlier literatures, the Fermi levels of α-Bi₂O₃ and β-Bi₂O₃ are + 1.73 eV²³ and + 0.54 eV²⁴, respectively. Combining the energy differences between the Fermi levels and the valence bands, the value of the Fermi levels, and the band gaps

 σ ₂₅ of α-Bi₂O₃ and β-Bi₂O₃, we can get their detailed energy band

Fig. 6 VB-XPS spectra of α -Bi₂O₃ and β -Bi₂O₃

Table 1 Energy band structures of α-Bi2O³ and β-Bi2O³

	Band Gap (eV)	Valence Band (eV vs. NHE)	Conduction Band (eV vs. NHE)	Fermi Level (eV vs. NHE)
$\alpha - Bi_2O_3$	2.82	$+3.08$	$+0.26$	$+1.73$
$\beta - Bi_2O_3$	2.55	$+1.89$	-0.66	$+0.54$

structures, as shown in Table 1.

5

3.3 Effect of CO_3^2 ⁻ on the stability of β-Bi₂O₃.

To understand the formation mechanism of β -Bi₂O₃, FT-IR and ¹⁰XPS measurements were used to study the surface conditions of α -Bi₂O₃ and β -Bi₂O₃.

For the FT-IR spectra [Fig. 7 (A)] of β -Bi₂O₃, the intensive peaks at about 850 cm⁻¹ and 1395 cm⁻¹ can be attributed to the v_2 and v_3 mode of CO_3^2 . These vibration peaks of CO_3^2 are possibly

15 generated from the residual carbonate on the surface of β -Bi₂O₃ [350 °C, Fig. 7 (B)]. All the peaks derived from CO_3^2 have sharply decreases in the IR spectra with the increase of the calcination temperatures, and the XRD pattern in Fig. 7 (B) shows that the prepared samples calcined at 400 $^{\circ}$ C, 450 $^{\circ}$ C, and 500 $^{\circ}$ C, are 20 monoclinic α -Bi₂O₃. In addition, the intensity decrease of the peaks derived from CO_3^2 means that CO_3^2 contents on the surface

of $Bi₂O₃$ decreases as the calcination temperature increases²⁵

To get more detailed information of the surface chemical states and compositions of the elements in the prepared α -Bi₂O₃ and

- 25 β-Bi₂O₃, XPS analysis were carried out. From Fig. 8 (A), the presence of Bi, O and C were revealed in the survey spectra of α -Bi₂O₃ and β -Bi₂O₃. Then firstly, two types of carbon were found in Fig. 8 (B), and they are attributed to the surface adventitious carbon and the carbon in $CO₃²$ group^{25, 26}. The percentage of
- ³⁰ carbon for CO₃² in β-Bi₂O₃ is determined to be 29 %, while it is a little less in α -Bi₂O₃ (26 %). Next, from Fig. 8 (C), the two characteristic peaks of Bi^{3+} in both α - Bi_2O_3 and β - Bi_2O_3 were observed and ascribed as $Bi4f_{5/2}$ and $Bi4f_{7/2}^{27}$. We can also see that the two peaks of β -Bi₂O₃ with slightly higher energy than those of
- 35 α -Bi₂O₃. This is probably because of more CO₃² exists on the surface of β -Bi₂O₃. At last, the XPS peaks of O1s were displayed in Fig. 8 (D). According to the earlier literatures, the three peaks were attributed to the oxygen in H - O - H^{28} , $CO₃²⁻²⁹$ and Bi - O -Bi²⁷. Similarly to Fig. 8 (B), the oxygen for CO_3^2 in β-Bi₂O₃ (52 %) ⁴⁰ is also more than that in α -Bi₂O₃ (44 %).

Therefore, the XPS results also prove that the $CO₃²$ on the surface of β -Bi₂O₃ is more than that of α -Bi₂O₃, which is the same

Fig. 7 FT-IR (A) and XRD (B) spectra of the samples decomposed 45 by $Bi_2O_2CO_3$ precursor at different temperatures.

with the FT-IR results.

.

It is known that, β -Bi₂O₃ is only stable at about 650 °C, and it will transform to α -Bi₂O₃ when it is cooled down to room ⁵⁰ temperature⁸. However, as mentioned previously, β -Bi₂O₃ can often be successfully prepared by heating $Bi_2O_2CO_3$ at low temperature and stable at room temperature. We can't help to ask, what factors make it stable at room temperature. In the earlier literatures⁹, the surface-coordinated organic ligands were proved 55 to be effective to lower the surface energy of NaNbO₃ and induce the formation of cubic $NaNbO₃$, which is also a metastable phase. Based on this explanation, the similar speculation is proposed in this paper. $Bi_2O_2CO_3$ crystal can be gradually decomposed when it is heated to the temperature of that higher than 308 °C. In this ⁶⁰process, the carbonate ions in its crystal structures will move out from the interior to the surface, and then leave the body of the $Bi₂O₂CO₃$ crystals, releasing $CO₂$. When the temperature is not high enough (350 °C), there will be some $CO₃²$ left on the surface of Bi_2O_3 crystals, inducing the formation of the metastable β - Bi_2O_3 ; ⁶⁵However, when the calcination temperature was increased to higher temperature (400 °C or above), less CO_3^2 will be left on the surface of β -Bi₂O₃ crystals after 30 minutes. In this case, the left surface-coordinated CO_3^2 is not enough to keep the crystal structure of β -Bi₂O₃, inducing the crystal structure transformation ⁷⁰ to thermal stable α -Bi₂O₃ (As shown in Scheme 1). In other words, the surface-coordinated CO_3^2 can lower the surface energy of β -Bi₂O₃, and make it stable at room temperature. In addition, the speculation was further studied by TG-DTA to confirm this decomposition detail of the $Bi_2O_2CO_3$ precursor in the calcination 75 process. From the TGA spectra in Fig. 9, about 8 % weight losses are both observed in the two different calcination processes

Fig. 8 XPS spectra of (A) survey; (B) C1s; (C) Bi4f; (D) O1s for α -Bi₂O₃ and β -Bi₂O₃.

Scheme 1 Schematic diagram of the decomposition process to form β -Bi₂O₃ and α-Bi₂O₃.

- 10 (350 °C and 400 °C for 30 min), corresponding to the theoretical weight loss (8.6%) due to the removal of $CO₂$. We also observe that the weight loss at 400 \degree C for 30 min is slightly more than that at 350 °C for 30 min, which indicates that more $CO₃²$ was removed for forming α -Bi₂O₃. As the DTA curves, accompanied
- ¹⁵with the weight loss processes of the TGA curves, there are a thermonegative peak and a thermopositive peak during the formation process of α -Bi₂O₃, while there are only one thermonegative peak during the formation process of β -Bi₂O₃. The common thermonegative peak (peak 1) of the two processes is
- 20 attributed to the decomposition of $Bi_2O_2CO_3$ and the formation of β -Bi₂O₃, and the thermopositive peak (peak 2) in the formation process of α -Bi₂O₃ is due to the transformation from β-Bi₂O₃ to α -Bi₂O₃²⁰. Therefore, the TG-DTA results well explain the detailed decomposition process of $Bi_2O_2CO_3$ to β - Bi_2O_3 and α - Bi_2O_3 at ²⁵different calcination temperatures.

3.4 Photocatalytic oxidation of IPA.

The photocatalytic activities of both α -Bi₂O₃ and β -Bi₂O₃ were evaluated by the oxidation of gaseous IPA under visible light irradiation. In the IPA oxidation, the production of acetone, the

- ³⁰unique observed product, was as the main index to judge the reaction activities. After 8 hours' irradiation by visible light $(420 \text{nm} \le \lambda \le 800 \text{nm})$, the acetone productions over α -Bi₂O₃ and $β-Bi₂O₃$ samples were determined to be 1045 ppm and 485 ppm, respectively, while the negligible acetone was produced from IPA
- 35 under visible light irradiation in the absence of any catalyst [Fig. 10]. Obviously, $β$ - $Bi₂O₃$ shows higher photocatalytic activity in the oxidation of IPA than α -Bi₂O₃. Meanwhile, the adsorption of IPA by α -Bi₂O₃ and β -Bi₂O₃ samples in the dark was also carried out.

 40 Fig. 9 TG-DTA of the Bi₂O₂CO₃ calcined at 350 °C and 400 °C for 30 min.

- The results show that the acetone production was negligible under these conditions. The difference in the photocatalytic activity 45 between α -Bi₂O₃ and β -Bi₂O₃ is probably attributed to their different band gaps. Since $β$ -Bi₂O₃ has a narrower band gap than α -Bi₂O₃, it can absorb more visible light in a wider region, implying higher photocatalytic activity under visible light irradiation.
- It was reported that, IPA can be photocatalytic oxidized through two typical reaction processes as below³⁰:

 (1) h⁺ oxidation: $CH_3CHOHCH_3 + h^+ \rightarrow CH_3COCH_3 + 2H^+ + e^-$

55 (2) O₂ oxidation: $CH_3CHOHCH_3 + e^- + O_2 + H^+ \rightarrow CH_3COCH_3 + HO^- + H_2O$

Between them, since O_2 will be produced in the O_2 oxidation ⁶⁰ process^{31, 32}, α-Bi₂O₃ can only oxide the IPA molecular to acetone through h^+ oxidation process, due to its low conduction band $(+)$ 0.26 V *vs.* NHE). Meanwhile, $β-Bi₂O₃$ can realize the IPA oxidation to acetone through both the two processes because of its higher conduction band potential (- 0.66 V *vs.* NHE) than the oxide ϵ reaction of O₂ to O₂ (- 0.33 V *vs.* NHE). This is another important reason of that $β$ - $Bi₂O₃$ shows much higher photocatalytic activity than α -Bi₂O₃. The differences of the photocatalytic oxidation mechanism of the IPA to acetone by α -Bi₂O₃ and β -Bi₂O₃ are described detailedly in Scheme 2.

Fig. 10 Photocatalytic oxidation of gaseous IPA over α -Bi₂O₃ and $β$ -Bi₂O₃ under different conditions.

70

 $\alpha - Bi_2O_3$

Scheme 2 Photocatalytic oxidation of gaseous IPA over α -Bi₂O₃ and β -Bi₂O₃ under different conditions.

- At last, the photo-induced charge separation efficiency and photocarriers' lifetime of α -Bi₂O₃ and β-Bi₂O₃ were studied by steady state and dynamic photoluminescence [Fig. 11 (A) and (B)]. It is clearly observed in Fig. 11 (A) that both α -Bi₂O₃ and β -Bi₂O₃ exhibits significant emission peaks, which are related to the
- 10 photocarriers' recombination of them. In these spectra, the PL intensity of β -Bi₂O₃ is much lower than that of α -Bi₂O₃, which indicates that β -Bi₂O₃ shows higher photo-induced charge separation efficiency than α -Bi₂O₃. In addition, the photocarriers' lifetime of β -Bi₂O₃ is also slightly longer than that of α-Bi₂O₃, by
- 15 comparing their decay time of the photocarriers. These results also support that the photocatalytic activity of β -Bi₂O₃ is higher than that of α - $Bi₂O₃$ to some extent.

Besides, lager surface area of β -Bi₂O₃ (4.5 m²/g) than that of α -Bi₂O₃ (3.6 m²/g) is also an important reason of its higher 20 photocatalytic activity.

Based on the results and analysis above, the higher

Fig. 11 Steady state (A) and dynamic photoluminescence (B) over α -Bi₂O₃ and β-Bi₂O₃.

photocatalytic activity of β -Bi₂O₃ than α-Bi₂O₃ is attributed to the following four reasons: (1) the narrower band gap of $β$ -Bi₂O₃ than that of α -Bi₂O₃ indicates higher visible light harvest; (2) higher conduction band potential of $β$ -Bi₂O₃ than that of α-Bi₂O₃ $_{30}$ results in the formation of O₂ with strong oxide ability; (3) higher charge separation efficiency; (4) larger surface area of β-Bi₂O₃ than that of α -Bi₂O₃. These four factors collectively explain the higher photocatalytic activity of β -Bi₂O₃ in the IPA oxide reaction.

4. CONCLUSIONS

- α ₃₅ In conclusion, α -Bi₂O₃ and β-Bi₂O₃ were selectively synthesized with the same precursor of $Bi₂O₂CO₃$ under different calcination temperatures. The formation mechanism of $β$ -Bi₂O₃ was studied by analyzing the surface chemical states of α -Bi₂O₃ and β-Bi₂O₃ through FT-IR and XPS spectra. The results indicate that the ⁴⁰ surface-coordinated CO₃² can lower the surface energy of β-Bi₂O₃ and make it stable at room temperature. The photocatalytic performances of α -Bi₂O₃ and β-Bi₂O₃ for the oxidation of IPA were also studied in this work; β -Bi₂O₃ shows much higher photocatalytic activity than α -Bi₂O₃, which is attributed to its
- 45 higher visible light harvest, the formation of O_2 with strong oxide ability, higher charge separation efficiency and larger surface areas. The study on the formation mechanism of β -Bi₂O₃ provides the important guidance for its preparations. This work also proves that the surface chemical states of the materials have significant effects
- ⁵⁰on their crystal structures' stabilities, further affecting their photocatalytic activities.

ACKNOWLEDGEMENT

This work was partially supported by the World Premier International Research Center Initiative (WPI Initiative) on ⁵⁵Materials Nanoarchitectonics (MANA), MEXT, Japan, the

- National Natural Science Foundation of China (21273281), the National Basic Research Program of China (973Program, No. 2013CB632405 and No. 2014CB239301), the Fundamental Research Funds for the Central Universities and the Research ⁶⁰Funds of Renmin University of China (13XNH121), and the
- National Scholarship Fund.

Notes and references

- ^a Research Unit for Environmental Remediation Materials, National *Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki* ⁶⁵*305-0044, Japan. Fax: +81-29-860-4958; Tel: +81-29-859-2646;*
- *E-amil: Jinhua.YE@nims.go.jp ^bDepartment of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China. Fax:+86-10-62516444; Tel: +86-10-62514133; E-mail: jlin@chem.ruc.edu.cn*
- *c* ⁷⁰*TU-NIMS Joint Research Center, School of Material Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, P.R. China*
- 1. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri and J. Ye, *Adv.*
- *Mater.*, 2012, **24**, 229-251. ⁷⁵2. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, *Chem.*
- *Rev.*, 1995, **95**, 69-96.
- 3. A. Tanaka, S. Sakaguchi, K. Hashimoto and H. Kominami, *ACS Catal.*, 2012, **3**, 79-85.
- 4. C. Zhang and Y. Zhu, *Chem. Mater.*, 2005, **17**, 3537-3545.
- ⁸⁰5. C. Santato, M. Odziemkowski, M. Ulmann and J. Augustynski, *J. Am. Chem. Soc.*, 2001, **123**, 10639-10649.
- 6. A. Kudo, K. Omori and H. Kato, *J. Am. Chem. Soc.*, 1999, **121**, 11459-11467.
- 7. H. Cheng, B. Huang, J. Lu, Z. Wang, B. Xu, X. Qin, X. Zhang and Y. Dai, *Phys. Chem. Chem. Phys.*, 2010, **12**, 15468-15475.
- ⁵8. M. Drache, P. Roussel and J.-P. Wignacourt, *Chem. Rev.*, 2007, **107**, 80-96.
- 9. P. Li, S. Ouyang, Y. Zhang, T. Kako and J. Ye, *J. Mater. Chem. A*, 2013, **1**, 1185-1191.
- 10. H.-Y. Jiang, K. Cheng and J. Lin, *Physical Chemistry Chemical* ¹⁰*Physics*, 2012, **14**, 12114-12121.
- 11. A. Hameed, T. Montini, V. Gombac and P. Fornasiero, *J. Am. Chem. Soc.*, 2008, **130**, 9658-9659.
- 12. Z. Bian, J. Zhu, S. Wang, Y. Cao, X. Qian and H. Li, *J. Phys. Chem. C*, 2008, **112**, 6258-6262.
- ¹⁵13. H.-Y. Jiang, J. Liu, K. Cheng, W. Sun and J. Lin, *J. Phys. Chem. C*, 2013, **117**, 20029-20036.
	- 14. L. Yin, J. Niu, Z. Shen and J. Chen, *Environ. Sci. Technol.*, 2010, **44**, 5581-5586.
	- 15. X. Xiao, R. Hu, C. Liu, C. Xing, C. Qian, X. Zuo, J. Nan and L. Wang,
- ²⁰*Appl. Catal. B-Environ.*, 2013, **140**, 433-443.
	- 16. M. Schlesinger, S. Schulze, M. Hietschold and M. Mehring, *Dalton Trans.*, 2013, **42**, 1047-1056.
	- 17. H. Cheng, B. Huang, K. Yang, Z. Wang, X. Qin, X. Zhang and Y. Dai, *Chem. Phys. Chem*, 2010, **11**, 2167-2173.
- ²⁵18. J. D. Grice, *Can. Mineral.*, 2002, **40**, 693-698.
	- 19. H. A. Harwig, *Z. Anorg. Allg. Chem.*, 1978, **444**, 151-166.
	- 20. Z. Ai, Y. Huang, S. Lee and L. Zhang, *J. Alloys Compd.*, 2011, **509**, 2044-2049.
- 21. P. Li, S. Ouyang, G. Xi, T. Kako and J. Ye, *J. Phys. Chem. C*, 2012, ³⁰**116**, 7621-7628.
- 22. M. A. Butler, *J. Appl. Phys.*, 1977, **48**, 1914-1920.
- 23. C. Li, J. Zhang and K. Liu, *Int. J. Electrochem. Sci.,*, 2012, **7**, 5028-5034.
- 24. H. Fan, H. Li, B. Liu, Y. Lu, T. Xie and D. Wang, *ACS Appl. Mater.* ³⁵*Interfaces*, 2012, **4**, 4853-4857.
- 25. H. Lu, L. Xu, B. Wei, M. Zhang, H. Gao and W. Sun, *Appl. Sur. Sci.*, 2014, **303**, 360-366.
- 26. P. Madhusudan, J. Yu, W. Wang, B. Cheng and G. Liu, *Dalton Trans.*, 2012, **41**, 14345-14353.
- ⁴⁰27. H.-Y. Jiang, G. Liu, M. Li, J. Liu, W. Sun, J. Ye and J. Lin, *Appl. Catal. B-Environ.*, 2015, **163**, 267-276.
- 28. A. Makarowicz, C. L. Bailey, N. Weiher, E. Kemnitz, S. L. M. Schroeder, S. Mukhopadhyay, A. Wander, B. G. Searle and N. M. Harrison, *Phys. Chem. Chem. Phys.*, 2009, **11**, 5664-5673.
- ⁴⁵29. H. Xu, Y. Song, Y. Song, J. Zhu, T. Zhu, Chengbao Liu, D. Zhao, Q. Zhang and H. Li, *RSC Adv.*, 2014, **4**, 34539-34547.
	- 30. S. Ouyang and J. Ye, *J. Am. Chem. Soc.*, 2011, **133**, 7757-7763.
- 31. F. Arsac, D. Bianchi, J. M. Chovelon, C. Ferronato and J. M. Herrmann, *J. Phys. Chem. A*, 2006, **110**, 4202-4212.
- ⁵⁰32. Y. Ohko, K. Hashimoto and A. Fujishima, *J. Phys. Chem. A*, 1997, **101**, 8057-8062.

169x133mm (150 x 150 DPI)