This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Inkjet Printing CH$_3$NH$_3$PbI$_3$ on Mesoscopic TiO$_2$ Film for Highly Efficient Perovskite Solar Cells

Shao-Gang Li, Ke-Jian Jiang, Mei-Ju Su, Xue-Ping Cui, Jin-Hua Huang, Qian-Qian Zhang, Xue-Qin Zhou, Lian-Min Yang, Yan-Lin Song

ARTICLE TYPE

Inkjet printing technique is successfully used to deposit perovskite CH$_3$NH$_3$PbI$_3$ layer on a mesoscopic TiO$_2$ film. With the combined optimization of the table temperature and the ink composition, a flat and uniform perovskite layer is realized on the TiO$_2$ film, and the corresponding photovoltaic device exhibits a high efficiency of 12.3% with an average value of 11.2% under AM 1.5G conditions. The current work demonstrates that the inkjet printing method is environmentally benign and cost-effective with reduced waste of the toxic Pb-containing materials encountered inevitably in the existing techniques during the device preparation.

Introduction

During the past two decades, there have been extensive investigations for cost-effective thin film solar cells as alternative technologies to conventional inorganic counterparts. Among the innovative technologies, the perovskite solar cell based on hybrid organometal trihalide perovskites, in the form of (MA)$\text{[PbX}_3]$ (MA = CH$_3$NH$_3$; X = Cl, Br, or I), is emerging as a strong competitor, and the power conversion efficiency (PCE) rapidly rose from 3.8% to more than 16% in the last five years. Recently, a certified PCE of 17.9% was reported by the national renewable energy laboratory (NREL). In addition, higher efficiency of 19.3% was also reported by Yang's group. In this work, the perovskite CH$_3$NH$_3$PbI$_3$ film was deposited as a light absorber on mesoscopic TiO$_2$ film for the perovskite solar cells by means of inkjet printing technique. The printing ink contains the perovskite precursor methylammonium iodide (MAI) and lead iodide (PbI$_2$) dissolved in γ-butyrolactone. We investigated the effect of the printing table temperature on the morphology and structure of the perovskite film and the device performance. We further investigated the role of the methylammonium chloride (MACI) as an additive used in the ink on the film morphology and the device performance. Combined optimization of both the parameters, a flat and uniform perovskite layer on the mesoscopic TiO$_2$ film was realized. The film has strong light harvesting capacity, and the corresponding device exhibited a high power conversion efficiency of 12.3% with an average value of 11.2% under AM 1.5 illumination. Our results demonstrate that inkjet printing technique is an effective fabrication tool for highly efficient perovskite solar cells. More importantly, the drop-on-demand inkjet technique is environmentally friendly for the deposition of the perovskite film. In contrast, a considerable amount of toxic Pb-containing materials is discarded in the fabrication processes of the existing spin coating, spray coating, and vacuum deposition.

Results and discussion

In our experiments, all the samples were built on transparent...
fluorine-doped tin-oxide (FTO) coated glass substrates, where a TiO$_2$ blocking layer (80 nm thick) and a TiO$_2$ mesoscopic layer (400 nm thick) were used, respectively. The samples were arranged on the table 1 mm below the inkjet printhead, and printed by a piezoelectric driven flatbed inkjet printer, as reported previously.\textsuperscript{15} The printing ink consisted of MAI, PbI$_2$, and MACl with a molar ratio of 1-x:1:x (x=0–0.9), dissolved in $\gamma$-butyrolactone with a concentration of 35 wt\%. During the printing, the samples were in situ heated on the platen at a fixed temperature in ambient conditions. After the inkjet printing, the samples were transferred into a N$_2$-filled glove-box for post-annealing. Finally, 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) was deposited as a hole transport layer, followed by evaporation of a gold back electrode. Full experimental details on the device fabrication and characterization are to be found in the Supporting Information.

\textbf{Fig.1} Top-view SEM images of inkjet printed perovskite (on mesoscopic TiO$_2$ films) deposited at 25 °C (a), 40 ° (b), 50 °C (c), and 60 °C (d).

In the printing, high boiling $\gamma$-butyrolactone (b.p. = 206 °C) was selected as solvent in the ink, on one hand, due to its high solubility for the perovskite precursor, on the other hand, preventing nozzle clogging of the printhead due to the solvent evaporation during the printing. Unlike the conventional spin coating, where most of solvent in the deposited film can be rapidly removed by centrifugal force during spin coating, the inkjet printing films, however, are usually in a fluid state, containing a large amount of solvent upon the printing. Thus, it is essential to speed up solvent evaporation from the wet film. Otherwise, the crystallization of the perovskite would be slowed down, leading to a large thickness variation of the film.\textsuperscript{7} Thus, in situ heat treatment was applied to accelerate solvent evaporation during the printing. The table temperature was adjusted from 25 °C to 60 °C with a short duration of 2 minutes. In addition, a 400 nm thick mesoscopic TiO$_2$ film was used as a substrate for the perovskite printing. In this case, the printed perovskite precursor was restrained within the porous TiO$_2$ film after the solvent evaporation, and further converted into the crystalline perovskite with a confined nanomorphology after post-annealing.\textsuperscript{7} It should be noted that after the printing and in situ heat treatment, the precursor on the films could not be fully converted into the crystalline perovskite. Thus, all the samples were subjected to further post-annealing for the crystallization. The process was carried out at 100 °C for 10 minutes in N$_2$ atmosphere after the deposition.

\textbf{Fig.2} Top-view SEM images of mesoporous TiO$_2$ films coated with inkjet printing perovskite from the precursor solution with a molar ratio of 1-x:1:x for PbI$_2$, MAI, and MACl, respectively, at x=0 (a), x=0.3 (b), x=0.6 (c), x=0.9 (d), e) x=0.6, the scale bar is 1 μm; and the cross-sectional SEM image at x=0.6 (f).

The influence of the table temperature on the morphology and structure of the perovskite film was examined by scanning electron microscopy (SEM). The ink used here consists of the perovskite precursor PbI$_2$ and MAI (molar ratio of 1:1) dissolved in $\gamma$-butyrolactone with a concentration of 35 wt\%. At room temperature (25 °C), the printed film surface was intricately covered with various shapes of perovskite crystallite with distinct edges and corners, as shown in Figure 1. The morphology is obviously different from that of the spin coated film, where disc-like crystals were observed.\textsuperscript{6,9} The result implies that the printed film is wet, and the precursor has more time to distribute and self-assemble at the low printing temperature, favoring the perovskite crystallization. At the temperature of 40 °C, the film morphology was changed clearly. A large amount of round and flattened crystal plates were spread uniformly on the surface, similar to that of the spin-coated film.\textsuperscript{5,9} As the temperature increased to 50 °C, the crystal plates became larger. Meanwhile, a lot of small perovskite crystallites appeared, resulting in a relatively high substrate coverage. Further increasing the temperature to 60 °C, the plate size further increased, following with abundant pinholes...
on the surface, probably due to high solvent evaporation ratio at this temperature. The pinholes can deteriorate the photovoltaic performance in the resultant devices.\textsuperscript{19,20} The results suggested that the film morphology would strongly relate to the table temperatures, and the temperature of 50°C would be optimal for the printing.

Fig.3 XRD diffraction patterns (a) and UV-vis spectra (b) of the perovskite-coated TiO\textsubscript{2} films prepared at x=0 and 0.6 from the precursor solution (the molar ratio of PbI\textsubscript{2}, MAI, and MACl is 1-x:1:x)

The photovoltaic performance was measured for the devices prepared at different table temperatures. As shown in Table 1, device 1 with the film deposited at room temperature (25°C) gave a short-circuit photocurrent density ($J_{sc}$) of 13.21 mA cm\textsuperscript{-2}, an open-circuit voltage ($V_{oc}$) of 0.82 V, and fill factor (FF) of 0.61 to yield a power conversion efficiency (PCE) of 6.6%, which is relatively lower than those of the similar-structured devices prepared by the spin-coating method.\textsuperscript{9} The low photovoltaic performance would come from the poor perovskite morphology with a low substrate coverage. For device 2 with the film deposited at 40°C, the conversion efficiency was considerably increased to 7.2%. At 50°C deposition, device 3 gave a PCE of 7.9% with a $J_{sc}$ of 14.71 mA cm\textsuperscript{-2}, a $V_{oc}$ of 826 mV and FF of 0.65, which is comparable to that for the device prepared by the spray-coating technique.\textsuperscript{27} Further increasing the temperature to 60°C for device 4, however, the performance slightly decreased to a PCE of 7.3%, probably due to the rough and pinhole-containing perovskite film leading to increased charge recombination in the device.

Recent reports demonstrated that the morphology of the perovskite film could be improved when halogen-containing additives were co-deposited with the perovskite precursors during the fabrication.\textsuperscript{23-28} Here, varied amounts of the additive MACI, was added in the precursor solution for further improving the morphology of the perovskite film. In the ink, PbI\textsubscript{2}, MAI, and MACI were mixed with a molar ratio of 1-x:1:x (x=0~0.9), and the inkjet printing was carried out at the fixed table temperature of 50°C. We observed that the colour of the film changed from light yellow to brown during the printing, and the colour change became slow with the increase of the additive MACI in the ink.
After the printing, all the samples were post-annealed at 100 °C for 10 minutes, and the morphology was investigated by SEM. As shown in Figure 2, flower-like crystal plates with large size were observed upon addition of MACl at x=0.3, as compared with the disc-like crystal plates with no MACl in the ink. The flower-like crystal plates possess highly ordered internal structure, indicating a high crystallization of the perovskite when the additive was used. When x increased to 0.6, the crystals were flattened and interconnected to form a continuous uniform perovskite layer on the mesoporous TiO₂ surface with full surface coverage. The grain size in the perovskite upper layer was about 200–500 nm with the layer thickness of about 200 nm, as shown in Figure 2f. Further increasing x to 0.9, the perovskite film seemed to undergo partial dewetting, resulting in a relatively low surface coverage. The results indicate that the MACl additive can control the whole crystalline process and thus the morphology in the formation of the perovskite, and suitable amount of the additive is critically important for the high-quality film with good surface coverage. For further investigating the nature of the perovskite film, X-ray diffraction (XRD) were conducted for the samples with the additive at x=0 and 0.6. As shown in Figure 3a, the XRD patterns are nearly the same for both the samples with main peaks located at 14.20, 20.08, 28.52, 31.96 and 40.66°, assigned as the (110), (112), (220), (310), and (224) planes of the tetragonal perovskite CH₃NH₃PbI₃ structure, indicating that the addition of the additive would have no affection on the structure and composition of CH₃NH₃PbI₃. The diffraction peaks, however, became stronger in intensity upon the addition of the additive, as compared with those with no additive. This may be ascribed to the presence of the uniform perovskite upper layer with high crystallinity induced by the additive. Figure 3b shows the absorption spectra of the samples at x=0 and 0.6. Clearly, the sample at x=0.6 exhibits enhanced absorbance at the long wavelength region (500-800 nm) because of the presence of the thick and high uniform upper layer as mentioned above, while the sample at x=0 shows relatively low absorbance at the region. The uniform upper layer on the mesoporous TiO₂ surface was desirable for improving the light harvesting capacity, and thus increasing device photovoltaic performance. In the one-step spin coating, the perovskite precursors were mainly limited in the porous TiO₂ films, and most of superfluous solution on the surface was spinned off during the deposition. Thus, it is almost impossible to control the morphology and structure of the resultant perovskite on the porous TiO₂ film, thus exhibiting poor substrate coverage. In the inkjet printing, certain amount of the precursor solution can be well controlled as required, and completely used in the printing in principle. Thus, inkjet printing could well control the morphology and structure of the perovskite film.

To investigate the effect of the additive on the device performance, photovoltaic parameters were measured for the devices prepared with various amount of the additive MACl in the printing solution, and the results are listed in Table 1. As can be seen from the data, the performance of device 5 (x =0.3) was reasonably improved with a PCE of 8.5% in comparison with that of device 3 with no additive (x =0). At x = 0.6 for device 6, all the photovoltaic parameters were augmented with a Jsc of 19.55 mA cm⁻², a Voc of 910 mV, a FF of 0.69, and a PCE of 12.3%, which is the highest among the values for the mesoporous perovskite solar cells prepared by the standard one-step spin coating technology. Further increasing the additives at x = 0.9 for device 7, however, the performance slightly decreased to 10.8%, probably due to the relatively low coverage as mentioned above. The current density-voltage (J-V) characteristics and the external quantum efficiency (EQE) spectra of device 3 and device 6 were shown in Figure 4. The difference in the efficiency mainly came from the different Jsc in the two devices, as shown previously.
in Table 1 and Figure 4a. The external quantum efficiency (EQE) spectra shows that both the devices present the similar trends with the same amplitude at the short wavelength (300-500 nm), while at the long wavelength, device 6 exhibited significantly enhanced EQE. The difference in the EQE spectra can be explained by the different light harvesting capacity as shown in Figure 3b, which is consistent with the difference in the $J_{SC}$ for both the devices. The results demonstrate that the uniform perovskite upper layer can effectively enhance light harvesting at long wavelength, and improve the resultant photovoltaic performance because the perovskite materials is weak absorption at long wavelength relative to the long wavelength.

To check the device reproducibility, device 6 were prepared with 20 separate samples at the same condition. As shown in Figure 4c, the histogram of their PCEs presented high reproducibility with a low relative standard variation of 6.5% and high average PCE of 11.2%. The high value of the average PCE and high reproducibility can be ascribed to the high-quality perovskite film prepared by the inkjet printing, demonstrating the great advantage of this fabrication method for the perovskite solar cells.

Conclusions

In the work reported here, inkjet printing technique was successfully used for the fabrication of flat and uniform perovskite CH$_3$NH$_3$PbI$_3$ film on the mesoporous TiO$_2$ substrate. The role of the table temperature used in the printing was investigated, indicating that the in situ heating treatment is necessary in the printing. In addition, the CH$_3$NH$_3$Cl as an additive in the printing solution was found to have critical impact on the morphology and structure of the perovskite film formed. The film-optimized solar cell exhibited a PCE of 12.3% under AM 1.5G conditions, with high reproducibility (relative standard variation of 6.5%). The current work demonstrates that the inkjet printing can be an efficient and low cost approach for large-scale production of the perovskite solar cells. Meanwhile, the inkjet printing is environmentally sound technique for the fabrication of the perovskite solar cells. Further optimization, including device configuration and printing parameters, should improve the device performance, and the researches are now under investigation.

Experimental

Synthesis of CH$_3$NH$_3$I: 10 ml of hydroiodic acid (55-58 wt %) was added dropwise to 24 ml of methyamine (33 wt%) and 100 ml ethanol under nitrogen atmosphere. A rotary evaporator was used to remove the solvent and crystallize methylammonium iodide (MAI). The precipitate was washed with diethyl ether three times. The resulting white powder was dried at 65°C in vacuum overnight.

Synthesis of CH$_3$NH$_3$Cl: 19 ml of hydrochloride acid (33 wt%) was added dropwise to 24 ml of methyamine (33 wt%) and 100 ml ethanol under nitrogen atmosphere. A rotary evaporator was used to remove the solvent and crystallize methylammonium chloride (MACI). The precipitate was washed with diethyl ether three times. The resulting white powder was dried at 65°C in vacuum overnight.

Fabrication of perovskite-based solar cells: F-doped SnO$_2$ (FTO) coated glass were patterned by etching with zinc powder and 2 M hydrochloric acid. The substrates were carefully cleaned in ultrasonic baths of detergents, deionized water, acetone and ethanol successively. A compact TiO$_2$ blocking layer was deposited onto the surface of the cleaned FTO substrate by spin-coating of titanium diisopropoxide bis(acetylacetone) solution (0.15 M, in 1-butanol) at 4000 r.p.m. for 30 s, dried at 125 °C for 5 min, then repeated twice with 0.3 M of titanium diisopropoxide bis(acetylacetone) solution, followed sintering on a hotplate at 500 °C for 30 min. After cooling to room temperature, the films were immersed in 0.02 M aqueous TiCl$_4$ at 70 °C for 30 min, followed by washing with ethanol and further sintering at 500 °C for 30 min. The mesoporous TiO$_2$ films were fabricated by spin-coating a 20 nm-sized TiO$_2$ dispersion solution, which was prepared by diluting a commercial paste (18NR-T, Dyestol) by ethanol at 1:3.5 by weight. A 400 nm thick layer of TiO$_2$ was achieved via spin coating at 3000 rpm for 30 s, followed further sintering at 500 °C for 30 min. The perovskite films were inkjet printed by the perovskite precursor solution (35 wt% in γ-butyrolactone) with a molar ratio of 1-x:1:x for PbI$_2$ MAI, and MACI, respectively. The inkjet printing was performed by a Dimatix Fujifilm DMP-2831 printer, including a piezoelectric-driven inkjet head with a motorized xyz stage. The printing frequency was set at 5.0 kHz and a customized waveform was used with a maximum voltage of 22 V and a pulse width of 8.5 μs. Mesoporous TiO$_2$ substrates were held on the platen at fixed temperatures ranging from 25 °C to 60 °C with 30–40% relative humidity (RH) in the printing chamber. After the deposition, the samples were transferred to a nitrogen-filled glovebox (<1 ppm O$_2$ and H$_2$O) for post-annealing. On the perovskite film, a layer of a hole transporting material was deposited by spin coating (4000 rpm, 30 s) a spiro-MeOTAD (2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene) solution in a N$_2$-filled glovebox. The spin-coating formulation was prepared as follows: In 1 ml chlorobenzene was added spiro-MeOTAD 75 mg, 10 ml of hydroiodic acid (55-58 wt %) and 2 M hydrochloric acid. The substrates were carefully cleaned with ultrasonic baths of detergents, deionized water, acetone and ethanol successively. A compact TiO$_2$ blocking layer was deposited onto the surface of the cleaned FTO substrate by spin-coating of titanium diisopropoxide bis(acetylacetone) solution (0.15 M, in 1-butanol) at 4000 r.p.m. for 30 s, dried at 125 °C for 5 min, then repeated twice with 0.3 M of titanium diisopropoxide bis(acetylacetone) solution, followed sintering on a hotplate at 500 °C for 30 min. After cooling to room temperature, the films were immersed in 0.02 M aqueous TiCl$_4$ at 70 °C for 30 min, followed by washing with ethanol and further sintering at 500 °C for 30 min. The mesoporous TiO$_2$ films were fabricated by spin-coating a 20 nm-sized TiO$_2$ dispersion solution, which was prepared by diluting a commercial paste (18NR-T, Dyestol) by ethanol at 1:3.5 by weight. A 400 nm thick layer of TiO$_2$ was achieved via spin coating at 3000 rpm for 30 s, followed further sintering at 500 °C for 30 min. The perovskite films were inkjet printed by the perovskite precursor solution (35 wt% in γ-butyrolactone) with a molar ratio of 1-x:1:x for PbI$_2$ MAI, and MACI, respectively. The inkjet printing was performed by a Dimatix Fujifilm DMP-2831 printer, including a piezoelectric-driven inkjet head with a motorized xyz stage. The printing frequency was set at 5.0 kHz and a customized waveform was used with a maximum voltage of 22 V and a pulse width of 8.5 μs. Mesoporous TiO$_2$ substrates were held on the platen at fixed temperatures ranging from 25 °C to 60 °C with 30–40% relative humidity (RH) in the printing chamber. After the deposition, the samples were transferred to a nitrogen-filled glovebox (<1 ppm O$_2$ and H$_2$O) for post-annealing. On the perovskite film, a layer of a hole transporting material was deposited by spin coating (4000 rpm, 30 s) a spiro-MeOTAD (2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene) solution in a N$_2$-filled glovebox. The spin-coating formulation was prepared as follows: In 1 ml chlorobenzene was added spiro-MeOTAD 75 mg, 30 μl 4-tert-butylpyridine, 20 μl of a stock solution of 500 mg ml$^{-1}$ Li-TFSI in acetonitrile. Finally, an 80 nm thick Au was thermally evaporated as a back contact under vacuum of 3×10$^{-3}$ Torr. The device active area was 4 mm$^2$, determined by the overlap of the cathode and anode.

Characterization: XRD patterns were recorded by using an X-ray diffractometer (Rigaku, D/MAX RINT-2500) with a CuKa radiation source. The surface morphology of the films as well as cross-section was analyzed by using a JEM-7500F field-emission scanning electron microscope (SEM). Absorption spectra of the film samples were recorded by using a Shimadzu UV/Vis 1800 spectrophotometer. Current-Voltage characteristics were recorded by applying an external potential bias to the cell while recording the generated photocurrent with a Keithley model 2400 digital source meter. The light source was a 300 W collimated xenon lamp (Newport) calibrated with the light intensity to 100 mW cm$^{-2}$ at AM 1.5 G solar light condition by a certified silicon solar cell. The J-V curve was recorded by the reverse scans with a rate of 200 mV/s. The external quantum efficiency (EQE) for solar cells were performed using a commercial setup (PV-25 DYE, JASCO). A 300 W Xenon lamp was employed as light source for...
generation of a monochromatic beam. EQE spectra were recorded using monochromatic light without white light bias. Calibrations were performed with a standard silicon photodiode. EQE is defined by \(\text{EQE}(\lambda) = \frac{hcJ}{\varphi e\lambda}\), where \(h\) is Planck’s constant, \(c\) is the speed of light in a vacuum, \(e\) is the electronic charge, \(\lambda\) is the wavelength in meters (m), \(J_\text{sc}\) is the short-circuit photocurrent density (A m\(^{-2}\)), and \(\varphi\) is the incident radiation flux (W m\(^{-2}\)).

Notes and references

1. Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: kjiang@iccas.ac.cn, ylsong@iccas.ac.cn
2. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. E-mail: zhouxueqin@tju.edu.cn

Inkjet Printing $\text{CH}_3\text{NH}_3\text{PbI}_3$ on Mesoscopic TiO$_2$ Film for Highly Efficient Perovskite Solar Cells

Perovskite $\text{CH}_3\text{NH}_3\text{PbI}_3$ is deposited as a light absorber on a mesoporous TiO$_2$ film by inkjet printing technology, and the structure and morphology are investigated with different table temperatures and with various amounts of CH$_3$NH$_3$Cl additive in the printing. The optimized device exhibits a highest power conversion efficiency of 12.3% with an average value of 11.2% under AM 1.5G conditions.