Journal of Materials Chemistry A

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsA

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

COMMUNICATION

Journal of Materials Chemistry A Accepted Manuscript

Three-Step Sequential Solution Deposition of PbI₂-Free CH₃NH₃PbI₃ Perovskite

Yixin Zhao^{a*} and Kai Zhu^{b*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

We demonstrate a three-step sequential solution process to prepare PbI₂-free CH₃NH₃PbI₃ perovskite films. In this threestep method, a thermally unstable stoichiometric PbI₂·CH₃NH₃Cl precursor film is first deposited on the 10 mesoporous TiO₂ substrate, followed by thermal decomposition to form PbI₂, which is finally converted into CH₃NH₃PbI₃ by dipping in a regular isopropanol solution of CH₃NH₃I at room temperature. In comparison to the twostep approach using similar processing conditions, the three-15 step method enables the formation of PbI₂ film through the

thermal decomposition of the PbI₂·CH₃NH₃Cl precursor film. This facilitates a rapid conversion of PbI₂ to CH₃NH₃PbI₃ without any traceable residue PbI₂ in the final conversion step, leading to an improved device performance.

20 Introduction

Organometallic halide perovskites have become a promising class of light absorbers for low-cost, high-efficiency solar cells. The efficiency of perovskite solar cells has increased to 17.9% from an initial 3.8% within 5 years.¹⁻⁷ Perovskite deposition in most ²⁵ literature reports is by solution chemistry, mainly following two synthesis routes. The first approach is a one-step solution process via spin coating of the perovskite precursor onto the substrate, followed by thermal annealing to crystallize the perovskite film.⁸⁻ ¹⁴ The second commonly used synthetic approach is a two-step ³⁰ sequential solution deposition.^{4, 15-17} Two-step sequential deposition of lead halide perovskite was initially reported by

Mitzi *et al.* in the 1990s.¹⁸ It was recently adapted by Grätzel and co-workers to fabricate lead halide perovskite solar cells.⁴ It has since become a popular method for growing perovskite films.⁴ In ³⁵ a typical two-step sequential solution synthesis of perovskite such

 a typical two-step sequential solution synthesis of perovskite such as CH₃NH₃PbI₃ (or MAPbI₃), PbI₂ is first deposited onto the substrate (mesoporous or planar scaffold) from a dimethylformamide (DMF) solution, followed by a conversion reaction to form MAPbI₃ by dipping the PbI₂ film in an
 anhydrous isopropanol (IPA) solution of CH₃NH₃I (or MAI),

before final drying at elevated temperature (e.g., 100°C). One advantage of the two-step method over the regular onestep method is that the deposited perovskite film is compact and uniform, leading to the demonstration of high-performance solar ⁴⁵ cells.¹⁹⁻²³ For the two-step method, the growth and film morphology of the final perovskite MAPbI₃ depend strongly on

This journal is © The Royal Society of Chemistry [year]

the initial PbI₂ film deposition during the first step of the process. Because PbI₂ tends to form a flat, layered structure, a compact and uniform PbI₂ film is usually formed. One of the challenges ⁵⁰ for the two-step deposition is to convert PbI₂ to perovskites. It is generally perceived that a high-quality perovskite needs a dense layer of PbI₂ precursor film; but a dense crystalline PbI₂ film is generally more difficult to convert completely into perovskite. In order to obtain a full conversion of PbI₂ to MAPbI₃, Mitzi and his 55 coworkers had to soak the PbI₂ film in MAI isopropanol solution for hours.¹⁸ This long reaction time in MAI solution could lead to the dissolution (sometimes peeling off) of perovskites. Also, the water content (or moisture) in regular IPA or accumulated overtime for anhydrous IPA could accelerate the degradation 60 process, when the dipping/reaction time is long Several strategies have been developed to address this challenge, including using elevated reaction temperature, controlling the crystallinity of the initial PbI₂ film, or using MAI vapor instead of MAI IPA solution.^{15, 24, 25} These approaches have shown certain 65 improvement to the PbI2-to-perovskite conversion without causing significant degradation of the MAPbI₃ film during the conversion reaction process.

In this report, we demonstrate a new three-step sequential deposition method for preparing PbI₂-free MAPbI₃ films. Using a ⁷⁰ regular two-step approach, we find it difficult to completely convert PbI₂ into MAPbI₃ without causing significant degradation of the perovskite film. In contrast, by using the three-step sequential solution deposition approach, where a thermally unstable stoichiometric PbI₂·CH₃NH₃Cl (PbI₂·MACl) precursor ⁷⁵ film is first deposited on the mesoporous TiO₂ substrate and followed by thermal decomposition to form PbI₂, the PbI₂ film can be rapidly converted into MAPbI₃ without any PbI₂ residue by using the regular MAI IPA solution at room temperature, leading to improved device performance.

80 Experimental

Materials. The MAI and MACl were synthesized by reacting methylamine (MA) with HI and HCl, respectively, followed by purification as previously reported.^{10, 14} A patterned fluorine-doped tin oxide (FTO) was first deposited with a blocking layer ⁸⁵ by spray pyrolysis at 450 ° C using 0.2 M Ti(IV) bis(ethyl acetoacetate)-diisopropoxide 1-butanol solution, followed by 450 ° C annealing in air for one hour. A 500-nm-thick mesoporous

TiO₂ film was then screen coated onto FTO followed by 500° C annealing in air for 30 min, as detailed previously.²⁶ The TiO₂ film was then treated in 40 mM TiCl₄ aqueous solution at 65° C for 30 min. These TiCl₄-treated TiO₂ films were then sequentially ⁵ rinsed by deionized (DI) water, blown dry in air, and finally

annealed at 500° C for 30 min. **Two-step deposition of perovskites.** 0.4–1.0 M PbI₂ (99.99%) DMF solution was spin coated onto the mesoporous

TiO₂ film at 3000 rpm for 20 s. The deposited PbI₂ film was then to annealed at 70° C for 5 min. The PbI₂ film was cooled to room temperature and then immersed into a 10 mg MAI/mL IPA solution for different times (2–60 min), followed by being rinsed with IPA, blown dry with N₂, and then annealed at 70° C for 5 min. The IPA used in this report is the regular ACS Reagent, $15 \ge 99.5\%$ grade.

Three-step deposition of perovskites. A DMF precursor solution of 1.0 M equal molar ratio PbI₂ and MACl was first spin coated onto the mesoporous TiO₂ film at 3000 rpm for 20 s. The deposited film was then annealed at 130 ° C for 30 min to ²⁰ decompose to a yellow PbI₂ film, followed by cooling to room temperature. The yellow PbI₂ film was then immersed into a 10 mg MAI/mL IPA solution for 30 s, followed by being rinsed with IPA, blown dry by N₂, and then annealed at 70° C for 5 min.

Device preparation. The perovskite-deposited electrodes were ²⁵ first coated with a layer of hole transport material (HTM) by spin coating at 4000 rpm for 20 s using 0.1 M spiro-MeOTAD, 0.035 M bis(trifluoromethane)sulfonimide lithium salt (Li-TFSi), and 0.12 M 4-*tert*-butylpyridine (tBP) in chlorobenzene/acetonitrile (10:1, v/v) solution. Finally, a 150-nm-thick Ag contact layer was ³⁰ deposited by thermal evaporation, as previously described.²⁷

Characterization. The crystal structures of the perovskite films were measured by X-ray diffraction (XRD, Bruker D8 ADVANCE with Cu K α radiation). The absorption spectra of the planar perovskite films were characterized by an ultraviolet-³⁵ visible (UV-vis) spectrophotometer (Cary-60). J–V curves were measured with a Keithley 2400 source meter under simulated AM 1.5G illumination (100 mW/cm²; Oriel Sol3A Class AAA Solar Simulator) with a scan rate of about 0.1 V/s. A typical cell area was about 0.16 cm² as defined by a shadow mask.

40

Result and discussion

In the standard two-step method,⁴ a 1.0 M PbI₂ precursor solution is normally used to obtain sufficient deposition of MAPbI₃ to absorb light. We examined the time evolution of the conversion

- ⁴⁵ of PbI₂ into MAPbI₃ by using UV-vis and XRD measurements. Figure 1a shows the effect of MAI dipping time on changes of the XRD patterns. When the PbI₂ film is dipped in MAI for 2 min, there is an incomplete conversion as evidenced by the existence of both the PbI₂ (near 12.6°) and MAPbI₃ (near 14°) diffraction
- ⁵⁰ peaks with similar peak intensities. The intensity of the MAPbI₃ peak increases, whereas the PbI₂ peak intensity decreases with longer MAI dipping time (10–60 min). Even with a 60-min dipping time, there is still a noticeable amount of PbI₂ in the film as indicated by the characteristic PbI₂ diffraction peak. However,
- ⁵⁵ the intensity of the PbI₂ peak is much smaller and almost negligible compared to the MAPbI₃ peak when the dipping time is more than 30 min.

Fig. 1 Effect of the dipping time in the 10 mg MAI/mL IPA solution on the evolution of (a) XRD patterns and (b) UV-vis absorption spectra for the perovskite films deposited from 1.0 M PbI_2 precursor on mesoporous TiO₂ film.

Table 1 Effect of the MAI dipping time on the perovskite solar cell photovoltaic parameters: short-circuit photocurrent density, J_{sc} ; open-circuit voltage, V_{oc} ; fill factor, FF; and conversion efficiency, η .

Dipping Time [min]	J _{sc} [mA/cm ²]	V _{oc} [V]	FF	η [%]
2	8.58	0.859	0.346	2.55
10	11.41	0.837	0.403	3.85
30	14.84	0.899	0.431	5.75
60	11.07	0.911	0.455	4.59

During the conversion process in the second step, the initial yellow PbI₂ film slowly changes color to brown or dark brown ⁶⁰ depending on the dipping time in the MAI solution. Figure 1b shows the UV-vis absorption spectra of the resulting films as a function of the dipping/conversion time. Although the XRD measurement indicates a significant fraction of PbI₂ for the 2-min dipped sample, the UV-vis spectrum of this sample shows a ⁶⁵ typical MAPbI₃ absorbance as shown in Figure 1b. The direct absorbance by the residue PbI₂ is likely hidden by the absorption spectrum from the partially converted MAPbI₃ within the film. Because the regular IPA solution can dissolve MAPbI₃, longer dipping time eventually leads to a significant drop of absorption of

PbI₂ to MAPbI₃, as suggested by the XRD result. As a result, the 60-min dipped sample only display about half the absorbance compared to the 2-min dipped sample. It is worth noting that because of this issue, a recent study uses a vapour-assisted two-⁵ step approach to avoid the partial dissolution of MAPbI₃ in the IPA solution.²⁵

The impact of the MAI dipping time on the photovoltaic parameters of the perovskite solar cells are compared in Table 1. When the dipping time is increased from 2 to 60 min, the short-

- ¹⁰ circuit photocurrent density first increases and then decreases, with a peak value (14.84 mA/cm²) reached at 30 min, which reflects the balance between perovskite conversion and dissolution during the second process step, as shown in Figure 1. Fill factor of these devices increases significantly with the
- ¹⁵ increase of dipping time, from 0.346 at 2 min to 0.455 at 60 min. The overall conversion efficiency essentially follows the trend of photocurrent, increasing from 2.55% at 2 min to 5.75% at 30 min, and then decreases to 4.59% at 60 min. These results indicate that it is important to have more complete conversion of PbI₂ to
- ²⁰ MAPbI₃ without significant dissolution of MAPbI₃ in order to reach reasonable device performance. We have previously examined the role of PbI₂ in mesoporous perovskite solar cells. We found that the PbI₂-based solar cell has about a factor of five slower transport rate than perovskite solar cells.²⁸ Thus, it is ²⁵ critical to develop certain techniques to minimize the amount of

Fig. 2 Effect of PbI₂ concentration (0.4-1.0 M) on the (a) XRD patterns and (b) UV-vis absorption spectra of the perovskite films deposited on mesoporous TiO₂ film after dipping in 10 mg MAI/mL IPA solution for 10 min.

Table 2. Effect of PbI_2 concentration (0.4–1.0 M) on the perovskite solar cell photovoltaic parameters. The second-step MAI dipping time is 10 min for all samples.

Concentration [M]	J _{sc} [mA/cm ²]	Voc [V]	FF	η [%]
0.4	10.27	0.842	0.609	5.27
0.6	14.79	0.836	0.585	7.23
0.8	11.73	0.830	0.55	5.35
1.0	11.40	0.837	0.403	3.85

PbI₂ for two-step deposition.

A recent study has demonstrated a complete conversion of PbI₂ to MAPbI₃ by using a lower concentration (e.g., 0.4 M) of PbI₂ precursor solution.²⁹ Here, we compare the impact of varying 30 PbI2 concentration on the PbI2-to-MAPbI3 conversion using the two-step method. The concentration of the PbI₂ precursor solution was changed from 0.4 to 1.0 M. To avoid the dissolution of MAPbI₃ in the IPA solution, the dipping duration of PbI₂ film in the MAI IPA solution was fixed at 10 min for all samples. 35 Figure 2a shows the XRD measurements of the perovskite films using different PbI₂ concentration with 10-min dipping time during the second process step. The intensity of the characteristic PbI₂ diffraction peak decreases significantly when the PbI₂ concentration is reduced from 1.0 to 0.8 M. The PbI₂ peak 40 disappears from the diffraction pattern when the PbI₂ concentration is further reduced to 0.6 and 0.4 M, suggesting a complete conversion of PbI₂ to MAPbI₃ using a lowconcentration PbI₂ precursor with 10-min dipping in the MAI IPA solution. We speculate that the lower concentration PbI₂ 45 precursor solutions (e.g., 0.4-0.6 M) lead to less infiltration of PbI₂ in the mesoporous TiO₂ films than the higher concentration ones (e.g., 0.8-1.0 M PbI₂). A lower degree of pore filing of PbI₂

can promote the conversion of PbI₂ into MAPbI₃ by facilitating the intercalation of MAI into PbI₂; but it also results in lower ⁵⁰ absorbance due to less MAPbI₃ deposition. Figure 2b compares the effect of PbI₂ concentration on the UV-vis absorption spectra of the perovskite films. A higher PbI₂ concentration generally leads to stronger absorbance. The perovskite film based on a 0.4 M PbI₂ precursor displays only about half the absorbance of the ⁵⁵ perovskite film based on a 1.0 M PbI₂ precursor.

Table 2 shows the photovoltaic parameters $(J_{sc}, V_{oc}, FF \text{ and } \eta)$ of the solar cells based on the MAPbI₃ films prepared using different concentrations of PbI₂ precursor solutions with 10-min dipping in the MAI solution during the second process step. The 60 0.8-M sample exhibits a low photocurrent density similar to the 1.0-M sample, which can be attributed to the residue PbI₂ observed from XRD. In contrast, the 0.6-M sample without any PbI₂ residue exhibits a reasonable photocurrent density despite its lower absorption than the 1.0-M sample (Figure 1b). However, 65 the lowest J_{sc} value was observed for the 0.4-M sample, for which the poor light absorption clearly limits the device performance. As a balance for optimizing both the light absorption and conversion of PbI2 to MAPbI3, the best device performance efficiency was obtained for the 0.6-M sample with a cell 70 efficiency of about 7.23%. Thus, it appears that the regular isopropanol may not be suitable for the standard two-step method because of the MAPbI₃ dissolution issue (as discussed above) and

Fig. 3 (a) UV-vis absorption spectra and (b) XRD patterns of the films in each of the three steps: (1) initial film formation from precursor of mixed PbI_2 and MACI; (2) thermally decomposed PbI_2 film from the second step; (3) final MAPbI₃ formed after dipping in MAI solution after the third step.

the difficulty of getting a PbI₂-free MAPbI₃ film with sufficient absorption. It is worth emphasizing again that this challenge is caused mainly by the difficulty associated with MAI intercalation into a higher pore-filling PbI₂ film during the final (second) ⁵ reaction step.

To address the abovementioned challenge for two-step deposition, we examined a new three-step sequential deposition method. In the three-step method, a precursor of mixed PbI_2 and MACl (with equal molar concentration) is first deposited onto the

- ¹⁰ mesoporous TiO₂ film. The obtained precursor film when annealed at 130°C for 1 min exhibits a light brown color with an unknown XRD pattern. Its XRD pattern and UV-vis absorption spectra are shown in Figure 3a and 3b, respectively, as indicated as step (1) in the figure. The absorption spectra are similar to
- ¹⁵ those of MAPbI₃; however, their XRD patterns are very different. This unknown compound (denoted as PbI₂+MACl) is likely a mixture of MAPbCl₃, MAPbI₃, and some unknown structure.³⁰ When annealed at 130°C in air, the brown film slowly turns to a yellow color. After annealing at 130°C for 30 min, the
- ²⁰ PbI₂+MACl film is thermally decomposed to PbI₂, as suggested by its UV-vis spectra and XRD pattern (Figure 3, step 2). No traceable Cl content can be found in this film by the energy dispersive X-ray (EDX) analysis. The Pb:I ratio is about 1:2.1±0.3 with a complete loss of Cl (within the EDX detection

Fig. 4 J–V characteristic of a perovskite solar cell based on the MAPbI₃ film prepared from the three-step approach.

 $_{25}$ limit of ~1%). This observation is consistent with our previous studies on the sublimation of MACl with thermal annealing. $^{14,\,27}$

The PbI₂ film formed from thermal decomposition during the second process step turns to dark brown almost immediately after dipping in MAI solution (with regular IPA) during the third ³⁰ (conversion) step. It takes only about 30 s for the yellow PbI₂ film to convert into a dark-brown MAPbI₃ film (Figure 3a, step 3) without any traceable PbI₂ from its XRD pattern (Figure 3b, step 3). The MAPbI₃ prepared from the initial 1.0 M PbI₂·MACI precursor by the three-step method exhibits a strong absorption ³⁵ (especially in the long-wavelength region) that is similar to the film prepared from the regular two-step approach using a 1.0 M PbI₂ precursor. Figure 4 shows the typical J–V characteristics of a perovskite solar cell using the three-step deposition method. The cell efficiency is about 10.11%, with a J_{sc} of 18.64 mA/cm², V_{oc} of 0.868 V, and FF of 0.625. Both forward and backward J–V

scans are shown in Figure 4. The hysteresis is about 1%, and thus, can be considered negligible.

The above results demonstrate that the three-step method provides a promising way to address the challenge associated ⁴⁵ with the PbI₂ conversion for the regular two-step method. Here, we hypothesis that the quick PbI₂-to-MAPbI₃ conversion kinetics observed results from the higher exposed surface of the PbI₂ film prepared through the second step (thermal decomposition process) in the three-step deposition method. Our previous study has 50 indicated that MACl sublimation could introduce some pores in the film.²⁷ The formation of pores resulting from the release of MACl in the thermal decomposition step is expected to form a PbI₂ film with a more porous structure than the relatively compact PbI₂ film deposited directly from the PbI₂ precursor. The 55 larger exposed surface of the porous PbI₂ film would enable a faster intercalation reaction of MAI with PbI2 during the final conversion step, leading to a complete conversion of PbI₂ within 30 s. With such a short dipping time, the issue of MAPbI₃ dissolution in the IPA solution is effectively mitigated.

60 Conclusions

We investigated the effect of varying PbI_2 concentration (during the first step) and changing the dipping time in MAI

solution (during the second step) using the two-step sequential deposition on the optical/structural properties of perovskite films and their relationship to the device characteristics of solar cells based on these perovskite films. We find that for the high-

- $_{\rm 5}$ concentration (1.0 M) PbI₂ precursor, the conversion of PbI₂ to MAPbI₃ requires a long conversion time in the MAI IPA solution. The long exposure to IPA solution causes the dissolution of the converted MAPbI₃ film, leading to reduced photocurrent generation, and consequently, poor device performance. On the
- ¹⁰ other hand, a short exposure of PbI_2 to the MAI IPA solution results in a partial conversion of the film with significant PbI_2 residue, which also limits the device performance. Using a less concentrated PbI_2 solution (e.g., 0.4 M) shows complete conversion of PbI_2 with fixed reaction duration (10 min).
- ¹⁵ However, the poorer light absorption for the perovskite film prepared with a low concentration of PbI_2 also limits the device performance. To address this dilemma, we demonstrate a new three-step solution process to prepare MAPbI₃ perovskite by using a MAI solution with regular (non-anhydrous) IPA. In
- ²⁰ comparison to the two-step approach using similar processing conditions, the three-step method enables the formation of PbI₂ film through the thermal decomposition of the PbI₂+MACl precursor film. This facilitates a rapid conversion of PbI₂ to MAPbI₃ without any traceable residue PbI₂ in the final
- 25 conversion step, leading to improved device performance. Thus, our reported three-step solution deposition using regular IPA represents a promising alternative deposition method for preparing low-cost, high-efficiency perovskite solar cells.

Acknowledgement

³⁰ YZ is thankful for the support of the NSFC (Grant 51372151 and 21303103). KZ acknowledges the support by the U.S. Department of Energy/National Renewable Energy Laboratory's Laboratory Directed Research and Development (LDRD) program under Contract No. DE-AC36-08GO28308.

35 Notes and references

^a School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China E-mail: yixin.zhao@sjtu.edu.cn

- ^b Chemical and Materials Science Center, National Renewable Energy
- 40 Laboratory, 15013 Denver West Parkway, Golden, CO 8040.1, USA E-mail: kai.zhu@nrel.gov
 - A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc., 2009, 131, 6050-6051.
- 45 2. J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park and N.-G. Park, *Nanoscale*, 2011, **3**, 4088-4093.
- N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, *Nat. Mater.*, 2014, 13, 897–903.
- J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K.
 Nazeeruddin and M. Gratzel, *Nature*, 2013, **499**, 316-319.
- M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, *Science*, 2012, **338**, 643-647.
- 6. R. F. Service, Science, 2014, 344, 458.
- H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Gratzel and N.-G. Park, *Sci. Rep.*, 2012, 2, 1-7.
- B. Conings, L. Baeten, C. De Dobbelaere, J. D'Haen, J. Manca and H.-G. Boyen, *Adv. Mater.*, 2014, 26, 2041-2046.
- P.-W. Liang, C.-Y. Liao, C.-C. Chueh, F. Zuo, S. T. Williams, X.-K.
 Xin, J. Lin and A. K. Y. Jen, *Adv. Mater.*, 2014, 26, 3748-3754.
- ⁶⁰ Xin, J. Lin and A. K. Y. Jen, *Adv. Mater.*, 2014, **26**, 3/48-3/54

- 10. Y. Zhao and K. Zhu, J. Phys. Chem. Lett., 2013, 4, 2880-2884.
- J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith and R. J. Nicolas, *Nano Lett.*, 2013, 14, 724-730.
- 65 12. H.-S. Kim, J.-W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Grätzel and N.-G. Park, *Nano Lett.*, 2013, **13**, 2412-2417.
 - J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, *Nano Lett.*, 2013, 13, 1764-1769.
- 70 14. Y. Zhao and K. Zhu, J. Phys. Chem. C, 2014, 118, 9412-9418.
 - P. Docampo, F. Hanusch, S. D. Stranks, M. Döblinger, J. M. Feckl, M. Ehrensperger, N. K. Minar, M. B. Johnston, H. J. Snaith and T. Bein, *Adv. Energy Mater.*, 2014, DOI: 10.1002/aenm.201400355.
- 16. A. Yella, L.-P. Heiniger, P. Gao, M. K. Nazeeruddin and M. Grätzel, *Nano Lett.*, 2014, **14**, 2591-2596.
- 17. D. Liu and T. L. Kelly, Nat. Photon., 2014, 8, 133-138.
- K. Liang, D. B. Mitzi and M. T. Prikas, *Chem. Mater.*, 1998, **10**, 403-411.
- 19. N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M. K. Nazeeruddin, J. Maier and M. Grätzel, *Angew. Chem. Int. Ed.*, 2014, **53**, 3151-3157.
- J. J. Shi, J. Dong, S. T. Lv, Y. Z. Xu, L. F. Zhu, J. Y. Xiao, X. Xu, H. J. Wu, D. M. Li, Y. H. Luo and Q. B. Meng, *Appl. Phys. Lett.*, 2014, 104, 063901.
- 21. H.-S. Kim, S. H. Im and N.-G. Park, J. Phys. Chem. C, 2014, 118, 5615-5625.
- P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M. K. Nazeeruddin and M. Grätzel, *Nat. Commun.*, 2014, 5, 3834.
- M. A. Green, A. Ho-Baillie and H. J. Snaith, Nat. Photon., 2014, 8, 506-514.
- 90 24. Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng and L. Han, *Energy Environ. Sci.*, 2014, 7, 2934-2938.
 - 25. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li and Y. Yang, J. Am. Chem. Soc., 2014, 136, 622-625.
- 26. Y. Zhao, A. M. Nardes and K. Zhu, J. Phys. Chem. Lett., 2014, 5, 490-494.
- 27. Y. Zhao and K. Zhu, J. Am. Chem. Soc., 2014, 136, 12241-12244.
- Y. Zhao, A. Nardes and K. Zhu, *Faraday Discuss.*, 2014, DOI: 10.1039/C1034FD00128A.
- D. Bi, S.-J. Moon, L. Haggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Gratzel and A. Hagfeldt, *RSC Adv.*, 2013, 3, 18762-18766.
 - B.-W. Park, B. Philippe, T. Gustafsson, K. Sveinbjörnsson, A. Hagfeldt, E. M. J. Johansson and G. Boschloo, *Chem. Mater.*, 2014, 26, 4466-4471.

105

110

Table of Contents Entry

We demonstrate a facile approach of preparing PbI_2 -free $CH_3NH_3PbI_3$ perovskite films via a three-step sequential solution process.