Microwave-assisted solvothermal preparation of nitrogen and sulfur co-doped reduced graphene oxide and graphene quantum dots hybrids for highly efficient oxygen reduction

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Journal of Materials Chemistry A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>TA-ART-09-2014-005096.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>20-Oct-2014</td>
</tr>
</tbody>
</table>

Complete List of Authors:

Luo, Zhimin; Jiangsu Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, PR China 210046.,

Yang, Dongliang; Jiangsu Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, PR China 210046.,

Qi, Guangqin; Jiangsu Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications,

Shang, Jingzhi; Division of Physics and Applied Physics, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371.,

Yang, Huanping; Department of Science, Zhejiang University of Science and Technology,

Wang, Yanlong; Division of Physics and Applied Physics, School of Physical & Mathematical Sciences, Nanyang Technological University,

Yuwen, Lihui; Jiangsu Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, PR China 210046.,

Yu, Ting; Nanyang Technological University, Division of Physics and Applied Physics, SPMS

Wang, Lian-Hui; Nanjing University of Posts and Telecommunications, Institute of Advanced Materials

Huang, Wei; University of Maryland School of Medicine, Institute of Human Virology
Microwave-assisted solvothermal preparation of nitrogen and sulfur co-doped reduced graphene oxide and graphene quantum dots hybrids for highly efficient oxygen reduction

Zhimin Luo, Dongliang Yang, Guangqin Qi, Jingzhi Shang, Huanping Yang, Yanlong Wang, Lihui Yuwen, Ting Yu, Wei Huang, Lianhui Wang

A facile solvothermal method assisted with microwave irradiation was developed for preparing nitrogen and sulfur co-doped reduced graphene oxide functionalized with fluorescent graphene quantum dots (N, S-RGO/GQDs). Graphene quantum dots (GQDs) shows high fluorescence and excitation-dependent fluorescent property. The resultant N, S-RGO/GQDs hybrids as a kind of metal-free electrocatalyst were demonstrated to have good catalytic property with long-term operation stability and tolerance to crossover effect of methanol for oxygen reduction via a four-electron pathway in alkaline solution. This research not only develops a low-cost, economic and scalable approach for preparing metal-free electrocatalyst for oxygen reduction reaction (ORR), but also produces nitrogen and sulfur co-doped graphene quantum dot (N, S-GQDs) with high fluorescent characteristic.

Introduction

Synthesis of efficient and low-cost catalysts for oxygen reduction reaction (ORR) is very important in the development of fuel cells. So far, the general catalysts used for ORR in the cathodes of commercial fuel cells are still platinum-based materials. However, their extensive application has been weakened by the high cost and poor durability of platinum. Therefore, great efforts have been made to reduce or replace the catalyst based on Pt. For example, developing non-precious-metal as well as metal-free catalysts for ORR is the most active and competitive.

Heteroatom-doped carbon nanomaterials have been researched as metal-free catalysts for ORR. Previous reports have confirmed that the doping of heteroatoms (N, P, B) into graphene or carbon nanotubes can effectively modify their intrinsic properties including their electrochemical activities. For instance, nitrogen-doped carbon nanotubes and graphene have shown good electrocatalytic property and are considered to be promising for replacing commercial catalysts based on platinum, but it is still on a less competitive level. It is believed that there are two limitations for their applications in the fuel cells. On one hand, nitrogen-doping of carbon nanotubes or graphene inevitably needs to be carried out at high temperatures, which encumbers their large-scale production and application in fuel cells. On the other hand, the low surface density of catalytic sites influences their catalytic activity.

Microwave-assisted and solvothermal method is known for high efficiency, simple operation, mild synthesis conditions, and capability to deliver relatively large quantities. Graphene quantum dots (GQDs) have special properties including their quantum confinement and higher surface-to-volume ratio. GQDs prepared from graphene oxide (GO) are soluble in water and common organic solvents, which can self-assemble on the surface of reduced graphene oxide (RGO) to prevent aggregation in the procedure of reducing GO in the solution. Furthermore, doping GQDs with heteroatoms have been proved...
to have enhanced fluorescence and electrocatalytic activity for ORR. Furthermore, the larger specific surface area of heteroatom-doped GQDs can result in their higher surface density of catalytic sites.

In this work, we developed a solvothermal approach assisted with microwave irradiation to synthesize nitrogen and sulfur co-doped GQDs (N, S-GQDs) and RGO/QGDs hybrids (N, S-RGO/GQDs). The solution chemistry process for synthesis of N, S-GQDs or N, S-RGO/GQDs hybrids is based on the reaction of GO and reduced glutathione in the N, Ndoped DMF at 200 °C under microwave irradiation. N, S-RGO/GQDs hybrids exhibit excellent electrocatalytic activity and show good potential prospect as a low-cost, metal-free electrochemical catalyst for ORR to replace the commercial Pt/C catalyst. N, S-GQDs as by-product emits strong blue fluorescence at 350 nm excitation. In view of the simple and one-pot preparation process, this method is favorable for synthesizing fluorescent N, S-GQDs, and N, S-RGO/GQDs hybrids as metal-free catalyst for ORR on a large scale.

Experimental

Synthesis of N, S-RGO/GQDs hybrids

Firstly, GO was prepared by the modified Hummers’s method according to our previous reports. mg of GO was added into the mixed acid (H₂SO₄ : HNO₃ = 1 : 3) and ultrasonicated for 5 min. Then the mixed suspension was refluxed for 12 h at 70 °C and subsequently was added into 160 mL of deionized water. The GO dealt with the mixed acid was separated through the filtration of microporous membrane (pore size 0.22 μm), and rinsed with deionized water. The as-prepared GO was dispersed in 50 mL of DMF and ultrasonicated for 9 h. 20 mg of reduced glutathione was added into 20 mL of the colloidal solution. The mixed solution was transferred to a quartz tube and was reacted at 200 °C for 12 h under microwave irradiation. The prepared solution was centrifuged at 8000 rpm for 15 min. The upper solution was N, S-GQDs in DMF and the deposition was purified with deionized water to get N, S-RGO/GQDs hybrids.

The preparation of modified electrode

Glassy carbon electrode (3 mm diameter) (GCE) was polished successively with 1.0, 0.3 and 0.05 μm α-alumina powders, and ultrasonicated in ethanol and deionized water for short time to clean it. Then the electrode was rinsed with deionized water and dried at room temperature. mg of N, S-RGO/GQDs hybrids or the commercial Pt/C catalyst (10wt% Pt on carbon black) was dispersed in the 1.40 mL deionized water and ultrasonicated for 30 min to form the suspension with the concentration of 5 mg mL⁻¹. The modified GCE were prepared by dropping 5 μL of the N, S-RGO/GQDs hybrids or Pt/C suspension (5 mg mL⁻¹) onto the surface of prepolished GCE and being dried at the room temperature. 5 μL 1% Nafion solution was dropped on the surface of the modified GCE and dried at the room temperature to form the working electrodes for cyclic voltammograms (CVs). RDE coated with 5 μL N, S-RGO/GQDs hybrids or Pt/C suspension (5 mg mL⁻¹) was used for linear sweep voltammetry (LSV) measurements.

Electrochemical measurements

All electrochemical measurements were performed at room temperature in 0.1 M KOH solutions, which were purged with nitrogen or oxygen for at least 30 min prior to each measurement. The modified electrodes were used as working electrode while a Ag/AgCl (saturated by 3 M KCl) electrode as reference and a platinum wire as counter electrode. LSV measurements were performed with different rotary speeds from 100 to 2400 rpm.

Characterizations

Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images of N, S-RGO/GQDs hybrids and N, S-GQDs were recorded on a JEOL JEM-2011F electron microscope operated at 200 kV. X-ray diffraction (XRD) patterns were obtained using a Philips Xpert X-ray diffractometer using Cu KR radiation at λ = 1.5418 Å. XPS characterization was performed on the XPS spectrometer (QUANTUM 2000, Physical electronics, USA) by using focused monochromatized Al Karadiation (1486.6 eV). The UV–vis absorption spectra were measured by using UV-VIS-NIR spectrophotometer (Shimadzu, UV-3150). Raman characterization was carried out with a 633 nm micro-Raman spectrometer (Renishaw INVIA Reflex) with the 1800 lines/mm grating at room temperature.

Results and discussion

Scheme 1 Preparation of fluorescent GQDs, and N, S-RGO/GQDs hybrids for ORR.

N, S-RGO/GQDs hybrids and N, S-GQDs were synthesized through a one-step solvothermal process assisted by microwave irradiation (Scheme 1). GO with the small size was firstly prepared by modified Hummers’s method and dispersed in DMF. Then reduced glutathione as nitrogen and sulfur precursors was added into the GO/DMF dispersion. The mixture of GO and reduced glutathione were heated at 200 °C under microwave irradiation for 12 h. Some of N, S-GQDs were patterned on the N, S-RGO through the covalent and non-covalent interaction. Most of N, S-GQDs were dispersed in DMF. The N, S-RGO/GQDs hybrids were separated by centrifugation and N, S-GQDs in upper solution were prepared.
after DMF and excessive reduced glutathione were removed by rotary evaporation and dialysis.

The prepared N, S-RGO/GQDs hybrids were investigated by HRTEM. As shown in Fig. 1A and B, fairly uniform N, S-GQDs with the diameter of 1.5-4.0 nm are dispersed on the sheet of RGO doped with nitrogen and sulfur (N, S-RGO), which are similar to GQDs or N-doped GQDs prepared by the electrochemical method.19,23 HRTEM images (Fig. 1C and D) and Fourier transform of the corresponding HRTEM image (Inset of Fig. 1E) indicate that the interlayer distance of N, S-GQDs is 0.206 nm, which is the same as the interplanar distance of diamond ($d_{111} = 0.206$ nm).26,27 The inset (lower corner) in Fig. 1E illustrates a multilayered structure of graphene with a lattice spacing of 0.343 nm that is very close to the (002) lattice spacing of graphite ($d_{002} = 0.34$ nm).28

The crystal phases of GO and N, S-RGO/GQDs hybrids were determined by XRD. As shown in Fig. 2, the diffraction pattern of GO has a peak centered at $2\theta = 11.05^\circ$, corresponding to the (001) reflection with interlayer spacing of 7.99 Å. After GO was reacted with reduced glutathione for 12 h at 200°C under microwave irradiation, the XRD peak of GO disappeared, but two new broad diffraction peaks at 2θ values of 25.0° and 43.0° in N, S-RGO/GQDs hybrids appeared, which are close to the typical (002) diffraction peak (d-spacing 3.35 Å at $2\theta = 26.6^\circ$) of graphite and (111) diffraction peak (d-spacing 2.06 Å at $2\theta = 43.98^\circ$) of diamond.27,28 These results confirmed that GO was reduced at 200°C in the DMF under microwave irradiation.

Raman spectra of GO and N, S-RGO/GQDs hybrids are included in Fig. 2B. It is observed that N, S-RGO/GQDs hybrids present Raman peaks centered at 1333 and 1604 cm-1 resulting from the typical D and G band respectively, which are similar to the nitrogen-doped GQDs prepared by electrochemical method.19 This indicates that N, S-GQDs have been assembled on the N, S-RGO. N, S-RGO/GQDs hybrids have an I_D/I_G ratio of 0.84, which is much lower than that of nitrogen-doped graphene or sulfur-doped graphene in other reports,4,29 indicating the formation of larger crystalline graphitic domains in N, S-RGO/GQDs hybrids.
The surface composition and element analysis of the N, S-RGO/GQDs hybrids were characterized by X-ray photoelectron spectroscopy (XPS). As seen from the survey scan of N, S-RGO/GQDs hybrids in Fig. 3A, the N/C atomic ratio of N, S-RGO/GQDs hybrids was calculated to be 4.74%, which is comparable to that of N-doped graphene and GQDs reported previously. The S/C atomic ratio of N, S-RGO/GQDs hybrids is about 1.76%. The N1s spectrum (Fig. 3B) shows four peaks at 398.4, 399.3, 400.5 and 402.3 eV, which are attributed to the pyridinic-N, pyrrolic-N, and N-oxides of N, S-RGO/GQDs hybrids, respectively. The S2p spectrum of N, S-RGO/GQDs hybrids is displayed in Fig. 3c. The five peaks in Fig. 3c are attributed to three different sulfur species. The first and the second doublet at 163.2, 164.5 and 165.6 eV originates from the core levels of sulfur in thiol, thiophene and benzothiadiazole, respectively. The peaks at 167.2 eV, 168.4 eV and 170.0 eV are assigned to the oxidized sulfur groups (-C-SO\textsubscript{x}-C-, x = 2-4, at 167.5-171.5 eV) such as sulfate or sulfonate. Recent studies suggest that the enhanced electrocatalytic activity of nitrogen-doped graphene is due to the pyridinic-N, pyrrolic-N or graphitic-N (quaternary nitrogen). Furthermore, the increased electrocatalytic activity of sulfur-doped graphene is related to the formation of thiophene or benzothiadiazole-like structures with neighboring carbon atoms, and the oxidized sulfur groups are chemically inactive for ORR. The XPS characterization indicates that N, S-RGO/GQDs hybrids contain advantageous structures for ORR, including the pyridinic-N, pyrrolic-N, thiophene or benzothiadiazole-like structures. The doping of nitrogen and sulfur in N, S-GQDs was confirmed by the XPS characterization in Fig. S1. The optical properties of dissociative N, S-GQDs were investigated by UV-vis absorption and fluorescent measurements. From the UV-vis absorption spectrum of the N, S-GQDs (Fig. 4A), a typical absorption peak at about 337 nm was observed, which is similar to that of the reported GQDs. The fluorescent emission spectra show a strong peak at 425 nm as well as a shoulder peak at 442 nm when excited at 320 nm (Fig. 4C), and only a strong peak at 425 nm at the excitation of 350 nm. The full width at half maximum (FWHM) is about 89 nm, which is smaller than that of reported GQDs. Inset in Fig. 4B is the photograph of N, S-GQDs aqueous solution with the bright blue fluorescence under UV light (λ = 365 nm). Using quinine sulfate as a reference, the fluorescent quantum yield was measured to be 11.7%, which is higher than those of reported fluorescent carbon nanomaterials. It is found that the fluorescent spectra of N, S-GQDs are dependent on excitation wavelengths. The main fluorescent emission peak shifts to the longer wavelength when the excitation wavelength is changed from 275 to 475 nm, and the strongest peak appears when they are excited at 350 nm. These excitation-dependent fluorescent behaviors were extensively reported in fluorescent carbon-based nanomaterials, and it may result from optical transitions of N, S-GQDs with different sizes and surface defects. Upconversion fluorescent property of N, S-GQDs has been observed at the excitation wavelengths from 575 to 900 nm. Most interestingly, the upconversion fluorescence also show an excitation-independent fluorescent behavior, which is similar to the fluorescence spectra at the excitation wavelength from 275 to 475 nm. This upconverted fluorescent property of N, S-GQDs should be attributed to the multiphoton active process similar to previous reported carbon dots.
reported previously. These results indicate that N, S-RGO/GQDs hybrids have good catalytic activity and are promising as metal-free catalyst for the ORR in an alkaline solution.

To investigate the reaction mechanism of ORR process on the N, S-RGO/GQDs hybrids, LSV measurements on a rotating disk electrode (RDE) were recorded at different rotating speed from 100 to 2400 rpm in O$_2$-saturated 0.1 M KOH solution. It can be observed that the current density of ORR increases with the increase of rotating speed (Fig. 5C). Koutecky-Levich plots (Fig. 5D) corresponding to the LSV curves in Fig. 5C suggests a first-order reaction for ORR on GCE modified with N, S-RGO/GQDs hybrids. The limiting current of N, S-RGO/GQDs hybrids at the potential of -0.8 V can reach 4.53 mA cm$^{-2}$ at the rotary speed of 1600 rpm, which is close to Pt/C. The transferred electron number per O$_2$ molecule (n) involved in the ORR process is calculated to be 3.6–4.0 at the potential from -0.45 to -0.60 V, indicating a four-electron process for ORR on the GCE modified with N, S-RGO/GQDs hybrids. The excellent catalytic activity of N, S-RGO/GQDs hybrids can be explained by the doping of nitrogen and sulfur atoms, which results in different electronegativity on graphene nanosheets with more charged sites that are favorable for the adsorption and reduction of O$_2$. Electrochemical stability and resistance to crossover effects of catalysts are important for their practical application in fuel cells. The electrocatalytic stability of N, S-RGO/GQDs hybrids towards ORR was examined through continuous potential cycling between -0.8 V and 0.4 V in O$_2$-saturated 0.1 M KOH solution. It can be observed from Fig. 6 that the peak potential and onset potential of the commercial Pt/C for ORR shift negatively after 1000 continuous cycles of CVs, indicating its evident decrease of catalytic activity. 27% of the original response current at -0.6 V for ORR decreases on the commercial Pt/C modified GCE after cycle durability test. However, only 10.3% of the original response current decreases after 1000 continuous cycles of CVs on the GCE modified with N, S-RGO/GQDs hybrids, indicating the better catalytic stability of N, S-RGO/GQDs hybrids compared with the commercial Pt/C. TEM and HRTEM images in Fig. S4 shows that the particle size and lattice distance of N, S-GQDs don’t change evidently in N, S-RGO/GQDs hybrids after cycle durability test in comparison with those of sample before cycle durability test, which confirms the stability of N, S-RGO/GQDs hybrids as the ORR catalyst. The resistance to crossover effects was measured by CVs of GCE modified with N, S-RGO/GQDs hybrids and the commercial Pt/C catalyst in the O$_2$-saturated 0.1 M KOH solution, and O$_2$-saturated 0.1 M KOH solution containing 3 M CH$_3$OH. As shown in Fig. 7A and Fig. 7B, the cathodic peak of GCE modified with the commercial Pt/C catalyst for ORR disappears in the O$_2$-saturated 0.1 M KOH solution containing 3 M CH$_3$OH coupled with one pair of characteristic peaks derived from methanol reduction/oxidation. GCE modified with N, S-RGO/GQDs hybrids exhibits a stable ORR without any specific electrochemical catalytic activity towards methanol in the electrolyte containing methanol, suggesting that N, S-RGO/GQDs hybrids have a remarkable tolerance to possible crossover effects.
In order to illustrate the relationship between the structure and electrochemical catalytic activity of N, S-RGO/GQDs hybrids, N, S-RGO/GQDs hybrids were annealed at 800 °C for 2 h in the Ar atmosphere to further study their electrochemical catalytic activity. The annealed N, S-RGO/GQDs hybrids display more negative onset potential and peak potential for the ORR than N, S-RGO/GQDs hybrids (Fig. S5), which indicates that catalytic activity of N, S-RGO/GQDs hybrids decreases after being annealed at 800 °C for 2 h in the Ar atmosphere. The n value of the annealed N, S-RGO/GQDs hybrids was measured to be 2.1-2.3 at the potential from -0.45 to -0.60 V (Fig. S6), suggesting a two-electron process for the ORR on the GCE modified with the annealed N, S-RGO/GQDs hybrids.8,10,44

The changes of structures in the N, S-RGO/GQDs hybrids after being annealed at 800 °C for 2 h in the Ar atmosphere were characterized by XPS, which can be seen in Fig. S7. Two peaks at 401.6, and 405.0 eV appear. The binding energy at 401.6 eV can be ascribed to graphitic nitrogen, and 405.0 eV is ascribed to chemisorbed nitrogen oxide.38,39 Binding energy at 398.4 eV ascribed to the pyridinic nitrogen of the N, S-RGO/GQDs in the Fig. 3B disappears after being annealed. The contrast of XPS characterization between N, S-RGO/GQDs hybrids and the annealed N, S-RGO/GQDs hybrids indicates that the structure of pyridinic nitrogen decreases, and chemisorbed nitrogen oxide forms in the process of being annealed at the 800 °C. Furthermore, the sulfur content of N, S-RGO/GQDs hybrids decreased from 1.28 atom% to 0.24 atom% after being annealed. The effect of sulfur on the enhancing ORR catalytic activity was proved by previous reports.10,40 Therefore, it is suggested that the pyridinic nitrogen and sulfur content in the N, S-RGO/GQDs hybrids acts as a predominant status for the high efficient electrocatalytic activity of N, S-RGO/GQDs hybrids via a four-electron pathway for ORR in the alkaline solution.

Conclusions

In summary, microwave-assisted and solvothermal method has been developed to prepare excitation-dependent fluorescent N, S-GQDs, and N, S-RGO/GQDs hybrids as a kind of metal-free catalyst for ORR. The prepared N, S-RGO/GQDs hybrids show significantly improved electrocatalytic performance and much better long-term stability than the commercial Pt/C catalysts. The N, S-RGO/GQDs hybrids show promising prospect to be applied in the fuel cell.

Acknowledgements

This work was financially supported by the National Basic Research Program of China (2012CB933301), National Natural Science Foundation of China (61273409), Ministry of Education of China (IRT1148, 2012323110007), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Postdoctoral Science Foundation of China (2013M541700). Yu Ting thanks the support of Singapore National Research Foundation under NRF RF award No. NFRF2010-07.

Notes and references

†Electronic Supplementary Information (ESI) available: XPS spectra and catalytic property of N, S-GQDs. LSV measurements of the commercial Pt/C catalyst. XPS spectra, CVs, and LSV results for N, S-RGO/GQDs hybrids annealed at 800 °C for 2 h in the Ar. TEM and TEM images of N, S-RGO/GQDs hybrids after cycle durability test. Comparison of ORR catalytic performances between N, S-RGO/GQDs hybrids and other doped carbon materials in the literatures. See DOI: 10.1039/b000000x/

This journal is © The Royal Society of Chemistry 2014
21. Y. Yan, X. Cui, B. Li, L. Li, Nano lett., 2010, 10, 1869-1873.
Microwave-assisted solvothermal preparation of nitrogen and sulfur co-doped reduced graphene oxide/graphene quantum dot hybrids for highly efficient oxygen reduction.