Journal of Materials Chemistry A

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsA

1	Palladium nanoparticles immobilized on core-shell magnetic
2	fibrous as highly efficient and recyclable heterogeneous catalyst for
3	reduction of 4-nitrophenol and Suzuki coupling reactions
4	Xuanduong Le, ^a Zhengping Dong, ^{*a} Yansheng Liu, ^a Zhicheng Jin, ^a Thanh-Do
5	Huy, ^b Minhdong Le ^b and Jiantai Ma ^{*a}
6	^a Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of
7	Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR
8	China.
9	^b Faculty of Technical Physics and Chemistry, Le Quy Don Technical University,
10	Hanoi, Vietnam.
11	
12	* Corresponding author, E-mail addresses: dongzhp@lzu.edu.cn (Zhengping Dong),
13	majiantai@lzu.edu.cn (Jiantai Ma).
14	<i>Tel.:</i> +86 931 891 2311; <i>Fax:</i> +86 931 891 2582.
15	
16 17	
18	
19	
20	
21	
22	
23	
24 25	
26	
27	
28	
29	1

1 Abstract

2	In this study, a novel core-shell magnetic fibrous nanocatalyst
3	Pd/Fe ₃ O ₄ @SiO ₂ @KCC-1 with easy accessibility of active sites and convenient
4	recovery by applying an external magnetic field was successfully developed.
5	Fe ₃ O ₄ @SiO ₂ @KCC-1 was functionalized with amino groups acting as robust anchors
6	so that the palladium nanoparticles (Pd NPs) with an average diameter of about 4 nm
7	were well-dispersed on the fibers of the $Fe_3O_4@SiO_2@KCC-1$ without obvious
8	aggregation. The synthesized $Pd/Fe_3O_4@SiO_2@KCC-1$ nanocatalyst exhibited
9	excellent catalytic activity in the reduction of 4-nitrophenol by sodium borohydride,
10	and Suzuki cross coupling reactions of aryl chlorides with aryl boronic acids due to
11	the easy accessibility of the active sites. Furthermore, the Pd/Fe $_3O_4@SiO_2@KCC-1$
12	nanocatalyst was conveniently recovered by magnet and could be reused for at least
13	five cycles without significant loss in activity; thus, confirming its good stability.
14	Therefore, the above mentioned approach based on core-shell magnetic fibrous
15	Fe ₃ O ₄ @SiO ₂ @KCC-1 provided a useful platform for the fabrication of Pd NPs based
16	catalysts with easy accessibility, superior activity and convenient recovery.

1 **1. Introduction**

In the catalytic area, noble metal nanoparticles (NMNPs) based heterogeneous 2 catalysts have attracted significant attention due to the high catalytic efficiency in 3 numerous liquid-phase catalytic processes.¹⁻³ In particular, palladium nanoparticles 4 (Pd NPs) based catalysts have been extensively studied because of the superior 5 catalytic performances toward diverse reactions such as Suzuki coupling.^{4, 5} Heck C-C 6 coupling,⁶ degradation of pollutants,⁷ hydrogenation,⁸ and fuel cells.⁹ The catalytic 7 activity of Pd NPs is strongly dependent on the active atoms on the surface that are 8 usually related to the surface properties.¹⁰ Therefore, smaller Pd NPs tends to show a 9 superior catalytic activity as it has a higher surface-to-volume ratio.^{11, 12} As the size of 10 Pd NPs reduce, the surface energy of Pd NPs increase; thus, leading to a tendency of 11 inter-particle aggregation. The aggregation of Pd NPs will reduce the catalytic 12 efficiency of the catalysts.¹³ Therefore, stability of the Pd NPs is another crucial issue 13 for their further application. One solution for Pd NPs stabilization involves the using 14 of appropriate support materials. Various supports such as carbon,^{14, 15} Al₂O₃,^{16, 17} 15 mesoporous silica,¹⁸ and core-shell magnetic mesoporous¹⁹ have been used for the 16 immobilization of Pd NPs owing to their excellent stability, high surface areas, and 17 robust surface chemistry. All the above-mentioned materials have large specific 18 surface areas which lead to the great dispersion of the NPs, thus prevent the 19 aggregation of NPs and improve the activity of the catalyst system. However, for all 20 21 the reported catalysts, poor accessibility to these active sites leads to reduction of the mass transfer effect. Silica supports with easily accessible high surface areas, not due 22

1 to the pores, therefore, are highly desirable. Vivek Polshettiwar reported the synthesis of fibrous silica nanospheres (KCC-1) by the microwave assisted hydrothermal 2 technique and our laboratory research group reported synthesis of KCC-1 by the 3 hydrothermal method.²⁰⁻²² Furthermore, Liu et al. reported the fabrication of 4 core-shell magnetic fibrous $Fe_3O_4@SiO_2@KCC-1$, which both have unique properties 5 of KCC-1 and physical properties of magnetic materials.²³ Therefore, the 6 7 Fe₃O₄@SiO₂@KCC-1 is extremely useful in the design of supported catalysts because of the unique physical properties such as easily accessible of active sites, high 8 9 surface area, reusability and superparamagnetism.

Recently, the transformation of harmful organic wastes into reusable compounds 10 with low toxicity in aqueous solutions under mild conditions has become an 11 12 extremely important area of study for chemists. As is well known, 4-nitrophenol 13 (4-NP), a well-characterized industrial pollutant which has been listed on the "Priority Pollutant List" by the U.S. Environmental Protection Agency, is harmful to aquatic 14 life and human health in terms of its toxicity, potential carcinogenicity, and 15 mutagenicity.²⁴⁻²⁶ The use of catalytic reduction process for the disposal of 4-NP is 16 expected to be the most efficient, green, and economical way.^{27, 28} Additionally, much 17 recent work has been directed toward the Suzuki cross coupling reaction because it is 18 the most powerful and widely used method for synthesis of biaryls which are 19 important compounds in pharmaceutical, agrochemical, natural product, and advanced 20 materials chemistry.²⁹⁻³¹ Due to the inherent advantages, several heterogeneous 21 catalysts for Suzuki cross coupling reaction have been developed. Particular attentions 22

Journal of Materials Chemistry A

are paid to the use of aryl chlorides as substrates because they are much cheaper and readily available than the usually used aryl bromides and iodides. Therefore, the catalytic activity of heterogeneous catalysts for Suzuki cross coupling of aryl chlorides is considerably challenged. So far, heterogeneous examples for the Suzuki cross coupling reaction of less reactive aryl chlorides are quite rare.³²

6 Based on the aforementioned considerations, herein, we report the synthesis of a 7 novel core-shell magnetic fibrous Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst system 8 which has the following advantages (Scheme 1). First, the Pd/Fe₃O₄@SiO₂@KCC-1 9 nanocatalyst exhibits high accessibility and excellent catalytic activity for reduction of 4-NP and Suzuki cross coupling reactions of aryl chlorides with aryl boronic acids. 10 11 Second, the catalyst could be easily recovered from the reaction mixture by a magnet 12 because of the inner magnetic Fe_3O_4 core. Third, the as-prepared catalyst is long-life, 13 namely, it exhibits high reusability without visibly decrease in the catalytic performance after five cycles. Therefore, this study of Pd/Fe₃O₄@SiO₂@KCC-1 14 15 nanocatalyst system provides a useful platform for exploring environmentally friendly Pd NPs based catalysts with superior activity, convenient recovery, and reusability. 16

1

2 Scheme 1 Preparation of the $Pd/Fe_3O_4@SiO_2@KCC-1$ nanocatalyst.

3 **2. Experimental section**

4 *2.1. Material*

Tetraethoxysilane (TOES), 3-aminopropyltriethoxysilane (APTES), and Pd(II) acetate
were purchased from Aladdin Chemical Co., Ltd. 4-NP, 1-pentanol, urea, and aryl
halide were purchased from Lanzhou Aihua Chemical Company. Aryl boronic acids
were obtained from Shanghai Chemical Reagent Co. Ltd. Organic solvents used were
of analytical grade and did not require further purification.

10 2.2. Synthesis of Fe_3O_4 and Fe_3O_4 @SiO₂ core-shell microspheres

The Fe₃O₄ NPs and Fe₃O₄@SiO₂ core-shell microspheres were synthesized according to the method reported.³³ FeCl₃ (2.6 g, 16 mmol), trisodium citrate (1.0 g, 3.4 mmol), and sodium acetate (NaAc) (4.0 g, 48.8 mmol) were dissolved in ethylene glycol (80 mL) with magnetic stirring. The obtained yellow solution was then transferred and sealed into a Teflon-lined stainless-steel autoclave. The autoclave was heated at 200

Journal of Materials Chemistry A

^oC for 10 h, and then allowed to cool to room temperature. The black products were
isolated by strong magnetic suction, washed with ethanol and deionized water several
times.

The Fe₃O₄@SiO₂ nano-spheres were prepared through a versatile solution sol-gel 4 5 method as follows. The Fe_3O_4 NPs (0.7 g) was dispersed to a three-neck 6 round-bottom flask charged with absolute ethanol (140 mL), deionized water (40 mL), and ammonia solution (3 mL, 25%) by ultrasonication for 1 h. Then the mixture was 7 8 mixed uniformity under mechanical stirring for 15 min at room temperature. 9 Afterward, 2.0 mL TEOS was added dropwise and the mixture was allowed to proceed for 12h under strong mechanical stirring. The resultant core-shell 10 11 $Fe_3O_4@SiO_2$ nano-sphere product was separated by strong magnetic suction. 12 Followed by washing with ethanol and deionized water several times.

13 2.3. Synthesi of $Fe_3O_4@SiO_2@KCC-1$ core-shell microspheres

The Fe₃O₄@SiO₂@KCC-1 core-shell microspheres were synthesized according to the 14 literature method (scheme 1).²³ Fe₃O₄@SiO₂ (0.25 g) was dispersed in an aqueous 15 solution (30 mL) containing urea (0.3 g) to from solution A under ultrasonication 1 h. 16 17 CPB (0.5 g) was added to 0.75 mL of n-pentanol and 30 mL cyclohexane to from solution B. Solution A was added to solution B under stirring at room temperature. 18 19 Then 1.25 g TEOS was added dropwise to the above solution. The resulting mixture 20 was continually stirred for 1 h at room temperature and then placed into a 120 $^{\circ}$ C 21 environment for 5 h, thus inciting a reaction. After the reaction was completed, the 22 mixture was allowed to cool to room temperature, and the Fe₃O₄@SiO₂@KCC-1

Journal of Materials Chemistry A Accepted Manuscript nanocomposite

core-shell microspheres was isolated by strong magnetic suction, washed with
 deionized water and acetone, and dried overnight in a drying oven at 40 °C. This
 material was then calcined at 550 °C for 5 h in air.

4 2.4. Preparation of the $Pd/Fe_3O_4@SiO_2@KCC-1$ nanocatalyst

The 5 aminopropyl functionalized $Fe_3O_4@SiO_2@KCC-1$ 6 $Fe_3O_4@SiO_2@KCC-1-NH_2$ was synthesized by the following procedures (Scheme 1). 7 In a 100 mL round-bottom flask, Fe₃O₄@SiO₂@KCC-1 (0.6 g) and APTES (0.15 g) 8 were introduced into 50 mL toluene by ultrasonication for 1 h. The mixture was 9 refluxed for 12 h at nitrogen protection. After being cooled to room temperature, the solution was isolated by strong magnetic suction, and the solid was washed several 10 11 times with ethanol to remove the remaining non-supported APTES. It was then dried 12 in a drying oven at 40 °C overnight, from which Fe₃O₄@SiO₂@KCC-1-NH₂ 13 nanocomposites were obtained.

Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst was synthesized by the following 14 15 procedures. A 100 mL round-bottom flask was charged with 0.5 g Fe₃O₄@SiO₂@KCC-1-NH₂ nanocomposite, 0.1 g Pd(OAc)₂, 30 mL deionized water, 16 17 and 20 mL acetonitrile, after which it was ultrasonically dispersed for 30 min. The obtained suspension was stirred at room temperature for 2 h. Subsequently, the fresh 18 NaBH₄ solution (0.2 M, 10 mL) was added into the above-mentioned suspension. 19 20 After 2 h of reduction, the product was isolated by strong magnetic suction, washed 21 repeatedly with deionized water and ethanol, and dried overnight in a vacuum at 30

22 °C.

1 2.5. General procedure for the reduction of 4-NP

2 The reduction of 4-NP by NaBH₄ was chosen as a model reaction for investigation of 3 the catalytic performance of Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst. In short, 2.8 mL 4 of deionized water and 30 µL of 4-NP (0.01 M) were mixed with 0.2 mL of freshly 5 prepared aqueous NaBH₄ solution (0.5 M), resulting in the formation of a deep yellow solution. Then, 5 μ L Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst (5 mgmL⁻¹) was added to 6 7 this resulting solution, and the reaction was allowed to proceed until the solution 8 became colorless. The reaction conversion was determined by the ultraviolet visible 9 spectroscopy (UV-Vis).

Reduction reactions were amplified 40X to characterize the reusability of the Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst. The catalyst was recovered using a powerful magnet, washed with water and ethanol and dried in a vacuum at room temperature before being used in the next catalytic run. The reduction of 4-NP catalytic process was carried out within 5 min for each cycle. This procedure was repeated five times.

15 2.6. General procedure for the Suzuki cross coupling reaction

After optimizing the reaction conditions (Table 2), Suzuki coupling reactions were performed by placing aryl halide (0.5 mmol), phenyl boronic acid (0.75 mmol), K_2CO_3 (1.0 mmol), EtOH (5.0 mL), and Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst (0.2 mol% Pd) in a 10 mL round bottom flask. The mixture was stirred at 80 °C for required time under air. After the completion of the reaction, the mixture was cooled to room temperature and the Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst was separated by powerful magnet. The reaction mixtures were analyzed by Gas chromatography (GC)

1 or GC–mass spectrometry (GC-MS).

2	The recovery and reuse of the Pd/Fe ₃ O ₄ @SiO ₂ @KCC-1 nanocatalyst was
3	described below. A mixture of 1-Iodo-4-nitrobenzene (0.5 mmol), Phenyl boronic acid
4	(0.75 mmol), K_2CO_3 (1 mmol), EtOH (5.0 mL), and Pd/Fe ₃ O ₄ @SiO ₂ @KCC-1
5	nanocatalyst (0.2 mol% Pd) was stirred at 80 °C under air. After being cooled to room
6	temperature towards the end of the reaction, the $Pd/Fe_3O_4@SiO_2@KCC-1$
7	nanocatalyst was separated by powerful magnet. The separated catalyst was washed
8	with ethanol and water, respectively, dried under vacuum at room temperature, and
9	reused. The reaction mixtures were analyzed by GC or GC-MS. This procedure was
10	repeated five times.

11 2.7. Characterization

12 Powder X-ray diffraction (XRD) spectra were obtained by a Rigaku D/max-2400 13 diffractometer using Cu-K α radiation in the 2 θ range of 10–90°. Fourier transform infrared (FT-IR) spectra were collected on a Nicolet Nexus 670 FT-IR spectrometer 14 15 equipped with a deuterated triglycine sulfate pyroelectric detector by using KBr pellets. Transmission electron microscopy (TEM) images were obtained on a Tecnai 16 G2 F30, FEI, USA. The UV-Vis measurement was conducted with the UV2800PC 17 18 UV-Vis spectrophotometer. Magnetic measurement of Fe₃O₄@SiO₂@KCC-1 and 19 Pd/Fe₃O₄@SiO₂@KCC-1 was performed using a quantum design vibrating sample 20 magnetometer (VSM) at room temperature in an applied magnetic field sweeping 21 from -15 to 15 KOe. The reaction conversion was estimated using GC (P.E. Auto 22 System XL) or GC–MS (Shimadzu QP2010S).

1 **3. Results and discussion**

2 *3.1. Catalyst preparation and characterization*

As can be seen in Scheme 1, $Fe_3O_4@SiO_2@KCC-1$ was first functionalized with APTES, then the aminopropyl groups can be acted as adsorption centers for Pd^{2+} . When the NaBH₄ was added to the solution, the Pd^{2+} ions were reduced and immobilized on the fibres of $Fe_3O_4@SiO_2@KCC-1$.

Fig. 1a shows the FT-IR spectra of the Fe₃O₄@SiO₂@KCC-1 (black line) and 7 $Fe_3O_4@SiO_2@KCC-1-NH_2$ (red line). The adsorption peaks at 1096 and 805 cm⁻¹ 8 9 correspond to the antisymmetric and symmetric stretching vibration of Si–O–Si bond in oxygen-silica tetrahedron, respectively. The peaks at 467 and 563 cm⁻¹ correspond 10 to Si-O, and Fe-O stretching, respectively. The strong peak at 3424 cm⁻¹ shows the 11 large number of Si-OH groups which are proved to be advantageous for the 12 modification of APTES on the Fe₃O₄@SiO₂@KCC-1 surface by hydrogen bonds.⁴ 13 The adsorption peak at 2926 cm^{-1} corresponds to -CH stretching. In the FT-IR 14 spectrum of Fe₃O₄@SiO₂@KCC-1-NH₂, the peak around 3400 cm⁻¹ represents the 15 adsorption of -OH and $-NH_2$ groups. The nitrogen, hydrogen, and carbon contents 16 were 0.70%, 0.86%, and 3.20% measured by the elementary analysis, respectively. 17 The FT-IR spectra and elemantary analysis data revealed that the APTES was 18 successfully grafted on the Fe₃O₄@SiO₂@KCC-1 surface, thus enabling them to act 19 as robust anchors for metal NPs. 20

The XRD patterns of the $Fe_3O_4@SiO_2@KCC-1$ and $Pd/Fe_3O_4@SiO_2@KCC-1$ samples are shown in Fig. 1b. The broad peak between 20 and 30° corresponds to

amorphous silica, indicating that the silica was successfully coated on the surface of
Fe₃O₄ core. The XRD pattern of the Pd/Fe₃O₄@SiO₂@KCC-1 shows characteristic
peaks of magnetite NPs. The sharp and strong peaks confirm that the products are
well crystallized.

5

6

The Fe₃O₄ NPs show five characteristic diffraction peaks at 2 theta = 30.3° , 35.6° , 43.2°, 57.2°, and 63° corresponding to (220), (311), (400), (511) and (440), respectively. The characteristic diffraction peaks at 39.8° corresponding to Pd (111). The XRD pattern of the Pd/Fe₃O₄@SiO₂@KCC-1 demonstrates that the Pd NPs were successfully immobilized on the Fe₃O₄@SiO₂@KCC-1 surface. The weight

Journal of Materials Chemistry A

1	percentage of Pd in the Pd/Fe $_3O_4@SiO_2@KCC-1$ nanocatalyst, as determined by
2	atomic absorption spectroscopic analysis, were 9.01 wt%.
3	The morphologies and structural features of the core-shell magnetic fibrous
4	Fe ₃ O ₄ @SiO ₂ @KCC-1 and Pd/Fe ₃ O ₄ @SiO ₂ @KCC-1 nanocatalyst were analyzed by
5	TEM. The as-prepared core-shell magnetic fibrous $Fe_3O_4@SiO_2@KCC-1$ with
6	fibrous structure were uniform and monodispersed (Fig. 2a). As is illustrated in Fig.
7	2a, the Fe ₃ O ₄ @SiO ₂ @KCC-1 possesses the core of Fe ₃ O ₄ NPs and silica fibres. The
8	average diameter of $Fe_3O_4@SiO_2@KCC-1$ and the Fe_3O_4 core were 350 nm and 100
9	nm, respectively. The TEM images shown in Fig. 2b further confirm that the distance
10	between the two fibers is about 18 nm (Fig. 2b). The larger distance between the
11	fibers leads to the easily loading the Pd NPs on Fe ₃ O ₄ @SiO ₂ @KCC-1, resulting in
12	the significant increase in the accessibility of the active sites on
13	Pd/Fe ₃ O ₄ @SiO ₂ @KCC-1 nanocatalyst. TEM images of Pd/Fe ₃ O ₄ @SiO ₂ @KCC-1
14	nanocatalyst were shown in Fig. 2c. The Pd NPs were remarkably dispersed on the
15	surface of the core-shell magnetic fibrous $Fe_3O_4@SiO_2@KCC-1$. The Pd NPs have a
16	narrow size distribution with a mean particle size of about 4 nm (Fig. 2c, inset). From
17	the inset picture of Fig. 2c, it can be seen that the resolved lattice fringes of Pd (111)
18	planes (d=0.225 nm) detected in the HRTEM image were attributed to Pd
19	nanocrystals.

Fig. 2 (a) and (b) TEM images of Fe₃O₄@SiO₂@KCC-1, (c) TEM images of
Pd/Fe₃O₄@SiO₂@KCC-1(inset picture; size distribution histogram and HRTEM image of the Pd
NPs crystal structure in detail on Fe₃O₄@SiO₂@KCC-1).

```
The elemental composition of the Pd/Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@KCC-1 samples was
determined by EDX analysis and X-ray photoelectron spectroscopy (XPS) (Fig. 3).
The EDX spectrum shown in Fig. 3a reveals that the as-prepared products contain Fe,
Si, Pd, Cu, C, and O, respectively. Among these elements, Cu and C are generally
influenced by the copper network support films and their degree of oxidation; Si, O,
Fe and Pd signals result from the Pd/Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@KCC-1 nanocatalyst.
```


1

Fig. 3 (a) EDS spectrum of Pd/Fe₃O₄@SiO₂@KCC-1, (b) XPS spectrum of
Pd/Fe₃O₄@SiO₂@KCC-1 (inset image: high resolution spectrum of Fe 2p and Pd 3d)

XPS was performed to investigate the chemical state of the surface of obtained
Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst (Fig. 3b). The XPS elemental survey scan of
the surface of Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst revealed the presence of Si, O,
Fe, Pd, N, and C elements in the samples. As shown in Fig. 3b, inset, the peaks
observed in the XPS spectra of Fe 2p at binding energies of 711 and 724.5 ev are
characteristic of Fe₃O₄. Moreover, the Fig. 3b, inset, also shows the XPS spectrum of
Pd 3d_{5/2} and Pd 3d_{3/2} at binding energies of 335 and 340.5 ev, respectively.

2 Fig. 4 Room temperature magnetization curves of Fe₃O₄@SiO₂@KCC-1 and
3 Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst (inset image: the separation-redispersion process of the
4 Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst by external magnetic field)

5 Magnetic measurements were carried out by VSM at room temperature. The 6 magnetization curves measured for Fe₃O₄@SiO₂@KCC-1 and 7 Pd/Fe₃O₄@SiO₂@KCC-1 are shown in Fig. 4. The magnetic saturation values of the Fe₃O₄@SiO₂@KCC-1 and Pd/Fe₃O₄@SiO₂@KCC-1 are 20.4 and 12 emug⁻¹, 8 9 respectively. The decrease in the saturation magnetization was due to the presence of the APTES and Pd nanoparticles on the Fe₃O₄@SiO₂@KCC-1 surface. Moreover, Fig. 10 11 (inset image) shows the separation-redispersion process 4 of the 12 Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst demonstrating that the catalyst is drawn from 13 the solution to the sidewall of the vial by applying an external magnetic field is removed. Therefore, the abovementioned results indicated an easy and efficient way 14 15 to separate and recycle the Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst from the solution by external magnetic field. 16

Ö
<u></u>
~
U)
Π
\geq
O
The second secon
Y
0
7
X
0
S
D
Ĕ
0
Π
0
Π
2
0
U
0

1	The catalytic activity of the Pd/Fe $_3O_4@SiO_2@KCC-1$ nanocatalyst was studied by
2	reduction reactions of 4-NP to 4-AP in presence of NaBH ₄ . The reduction process was
3	monitored by UV-Vis absorption spectroscopy. As shown in Fig. 5a, pure 4-NP
4	solution exhibited a distinct absorption maximum at 317 nm, which shifts to 400 nm
5	in the presence of alkali because of the formation of 4-nitrophenolate ions. ³⁴ The
6	reduction of 4-NP to 4-AP can be obtained in the presence of $NaBH_4$ without any
7	catalyst, but such required about 430 min. ³⁵ Furthemore, when the support
8	$Fe_3O_4@SiO_2@KCC-1$ was added to the 4-NP and NaBH ₄ solution, it was found that,
9	the color of the reaction mixture did not change even after 120 min, suggesting the
10	$Fe_3O_4@SiO_2@KCC-1$ support was almost inactive for the reduction reaction (Fig. S1).
11	Because of this, $Pd/Fe_3O_4@SiO_2@KCC-1$ nanocatalyst was added in order to
12	significantly shorten the reaction time. When the $Pd/Fe_3O_4@SiO_2@KCC-1$
13	nanocatalyst was added into the reaction mixture, the BH_4^- ions were adsorbed on the
14	surface of Pd NPs and transfer a surface-hydrogen species to the surface of the Pd
15	NPs. Simultaneously, the 4-nitrophenolate were also adsorbed on the surface of the Pd
16	NPs resulting in the rapid occurrence and completion of the reduction reactions. ^{36, 37}
17	The addition of $Pd/Fe_3O_4@SiO_2@KCC-1$ nanocatalyst into the reaction mixture led
18	to the decrease in the peak intensity of 4-nitrophenolate ion at 400 nm with the
19	concomitant increase in the peaks corresponding to 4-AP at 300 nm (Fig. 5b) reflects
20	decay of 4-NP and formation of 4-AP. Thus, the conversion of 4-NP to 4-AP can be
21	monitored by tracking the changes in the absorbance peak of 4-nitrophenolate ions at
22	400 nm. 38 When the absorbance peak value of 4-nitrophenolate ions at 400 nm

1	decreased to zero, indicated the successful conversion of 4-NP to 4-AP. Fig. 5b shows
2	completely reduced 4-NP to 4-AP after 275 seconds. The concentration of $NaBH_4$ was
3	very high compared with that of 4-NP, the reaction followed pseudo-first-order
4	reaction kinetics. ²² Therefore, we used pseudo-first-order kinetics to evaluate the
5	kinetic rate constant (k_{app}) of the current reaction[eqn(1)]. The reaction conversion
6	was calculated from C_t/C_0 (Fig. 5c), which was measured using the relative intensity
7	of UV-Vis absorbance (A_t/A_0) at 400nm. C_t and C_0 are the concentrations of the 4-NP
8	at reaction time t and the initial stage, respectively.
9	$dCt/dt=-k_{app}t$, or $ln(Ct/C_0)=ln(At/A_0)=-k_{app}t$ (1)

As shown in Fig. 5c, the linear correlation between $\ln(C_t/C_0)$ and reaction time (t) 10 was confirmed through pseudo-first-order kinetics. We calculated the reaction 11 apparent kinetic rate constant k_{app} to be 1.96×10^{-2} for the Pd/Fe₃O₄@SiO₂@KCC-1 12 catalyzed reductions of 4-NP. Then, k_{app} was normalized to the concentration of Pd, 13 deriving k_{nor} to reveal the intrisic catalytic activity of the catalyst $(k_{nor}=k_{app}/c_{(Pd)})$.¹⁴ We 14 compared the activity of the Pd/Fe₃O₄@SiO₂@KCC-1 with Pd catalysts loaded on 15 different supports for the reduction of 4-NP (Table 1). In Table 1, the 16 Pd/Fe₃O₄@SiO₂@KCC-1 shown excellent catalytic activity for the reduction of 4-NP 17 by NaBH₄, with the highest $k_{nor}(2.78 \text{ s}^{-1}\text{mM}^{-1})$ among the Pd catalysts loaded on 18 different supports (SBA-15,³⁹ PEDOT (conducting polymer),⁴⁰ Microgel-PS (microgel 19 coated polystyrene),⁴¹ FG (functionalized grapheme nanohybrids), 20 ⁴²PiHP $(hyperbranched polymer)^{43}$, and Al_2O_3 .⁴⁴ It is also higher than the Pd nanoclusters⁴⁵ 21 and Pd nanocrystals⁴⁶ based catalysts. The excellent catalytic activity of the 22

- 1 Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst owes to the ease of access of its active sites,
- 2 and the low aggregation of the Pd NPs on the Fe $_3O_4@SiO_2@KCC-1$ support. In this
- 3 situation, reactant can be easily adsorbed on the Pd NPs surface, which allows the
- 4 reduction reactions to start quickly and finish rapidly.

5

6

Fig. 5 (a) UV-Vis spectra of 4-NP before and after adding NaBH₄ solution, (b) the successive
reduction of 4-NP to 4-AP over the prepared Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst, (c) plost of
Ct/Co and ln(Ct/Co) versus reaction time for the reduction of 4-NP over Pd/Fe₃O₄@SiO₂@KCC-1.

1 Table 1

2 Comparison of apparent kinetic rate constant (k_{app}) and normalized rate constants (k_{nor}) of Pd

Samples	$c_{(4-NP)}(mM)^a$	$c_{(Pd)}\left(mM\right)^{a}$	k _{app} (s ⁻¹) ^b	$k_{nor}(s^{-1} mM^{-1})^{c}$	Reference
Pd/SBA-15	0.1	6.29×10 ⁻²	11.8×10 ⁻³	0.118	39
Pd/PEDOT		2.52×10^{-1}	65.8×10 ⁻³	0.261	40
Pd/Microgel-PS	0.1	2.15×10 ⁻³	1.50×10^{-3}	0.698	41
Pd/FG	5.8×10 ⁻²	4.72×10^{-3}	2.35×10 ⁻³	0.498	42
Pd nanoclusters	2	1.6	7.89×10^{-4}	0.005	45
Pd/PiHP	2.3	9×10 ⁻²	20×10^{-3}	0.222	43
Pd nanocrystals	8×10 ⁻²	3.6×10 ⁻²	4.83×10 ⁻³	0.134	46
Pd/Al ₂ O ₃	0.1	8.48×10 ⁻³	9.2×10 ⁻³	1.085	44
Pd/Fe ₃ O ₄ @SiO ₂ @KCC-1	0.1	7.06×10^{-3}	19.6×10 ⁻³	2.78	This work

3 catalysts loaded on different supports for the reduction of 4-NP

4 ^ac: concentration. ^bk_{app}: apparent rate constant. ^ck_{nor}: rate constant normalized to the molar

concentration of Pd. Data were given or calculated in the respective papers; some data were notobtained.

7 *3. 3. Catalyst testing for Suzuki cross coupling reaction.*

The above results revealed that the Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst exhibited 8 9 excellent for the reduction of 4-NP. We then further explored the catalytic activity of 10 Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst for the Suzuki cross coupling reactions. To 11 explore the optimal reaction conditions, a series of reactions was performed using 12 several times, solvents, bases, and temperature to obtain the best possible combination. 13 Initially, the experiment was performed using Suzuki cross-coupling reaction of 14 1-ido-4-nitrobenzene (0.5 mmol) with phenyl boronic acid (0.75 mmol) in presence of Pd/Fe₃O₄@SiO₂@KCC-1 (0.2% Pd) and 5 mL ethanol in air at 80 °C for 1 h, 2 h, and 15 16 3h corresponding products were obtained in the following yields: 91.0%, 94.0%, and 97%, respectively (Table 2: entries 1-3). The reaction product was obtained the 17 highest yield for 3 h, so the reaction time of 3 h was chosen. As it is known, solvent 18 19 plays a crucial role in the rate of Suzuki coupling reactions. When the reactions were

1	carried out in methyl alcohol, ethyl acetate, delonized water, and acetone under the
2	same conditions, the products obtained in poor to moderate yields of 85.0%, 79.6%,
3	27.8%, and 30%, respectively (Table 2: entries 4-7). The reactions were carried out
4	under similar conditions using different base such as K ₂ CO ₃ , CH ₃ COONa, NaOH, and
5	$(C_2H_5)_3N$, the yields were 97%, 80.3%, 90.1%, and 80.9%, respectively (Table 2:
6	entries 3, 8-10). For the reactions at room temperature, 40 °C, and 60 °C
7	corresponding products were obtained in the following yields: 54%, 78.8%, and
8	90.8%, respectively (Table 2: entries 11-13). The best catalytic activity of the
9	Pd/Fe ₃ O ₄ @SiO ₂ @KCC-1 nanocatalyst was observed using ethanol as solvent, and
10	K_2CO_3 as base at 80 °C (Table 2: entry 3).

11 After screening the reaction conditions, the catalyst system was studied for the 12 Suzuki cross coupling reaction of various aryl halides and aryl boronic acids (Table 3). 13 As listed in Table 3, when the coupling of aryl iodides with aryl boronic acids proceeded at 80 °C for 3 h, the corresponding products were obtained in high yields 14 15 (Table 3: entries 1-8). The Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst was also revealed excellent catalytic activity for the coupling between aryl bromides and aryl boronic 16 17 acids the reaction times approached 6 h (Table 3: entries 9-18). However, for the 18 reactions of 1-bromo-2-nitrobenzene poor yields (Table 3, entries 13 and 18) were 19 obtained, due to the electron-withdrawing $-NO_2$ group in the ortho position. It is 20 worth noting that aryl iodides and aryl bromides containing electron-donating group, 21 such as -CH₃, -OH, -NH₂ were found to be the more active than aryl iodides and aryl 22 bromides containing electron-withdrawing, such as -NO₂ (Table 3).

1 Table 2

The effects of solvent, base and temperature on the Suzuki cross coupling of
 1-Iodo-4-nitrobenzene with phenyl boronic acid using the Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst.

4

		$\frac{Pd/Fe_{3}O_{4}@}{OH}$	SiO ₂ @KCC-1		
•		(OH) ₂			
Entry	Solvent	Base	Temp (°C)	Time (h)	Yield (%)
1	Ethanol	K ₂ CO ₃	80	1	91.0
2	Ethanol	K ₂ CO ₃	80	2	94.0
3	Ethanol	K ₂ CO ₃	80	3	97.0
4	Methyl alcohol	K ₂ CO ₃	80	3	85.0
5	Ethyl acetate	K ₂ CO ₃	80	3	79.6
6	Deionized water	K ₂ CO ₃	80	3	27.8
7	Acetone	K ₂ CO ₃	80	3	30.0
8	Ethanol	CH ₃ COONa	80	3	80.3
9	Ethanol	NaOH	80	3	90.1
10	Ethanol	$(C_2H_5)_3N$	80	3	80.9
11	Ethanol	K ₂ CO ₃	25	3	54.0
12	Ethanol	K ₂ CO ₃	40	3	78.8
13	Ethanol	K ₂ CO ₃	60	3	90.8

5

6 Although the catalyst was active for aryl iodides and aryl bromides, our main 7 objective was to design a nanocatalyst for the Suzuki coupling of challenging 8 substrates, that is, the Suzuki coupling reactions of aryl chlorides with aryl boronic 9 acids. In our initial at attempts, we used the same optimized conditions for the aryl 10 iodides and aryl bromides, but the products were obtained in low yields.

11

12

1 Table 3

2 Suzuki cross coupling reactions of aryl halides with aryl boronic acids using

3	Pd/Fe ₃ O ₄ @SiO ₂ @KCC-1	nanocatalyst
---	--	--------------

		Pd Catalysis, K ₂ Co),	
	\mathbf{R}_1 \mathbf{R}_2 \mathbf{R}_2	$\frac{\text{B(OH)}_2}{\text{EtOH, 80°C}}$	\rightarrow R_1	R 2
Entry	Aryl halide	Aryl boronic acid	Time (h)	Yield (%)
1	СН3-Л-І	Cl——B(OH) ₂	3	98.9
2	I—	Cl———B(OH) ₂	3	96.8
3	но-	Cl———B(OH) ₂	3	99.0
4	O ₂ NI	Cl——B(OH) ₂	3	96.0
5	СН3-	B(OH) ₂	3	99.0
6	<i< td=""><td>B(OH)₂</td><td>3</td><td>97.8</td></i<>	B(OH) ₂	3	97.8
7	но-	B(OH) ₂	3	99.0
8	O ₂ NI	B(OH) ₂	3	97.0
9	Br		6	89.0
10	H ₃ CBr		6	91.8
11	H ₂ N-Br	Cl-B(OH) ₂	6	90.6
12	O ₂ NBr	Cl-B(OH) ₂	6	86.8
13	NO ₂ Br	Cl-B(OH)2	6	26.2
14	——Br	B(OH) ₂	6	90.8
15	H ₃ CBr	B(OH) ₂	6	93.2
16	H ₂ NBr	B(OH) ₂	6	91.8
17	O ₂ N-		6	87.3
18			6	28.1

4 Reaction condition: aryl halide (0.5 mmol), aryl boronic acid (0.75 mmol), K_2CO_3 (1.0 mmol),

6 Yield was determined by GC-MS or GC analysis.

⁵ EtOH 5.0 mL, Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst (0.2 mol% of Pd), and 80 °C, in air.

1	Therefore, we optimized several reaction parameters, including the solvent, reaction
2	temperature and referenced in literatures, ^{47, 48} and finally found that the use of
3	tetra-n-butylammonium bromide (TBAB) and changed the solvent from ethanol to
4	(n-methyl-2-pyrrolidone) NMP and raised the reaction temperature to 140 °C was
5	necessary to achieved good yields. After optimizing the reaction conditions, the
6	Pd/Fe ₃ O ₄ @SiO ₂ @KCC-1 nanocatalyst was studied for Suzuki cross coupling
7	reactions of several aryl chlorides with aryl boronic acids, which are summarized in
8	Table 4.

9 Table 4

The Suzuki cross coupling reactions of aryl cholorides with aryl boronic acids using
 Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst.

12

		B(OH) ₂ Pd Catalysis NMP 140°C, K ₂ CO ₃ TBAB		
Entry	Aryl cholorides	Aryl boronic acid	Time (h)	Yield (%)
1	<−CI	Cl—B(OH)2	12	83.2
2	H ₃ C-CI	Cl—B(OH) ₂	12	86.0
3	ноСі	Cl—B(OH) ₂	12	85.8
4	,	Cl—B(OH) ₂	12	80
5	<u>_</u> _сі	B(OH) ₂	12	83.8
6	H ₃ CCI	B(OH) ₂	12	87.8
7	но-{	B(OH) ₂	12	86.2
8	, CI H₂C	B(OH) ₂	12	79.8

Reaction condition: aryl cholorides (0.5 mmol), aryl boronic acid (0.75 mmol), K_2CO_3 (1.0 mmol) were added in 5 ml NMP at 140 °C for 12 h in the presence of TBAB (0.05 mmol) and Pd/Fe₃O₄@SiO₂@KCC-1 (2.5 mol% of Pd). Yield was determined by GC-MS or GC.

Interestingly, the Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst was also revealed excellent catalytic activity for the Suzuki coupling between aryl chlorides and aryl boronic acids. The highly dispersed smaller Pd NPs and easy accessibility of active sites, as few heterogeneous catalyst systems show good activity toward aryl chlorides, which are sustainable substrates for Suzuki cross coupling reactions, under ligand-free condition.⁴⁹

7 3.4. Reusability of the $Pd/Fe_3O_4@SiO_2@KCC-1$ nanocatalyst.

For practical application of heterogeneous systems, the recyclability of catalyst is an
important factor. The stability and reusability of the Pd/Fe₃O₄@SiO₂@KCC-1
nanocatalyst were performed by catalyzed the reduction of 4-NP and Suzuki coupling
reaction of 1-Iodo-4-nitrobenzene with Phenyl boronic acid.

12

Fig. 6 The reusability of Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst for the reduction of 4-NP by
 NaBH₄ and Suzuki cross coupling reaction of 1-iodo-4-nitrobenzene with phenyl boronic acid.

As shows in Fig. 6, the recovered $Pd/Fe_3O_4@SiO_2@KCC-1$ nanocatalyst exhibited almost constant catalytic activity for at least five successive cycles in the reduction of

4-NP and Suzuki cross coupling reaction of 1-iodo-4-nitrobenzene with Phenyl
boronic acid. Moreover, the catalyst was easily separated magnetically from the
reaction mixture, washed with ethanol and deionized water, and finally dried for the
next run. This result suggests that the Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst
possesses robust stability.

6 **4.** Conclusion

7 In this study, a novel core-shell magnetic fibrous Fe₃O₄@SiO₂@KCC-1 based 8 Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst with easy accessibility of the active sites was 9 successfully synthesized. The catalyst could be easily recovered by applying an 10 external magnetic field, and reused for next catalytic run. The Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst showed excellent catalytic activity for the 11 12 reduction of 4-NP and Suzuki coupling reaction of a range of aryl bromides and 13 iodides with aryl boronic acids. Notably, the catalyst was also displayed good catalytic activity for Suzuki coupling reaction of aryl cholorides with aryl boronic 14 15 acids. Moreover, the catalyst was chemically stable and could be easily recycled for at 16 least five times in the corresponding reaction without reduction in the catalytic 17 activity. The Pd/Fe₃O₄@SiO₂@KCC-1 nanocatalyst acts as relatively green, superparasitism, eco-friendly nature and convenient recovery, and as a promising 18 19 candidate for Pd NPs based catalytic applications in industrial synthesis.

20 Acknowledgements

21 The authors acknowledge financial support from the NSFC (Grants 21301082) and

	O
_	
1	σ
	Ä
	U
	O
	U
	0
	~
	U
ł	
	0
5	
	_
	Ð
5	
	U)
	σ
	Ð
	Ite
	ate
	late
	Mate
	Mate
	T Mate
	ot Mate
	of Mate
	l of Mate
	al of Mate
	al of Mate
	nal of Mate
	rnal of Mate
	Irnal of Mate
	urnal of Mate
	ournal of Mate
	ournal of Mate
	Journal of Mate

1	the Na	tural Science Foundation of Gansu (No. 1308RJYA028).
2		
3	Refere	nces
4		
5	1.	S. Paganelli, O. Piccolo, F. Baldi, R. Tassini, M. Gallo and G. La Sorella, App. Catal. A:
6		Gen., 2013, 451 , 144-152.
7	2.	Y. Shiraishi, K. Fujiwara, Y. Sugano, S. Ichikawa and T. Hirai, ACS Catal., 2013, 3,
8		312-320.
9	3.	K. Imamura, T. Yoshikawa, K. Nakanishi, K. Hashimoto and H. Kominami, <i>Chem.</i>
10	4	<i>Commun.</i> , 2013, 49 , 10911-10913.
11	4. 5	A. Le, Z. Dong, Z. Jin, Q. wang and J. Ma, <i>Catal. Commun.</i> , 2014, 53 , 47-52.
12	5.	F. Wang, H. Liu, J. Niu, K. Li and J. Ma, Catal. Sci. Technol., 2014, 4, 1555-1559. F. Zhang, J. Jin, X. Zhang, S. Li, J. Niu, P. Li and J. Ma, Graan, Cham. 2011, 13.
13 14	0.	1238-1243
15	7.	MO. Yang, X. Pan, N. Zhang and YJ. Xu, <i>Crystengcomm</i> , 2013, 15 , 6819-6828.
16	8.	Z. Dong, X. Le, C. Dong, W. Zhang, X. Li and J. Ma, <i>Appl. Catal, B: Environ.</i> , 2015, 162 .
17		372-380.
18	9.	E. Antolini, Energ. Environ. Sci., 2009, 2, 915-931.
19	10.	H. Lee, S. E. Habas, S. Kweskin, D. Butcher, G. A. Somorjai and P. Yang, Angew. Chem.
20		Int. Ed., 2006, 45, 7824-7828.
21	11.	J. Zeng, Q. Zhang, J. Chen and Y. Xia, Nano letters, 2009, 10, 30-35.
22	12.	ML. Wang, TT. Jiang, Y. Lu, HJ. Liu and Y. Chen, J. Mater. Chem. A, 2013, 1,
23		5923-5933.
24	13.	Y. Lin, Y. Qiao, Y. Wang, Y. Yan and J. Huang, J. Mater. Chem., 2012, 22, 18314-18320.
25	14.	Y. Fang and E. Wang, <i>Nanoscale</i> , 2013, 5 , 1843-1848.
26	15.	D. Ganapathy and G. Sekar, Catal. Commun., 2013, 39, 50-54.
27	16.	G. Feng, F. Liu, C. Lin, W. Li, S. Wang and C. Qi, Catal. Commun., 2013, 37, 27-31.
28	17.	G. Yuan and M. A. Keane, Ind. Eng. Chem. Res., 2007, 46, 705-715.
29	18.	S. Wei, Z. Ma, P. Wang, Z. Dong and J. Ma, J. Mol. Catal. A: Chem., 2013, 370, 175-181.
30	19.	W. Li, B. Zhang, X. Li, H. Zhang and Q. Zhang, <i>Appl. Catal. A: Gen.</i> , 2013, 459 , 65-72.
31	20.	V. Polshettiwar, D. Cha, X. Zhang and J. M. Basset, Angew. Chem. Int. Ed., 2010, 49,
32	21	9652-9656.
33	21.	A. Fihri, M. Bouhrara, U. Patil, D. Cha, Y. Saih and V. Polshettiwar, ACS Catal., 2012, 2, 1425, 1421
34	22	1425-1431.
35	22.	Z. Dong, X. Le, X. Li, W. Znang, C. Dong and J. Ma, <i>Appl. Catal. B: Environ.</i> , 2014, 159, 150, 120, 125
30 27	22	136–139 , 129-155.
37 20	25. 24	K. Iu, A. Zhang, H. Iong, A. Tan and S. Liu, <i>Mater. Lett.</i> , 2015, 100, 151-154.
20 20	24. 25	I. C. Chang and D. H. Chen, J. Hazard. Mater., 2009, 105, 004-009.
40	<i>4</i> J.	394-400
41	26.	K. Li, Z. Zheng, X. Huang, G. Zhao, J. Feng and J. Zhang I Hazard Mater 2009 166
42	_0.	213-220.
43	27.	Y. Zhang, X. Yuan, Y. Wang and Y. Chen, J. Mater. Chem., 2012, 22, 7245-7251.
		27

1	28.	S. Saha, A. Pal, S. Kundu, S. Basu and T. Pal, Langmuir, 2010, 26, 2885-2893.
2	29.	N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457-2483.
3	30.	A. Suzuki, J. Organomet. Chem., 1999, 576, 147-168.
4	31.	P. Wang, F. Zhang, Y. Long, M. Xie, R. Li and J. Ma, Catal. Sci. Technol., 2013, 3,
5		1618-1624.
6	32.	H. Yang, G. Li and Z. Ma, J. Mater. Chem., 2012, 22, 6639-6648.
7	33.	Y. Deng, Y. Cai, Z. Sun, J. Liu, C. Liu, J. Wei, W. Li, C. Liu, Y. Wang and D. Zhao, J. Am.
8		Chem. Soc, 2010, 132, 8466-8473.
9	34.	K. Kim, K. L. Kim and K. S. Shin, J. Phys. Chem. C, 2011, 115, 14844-14851.
10	35.	T. Wu, L. Zhang, J. Gao, Y. Liu, C. Gao and J. Yan, J. Mater. Chem. A, 2013, 1,
11		7384-7390.
12	36.	B. Baruah, G. J. Gabriel, M. J. Akbashev and M. E. Booher, Langmuir, 2013, 29,
13		4225-4234.
14	37.	D. H. Lee, S. O. Kim and W. J. Lee, J. Phys. Chem. C, 2010, 114, 8114-8114.
15	38.	X. Le, Z. Dong, W. Zhang, X. Li and J. Ma, J. Mol. Catal. A: Chem., 2014, 395, 58-65.
16	39.	J. Morere, M. J. Tenorio, M. J. Torralvo, C. Pando, J. A. R. Renuncio and A. Cabanas, J.
17		Supercrit. Fluid., 2011, 56, 213-222.
18	40.	S. Harish, J. Mathiyarasu, K. L. N. Phani and V. Yegnaraman, Catal. Lett., 2009, 128,
19		197-202.
20	41.	Y. Mei, Y. Lu, F. Polzer, M. Ballauff and M. Drechsler, Chem. Mater., 2007, 19,
21		1062-1069.
22	42.	Z. Wang, C. Xu, G. Gao and X. Li, Rsc. Adv., 2014, 4, 13644-13651.
23	43.	H. Li, L. Han, J. Cooper-White and I. Kim, Green. Chem., 2012, 14, 586-591.
24	44.	S. Arora, P. Kapoor and M. Singla, Reac. Kinet. Mech. Cat., 2010, 99, 157-165.
25	45.	A. Halder, S. Patra, B. Viswanath, N. Munichandraiah and N. Ravishankar, Nanoscale,
26		2011, 3 , 725-730.
27	46.	G. Fu, X. Jiang, L. Ding, L. Tao, Y. Chen, Y. Tang, Y. Zhou, S. Wei, J. Lin and T. Lu, Appl.
28		Catal. B: Environ., 2013, 138–139, 167-174.
29	47.	A. Fihri, D. Cha, M. Bouhrara, N. Almana and V. Polshettiwar, Chemsuschem, 2012, 5,
30		85-89.
31	48.	A. Indra, C. S. Gopinath, S. Bhaduri and G. Kumar Lahiri, Catal. Sci. Technol., 2013, 3,
32		1625-1633.
33	49.	A. Fihri, M. Bouhrara, B. Nekoueishahraki, JM. Basset and V. Polshettiwar, Chem. Soc.
34		<i>Rev.</i> , 2011, 40 , 5181-5203.
35		

