Journal of Materials Chemistry A

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsA

Page 1 of 9 Journal of Materials Journal of Materials Chemistry A Chemistry

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

In Situ Growth of Burl-like Nickel Cobalt Sulfide on Carbon Fiber as High-Performance Supercapacitors

Ming Sun, Jinjin Tie, Gao Cheng, Ting Lin, Shaomin Peng, Fangze Deng, Fei Ye, and Lin Yu*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

Nickel cobalt sulfide (NiCo₂S₄), a recently reported novel electrode material, has a higher electric conductivity than that of the NiCo₂O₄. We describe a facile one-step route to the development of burl-like NiCo₂S₄ on carbon fiber paper/cloth (CFP/CFC) used as electrodes for supercapacitor. The influence of the carbon substrate on the crystal structure and electrochemical performance of the NiCo₂S₄

¹⁰ electrodes is evaluated. We obtain pure phase of NiCo₂S₄ over CFP substrate, whereas, mixed phase over CFC substrate. Superior pseudocapacitive performance is achieved over NiCo₂S₄/CFP with large specific capacitance of 0.83 F cm⁻² at a high current density of 25 mA cm⁻². The capacitance loss is 24.1 % after 5000 cycles at a current density of 20 mA cm⁻², displaying good cycle ability and high rate capability.

1 Introduction

- ¹⁵ Supercapacitors have attracted great interest in the past years because of their prominent properties like high power density, long cycle life, and short charging time¹⁻³. Among the factors that affect the performance of supercapacitor, the electrode material is one of the important factors in terms of its morphology, size,
- ²⁰ dimension, composition and so on. Therefore, various materials like traditional metal oxide, carbon materials, conductive polymer ⁴ and recently developed metal chalcogenides (CoS, NiS₂, VS₂, GeSe₂, etc)⁵⁻⁷ have been explored extensively aiming to find the ideal candidate with excellent performance and low cost. Thanks
- ²⁵ to the pioneering work of Prof. Hu and his group in 2010 ⁸, considerable efforts have been devoted to Nickel cobaltite (NiCo₂O₄) prepared by different methods with diverse morphologies. The NiCo₂O₄ electrode material is reported to exhibit good electrochemical performance, high electrical ³⁰ conductivity and potential industrialized application^{4, 9, 10}.
- The pace of pursuing excellent electrode material can never stop. We all know that the elements of S and O belong to the same group in the Periodic Table of the Elements, thus the two elements have similar properties. Since $NiCo_2O_4$ has
- ³⁵ distinguished electrochemical properties, if the element of O is substituted by the element S, then the $NiCo_2S_4$ should also possess similar electrochemical performance. In fact, some binary metal sulfides such as Co sulfide (CoS, CoS₂, Co₉S₈) and Ni sulfide (NiS, Ni₃S₂) have been proposed for a new type of
- ⁴⁰ electrode materials¹¹⁻¹⁷. Therefore, ternary metal sulfide could have potential application as electrode materials for supercapacitors.

Since 2013, Nickel cobalt sulfide (NiCo $_2S_4$), a new kind of electrode material candidate, has come into being in the region of

⁴⁵ electrochemical capacitors. Herein, we listed the reported works on NiCo₂S₄ in Table 1 as far as we can find. NiCo₂S₄ is build around a closely packed array of S²⁻ ions, with Ni²⁺ and Co³⁺ cations occupying the tetrahedral and octahedral sites, respectively¹⁸. Compared to the NiCo₂O₄ material, NiCo₂S₄ is ⁵⁰ reported to have an electric conductivity ~100 times higher than that of NiCo₂O₄^{19, 20}. Furthermore, NiCo₂S₄ with a normal spinel crystal structure possesses more octahedral catalytic active sites of Co³⁺ cations compared to its counterpart with an inverse spinel structure¹⁸. Compared with binary metal sulfides, NiCo₂S₄ can ⁵⁵ offer richer redox reactions owing to the existence of Co and Ni ions^{19, 21}. Based on the above analyses and the practice listed in Table 1, we clear see that the NiCo₂S₄ is indeed a kind of outstanding electrode material for supercapacitors.

ARTICLE TYPE

Journal of Materials Chemistry A Accepted Manuscript

Morphology	Raw materials	Current collector	Specific capacitance	Load mass	Ref
Urchin	CoCl ₂ , NiCl ₂ , Na ₂ S	-	1065 F g ⁻¹ (3 A	mg cm ⁻² unknown	20
Nano Sheet/RGO	Co(NO ₃) ₂ , Ni(NO ₃) ₂ thiourea	-	1161 F g^{-1} (5 A g^{-1})	unkown	21
Flower, Tube, Cubic, Urchin	CoCl ₂ , NiCl ₂ , Na ₂ S	-	Tube-1048 F g ⁻¹ (3 A g^{-1})	4	22
Nanoplate	$CoCl_2, Ni(Ac)_2, Na_2S$	-	437 F g^{-1} (1 A g^{-1})	2.4	23
Nanoparticle/GO	CoCl ₂ , Ni(Ac) ₂ , S	-	755 $F g^{-1}$ (4 A g^{-1})	5	24
Nanoparticle	CoCl ₂ , Ni(Ac) ₂ , S	-	770 $F g^{-1}$ (4 A	5	25
Hollow	Co(Ac) ₂ , Ni(Ac) ₂ ,	-	$895 Fg^{-1}(1 A)$	1	26
Nano- Aggregates	Co(NO ₃) ₂ ,NiSO ₄ , Na ₂ S	-	$592 \operatorname{Fg}^{-1} (0.5)$	2.5-3.5	27
Nanotube	CoCl ₂ , NiCl ₂ , Na ₂ S	-	933 $F g^{-1}$ (1 A	4-6	28
Nanotube	CoCl ₂ , NiCl ₂ , Na ₂ S	Ni foam	$738 \operatorname{Fg}^{-1}_{g^{-1}}$ (4 A	4.2	29
Nanotube	$CoCl_2, NiCl_2, Na_2S$	Ni foam	$14.39 \text{ F cm}^{-2} (5 \text{ mA cm}^{-2})$	6	30
Nanowire	Co(NO ₃) ₂ , Ni(NO ₃) ₂ , Na ₂ S	Ni foam	2415 F g^{-1} , 6.0 F cm ⁻² (2.5 mA cm ⁻²)	2.5	31
Nanosheet	Co(Ac) ₂ , thioacetamide	Ni foam	$5.71 \text{ F cm}^{-2}(20 \text{ mA cm}^{-2})$	2.1	32
Nanotube	CoCl ₂ , NiCl ₂ , H ₂ S	Carbon fiber paper	2.86 F cm ⁻² (4 mA cm ⁻²) 0.58 F cm ⁻² (20 mA cm ⁻²)	4.3	19
Nanosheet*	CoCl ₂ , NiCl ₂ , thiourea	Carbon cloth	1418 F g ⁻¹ (5 A g ⁻¹)	0.8	33

Table 1 Morphology, synthetic method and specific capacitance of $NiCo_2S_4$ electrode materials

Note: * the material in ref [24], [25] and [33] is CoNi₂S₄ instead of NiCo₂S₄, we list herein because they are similar material.

- Although NiCo₂S₄ is gaining the attention of researchers, however, from Table 1, we can see that the obtained results are still limit. First of all, most of the reported were NiCo₂S₄ powder instead of integrated electrode ¹⁷⁻²⁵. The electrodes fabricated by ¹⁰ the traditional slurry-coating technique have two disadvantages: one is that the increased "dead surface" leading to the limit of capacitive performance; and the other is that the used binder can
- decrease the electrical conductivity³⁴. Secondly, for the integrated electrodes, the current collector was mainly Ni foam, whereas ¹⁵ low-cost carbon materials were rare. Carbon materials usually
- have large surface area, high porosity and good electric conductivity, and are considered as the backbone for conformal coating of transition metal oxides for supercapacitors³⁵, thus it is interesting to apply carbon fiber materials as current collector.
- ²⁰ Thirdly, most of the NiCo₂S₄ were prepared by a two-step procedure, which make it complicated and time-consuming to precisely control of the materials. Last, the reported morphology for NiCo₂S₄ integrated electrodes were mainly nanotube, nanowire and nanosheet. Because the morphology of material has
- ²⁵ a substantial influence on the speed of ion transfer and the capacity of charge storage⁴, it is desirable to synthesize materials with novel shape.

In order to further exploit the potential of $NiCo_2S_4$ based electrode materials, herein, we proposed a simple one-step

³⁰ solvothermal strategy for the growth of burl-like NiCo₂S₄ on two kinds of commercial carbon fiber: carbon fiber paper (CFP) and carbon fiber cloth (CFC). Remarkably, the prepared NiCo₂S₄ architectures, especially loaded on CFP, manifests a specific capacitance of 0.83 F cm⁻² at a high current density of 25 mA cm⁻³⁵ ² and outstanding cycling stability at high rates. The capacitance of the NiCo₂S₄/CFP remained as high as 82.8 % after 5000 cycles at a current density of 20 mA cm⁻².

2 Experimental

2.1 Materials and methods

⁴⁰ Synthesis of NiCo₂S₄ supported on CFP/CFC: All the chemicals were of analytical grade. Commercial CFP or CFC (approximately 1 cm × 4 cm, Shanghai hesen Electronic Co. Ltd.; CFP, Spec: HCP030, 0.30 mm in depth, resistivity: 3 m Ω cm²; CFC, Spec: HCP331, 0.30 mm in depth, resistivity: 3.14 m Ω cm² ⁴⁵, longitudinal resistance, <0.1×10⁻² Ω) were purified under ultrasonic for 15 min in 5M HCl aqueous solution, absolute ethanol and deionized water, respectively. 0.5 mmol of Co(NO₃)₂·6H₂O, 0.25 mmol of Ni(NO₃)₂·6H₂O, 3 mmol of thioacetamide (TAA) were dissolved into 12 mL of absolute ⁵⁰ methanol, and then transferred into a 25 mL Teflon-lined stainless steel autoclave. A piece of the pre-treated CFP or CPC was put vertically in the autoclave, heated to 120 °C for 5 h. After the solvothermal process, the products were ultrasonically cleaned with DI water and ethanol, and dried at 60 °C.

55 2.2 Materials Characterization

The crystal phase of the products was examined by X-ray diffraction diffractometer (XRD, Bruker, D8, Cu K α , λ =1.5406 Å). The samples were scraped from the carbon fiber carefully for the XRD test. The morphology was characterized by scanning

- 60 electron microscopy (SEM, Hitachi, S-3400N) and transmission electron microscopy (TEM, Shimadzu, EPMA-1600) equipped with an energy dispersive X-ray spectrometer (EDS). X-ray photoelectron spectroscopy (XPS) was performed on a Thermo ESCALAB 250 instrument equipped with a monochromatic Al
- $_{65}$ Ka (1486.6 eV) X-ray source. The spectra are calibrated using the carbon peak

2.3 Electrochemical Measurements

The cyclic voltammetry (CV) curves and galvanostatic chargedischarge were measured on Autolab PGSTAT302N 70 Electrochemical Workstation in a three-electrode cell containing 2 M KOH aqueous solution as electrolyte at room temperature. The carbon fiber supported electroactive materials ($\sim 1 \text{ cm}^2$ in area, loading mass of NiCo₂S₄ is *ca*.2.3 mg) serves directly as the working electrode. The counter electrode and the reference 75 electrode were a platinum foil electrode and a saturated calomel electrode (SCE), respectively. The electrochemical impedance spectroscopy (EIS) was tested in a frequency range from 100 kHz to 0.01 Hz at open circuit potential. Areal capacitances are

calculated using the equations,
$$C_S = \frac{I\Delta t}{S\Delta V}$$
, where C_S (F cm⁻²)

⁸⁰ is areal capacitance, I(A) represented discharge current, $S(\text{cm}^2)$, $\Delta V(\text{V})$, and Δt (s) designate the area of the electrode, potential drop during discharge, and total discharge time, respectively.

- 3. Results and discussion
- 3.1 Synthesis and characterization

5 Scheme.1 Schematic illustration of synthetic NiCo₂S₄ on CFP/CFC

The synthetic strategy for NiCo₂S₄ supported on CFP/CFC is shown in Scheme.1. TAA is used as the sulfur source, it can release sulfide ions in aqueous medium²⁶. Burl-like NiCo₂S₄ were obtained through the reaction among Co²⁺, Ni²⁺, and TAA under ¹⁰ solvothermal condition, and many metal sulfides such as MnS, NiS, Ni₃S₄, and NiCo₂S₄ have been prepared by similar strategy using TAA as sulfur source³⁶⁻³⁸. Unlike the anion-exchange reaction mechanism widely existed in two-step reaction for synthesis of NiCo₂S₄^{22, 26, 30, 31}, we think that the formation of ¹⁵ NiCo₂S₄ in our case is through the coprecipitation process as

Shimizu et al ³⁷ suggested.

20

Fig.2 EDX mapping results of (a) NiCo₂S₄/ CFP and (b) NiCo₂S₄ /CFC

To prove that we have successfully obtained NiCo₂S₄, XRD, EDX mapping and XPS characterizations were carried out. Fig. 1 25 shows the XRD patterns of the NiCo₂S₄ samples loaded on CFP and CFC substrate. For the two samples, they both show diffraction peaks at 26.8 °, 31.5 °, 38.1 °, 50.4 ° and 55.2 ° corresponding to the respective (220), (311), (400), (511) and (440) planes of the cubic type $NiCo_2S_4$ (JCPDS# 43-1477). 30 However, for the CFC loaded sample, there are two extra peaks located at around 20 ° and 22 °. These impurity peaks can be assigned to the S (JCPDS#24-1251) formed by the decomposition of TAA. To better understand the presence of impurity, we use SEM-EDX to examine the difference between CFP and CFC 35 substrate. As shown in Supporting Information Fig.S(1-2), the CFP is mainly composed by C (~99 wt %) and O (~1 wt%). However, besides C and O element, the CFC contains other impurities such as Na (~0.1 wt%), Si (~0.1 wt%), and P(~0.3 wt%). Such unexpected impurities in CFC substrate might lead to

- ⁴⁰ the presence of S in NiCo₂S₄ under solvothermal conditions. The difference in the phase structure demonstrate that the substrate can not only influence the final morphology of active materials under solvothermal condition³⁹, but also can affect the purity of crystal phase. The mapping images (Fig.2) of Ni, Co, and S show
- ⁴⁵ uniform and continuous dispersion throughout the carbon fiber, indicating that homogeneous NiCo₂S₄ materials were covered on the carbon fiber substrate. The NiCo₂S₄ loaded on CFP and CFC show similar XPS spectra as displayed in Fig.3. As shown in Fig.3a, the energy difference between Ni 2p_{3/2} (853 eV) and Ni ⁵⁰ 2p_{1/2} (870 eV) indicate the existence of both divalent and trivalent states of Ni^{19, 23}. As regards for the Co 2p spectrum, two strong peaks at 779.0 eV for Co 2p_{3/2} and 794.0 eV for Co 2p_{1/2} can be found, suggesting the coexistence of Co (III) and Co(II) ^{19, 23, 19,}
- ²³ As for the S 2p spectrum, it can be divided into two main peaks
 ⁵⁵ located at around 162.0 and 163.2 eV and one shake-up satellite at about 169.0 eV. The component at 163.2 eV is characteristics of metal-sulphur bonds, while the peak at 162.0 can be assigned to the sulphur ion in low coordination on the surface²⁰.

Fig.3 XPS spectra of (a) Co 2p, (b) Ni 2p, and (c) S 2p for the NiCo₂S₄.

Journal of Materials ^J Chemistry

Cite this: DOI: 10.1039/c0xx00000x

ARTICLE TYPE

www.rsc.org/xxxxxx

Fig.4 SEM images of (a-b) bare CFP, (c-d) NiCo₂S₄/CFP, (e-f) bare CFC, and (g-h) NiCo₂S₄ / CFC

Fig. 5TEM, HRTEM images and SAED patterns of (a-c) NiCo $_2S_4$ /CFP, and (d-f) NiCo $_2S_4$ /CFC

SEM and TEM tests provide further insights into the morphologies and detailed geometrical structures of the $NiCo_2S_4$ materials. The low magnification image of CFP is displayed in ¹⁰ Fig.2(a), the carbon fiber interconnects with each other formed

web-like structure. If examine carefully, we can see that the carbon fiber in CFP has very smooth surface (Fig.2b). However, for the CFC, it shows the typical morphology of carbon cloth with crossed carbon fiber, and the surface of its carbon fiber is

dotted with tiny flakes (Fig.2(e-f)). After solvothermal process with the source chemicals, as shown in Fig.4 (c-d), a large quantity of burl-like NiCo₂S₄ have grown on the surface of the carbon fiber substrate. Similar phenomena can be observed over

- ⁵ the CFC supported NiCo₂S₄ material (Fig. 4 (g-h)) and the surface of CFC has been dotted with NiCo₂S₄ humps. The TEM, HRTEM and corresponding SAED patterns of NiCo₂S₄ scraped down from CFP and CFC are displayed in Fig.5 (a-c) and Fig.5 (d-f), respectively. As for NiCo₂S₄ supported on CFP, we can see
- ¹⁰ from Fig. 5a that the NiCo₂S₄ burls are actually composed of different size of nanoflakes. Based on the HRTEM image (Fig. 5b), the lattice spacing of 0.286 nm and 0.333 nm corresponds to the (311) and (220) crystal planes of NiCo₂S₄. The SAED pattern (Fig.5c) demonstrates a polycrystalline structure, and the term of term of the term of term of the term of term of term of the term of term o
- ¹⁵ diffraction rings can be indexed to the (220), (311), (400), (511) and (440) planes of NiCo₂S₄. As for NiCo₂S₄ supported on CFC, it is also constructed by small nanoflakes (Fig.5d). Meanwhile, its lattice fringes shown in Fig. 5e can be indexed to the (311) and (531) crystal planes of the NiCo₂S₄. The SAED pattern in Fig. 5f

20 confirms the polycrystalline nature of the material.

3.2 Electrochemical characterization

Fig.6 The CV curves of the (a) NiCo₂S₄/CFP electrode and (b) NiCo₂S₄/CFC electrode at different scan rates of 5, 10, 20, 40, 60 and 80 mV s⁻¹

The electrochemical properties of the prepared NiCo₂S₄ materials were investigated in the three-electrode measurements with 2 M KOH as the electrolyte. The cyclic voltammetry (CV) measurements under different scan rate are representing in Fig. 6. ³⁰ The cyclic voltammograms of NiCo₂S₄ grown over CFP substrate display a distinct pair of redox peaks during the positive and negative sweeps (Fig. 6a). The shape of the CV curves reveals the pseudocapacitive characteristics of the NiCo₂S₄ electrode, which agrees well with the previous reports ^{24, 25, 32}. The redox peaks are ³⁵ caused by the reversible redox reaction of NiCo₂S₄ in alkaline electrolyte according to the following equation^{19, 30, 32}:

$$NiCo_2S_4 + 2OH^{-1} \rightarrow NiS_{4-2x}OH + 2CoS_xOH + 2e^{-1}$$

Compared with the CV curves of the NiCo₂S₄/CFP, as observed ⁴⁰ from Fig.5b, the NiCo₂S₄/CFC behaves a relatively less obvious pair of redox peaks. Especially, under high scan rate (>40 mV s⁻¹), the redox peaks almost disappear, and this indicates that the polarization of the NiCo₂S₄/CFC electrode is more serious than that of NiCo₂S₄/CFP.

⁴⁵ To compare the influence of substrate on capacitance, the CV cures of NiCo₂S₄/CFP and NiCo₂S₄/CFC under the same scan rate of 20 mV s⁻¹ are shown in Supporting Information Fig. S2. Form Fig.S 2, we can clear observe that the variation in redox peaks position for the two samples, and this phenomena is due to ⁵⁰ the difference in electrode polarization behaviours³². As the specific capacitance is proportional to the area of the CV curve, apparently, NiCo₂S₄/CFP shows bigger CV curve area than that of the NiCo₂S₄/CFP, indicating that NiCo₂S₄/CFP has higher capacitance and better electrochemical activity. Based on the CV ⁵⁵ analysis, CFP is more suitable to be used as current collector than CFC.

Journal of Materials Chemistry

Cite this: DOI: 10.1039/c0xx00000x

ARTICLE TYPE

www.rsc.org/xxxxxx

Fig.7 Galvanostatic current charge-discharge curves of (a) NiCo₂S₄/CFP electrode and (b) NiCo₂S₄/CFC electrode at different current density; (c) the specific capacitance as a function of current density of the NiCo₂S₄/CFP and NiCo₂S₄/CFC electrode; (d) the cycling performance at constant current density of 20 mA cm⁻² of the two electrodes.

To further evaluate the capacitive performance of the NiCo₂S₄/CFP and NiCo₂S₄/CFC electrodes, we carried out galvanostatic charge-discharge test, and the results are shown in Fig. 7(a-b). The comparison of galvanostatic charge-discharge ¹⁰ curves for the two samples at a constant current density of 25 mA cm⁻² is given in Fig.S 3(Supporting Information). The plateaus in the charge/discharge curves imply the existence of Faradaic process which is related with the Ni ions and Co ions ^{19, 30}, and this result is consistent with the CV analysis. Obviously, the ¹⁵ charge-discharge curves of NiCo₂S₄/CFP are more symmetric at higher sectors.

high current density (for example, 16 and 25 mA cm⁻²), implying that the NiCo₂S₄/CFP electrode has higher charge-discharge coulombic efficiency and lower polarization ^{34, 40}. The specific capacitances of the two NiCo₂S₄ products are present in Fig.7c as ²⁰ function of current density. Specifically, the specific capacitance of the NiCo₂S₄/CFP is 1.19, 1.16, 1.10, 1.02, 0.91 and 0.83 F cm⁻² at the current density of 1, 2, 4, 8, 16 and 25 mA cm⁻², respectively. In contrast, under the same series of current density, the specific capacitance of the NiCo₂S₄/CFC is 1.33, 1.27, 1.17, ²⁵ 1.06, 0.91 and 0.76 F cm⁻². At lower current density, ions can penetrate into the inner-structure of electrode material and make full use of the active material, thus leading to a relatively higher specific capacitance. At higher current density, on the contrary,

³⁰ resulting in a relatively lower specific capacitance^{32, 41}. Therefore, with the current density rising, the specific capacitance is decreasing accordingly. Despite that our prepared NiCo₂S₄/CFP do not show excellent specific capacitance as the reported NiCo₂S₄ ³⁰⁻³², however, the NiCo₂S₄/CFP dose exhibits superior ³⁵ specific capacitance than those NiCo₂S₄ ^{19, 23, 26} and better electrochemical activity than NiCo₂O₄ supported on carbon fiber $^{42-45}$. Furthermore, for NiCo₂S₄/CFP, there is around 70 % initial capacitance retention as the current density increases from 1 mA cm⁻² to 25 mA cm⁻², and the high-rate capability is better than

s that of $NiCo_2S_4/CFC$ with only 57% initial capacitance retention. This relatively good rate capability is critical for its potential application.

The long-term stability was tested by galvanostatic chargedischarge cycling at a current density of 20 mA cm⁻² (Fig. 7d).

- ¹⁰ For NiCo₂S₄/CFP electrode, the capacitance decreased slowly, and the total capacitance loss is 24.1 % after 5000 cycles. To the best of our knowledge, the cycling performance of the NiCo₂S₄/CFP electrode is worse than that of reported NiCo₂S₄^{19, 20, 30, 32}, but superior to those previously reported values ²¹⁻²⁴. In
- ¹⁵ comparison, the capacitance loss for NiCo₂S₄/CFC electrode is ~32.2 %. The charge-discharge efficiency, namely Coulombic efficiency, is estimated according to the following equation: $\eta = t_d / t_c \times 100\%$, where t_c and t_d are the charge and discharge intervals, respectively. The two electrode materials exhibited a
- ²⁰ higher charge-discharge efficiency of ~99% during the entire test. From the electrochemical characterization, the NiCo₂S₄/CFP electrode exhibits superior electrochemical performance with both higher capacitance and better cycling stability than that of NiCo₂S₄/CFC. Based on the structure and morphology ²⁵ characterization, we know that the two NiCo₂S₄ have similar
- morphology but different body composition. $NiCo_2S_4$ supported over CFC is not pure but with impurity, and this might the main reason for such variation in electrochemical performance.

Fig.8 Nyquist plots of the EIS of the NiCo₂S₄/CFP and NiCo₂S₄/CFC electrode at bias potential of 0.35 V and the equivalent circuit of diagram.

To gain further insight into the transport kinetics of the ³⁵ electrochemical behaviours, we resorted to electrochemical impedance spectroscopy (EIS) carried out at open circuit potential in the frequency range between 0.01 Hz and 100 kHz. Fig. 8 shows the EIS of the NiCo₂S₄/CFP and NiCo₂S₄/CFC electrodes and the equivalent circuit is present inset. Where, the

⁴⁰ equivalent circuit includes the following parameters: equivalent series resistance (R_s), charge-transfer resistance (R_{ct}), doublelayer capacitance (C_{dl}), pseudocapacitance (C_{ps}) and Warburg behaviour (W). The R_s for the NiCo₂S₄/CFP and is *ca*. 0.98 Ω , which is much smaller than that of NiCo₂S₄/CFC (2.83 Ω). The ⁴⁵ smaller *R_s* value of NiCo₂S₄/CFP indicates that the interfacial contact between NiCo₂S₄ deposits and carbon fiber paper are consistent. Furthermore, the NiCo₂S₄/CFP electrode displays even smaller diameter of the semicircle in the impedance spectrum than that of NiCo₂S₄/CFC electrode, and this indicates ⁵⁰ that NiCo₂S₄/CFP has relatively lower charge-transfer resistance. Such difference in EIS of the two samples might is caused by the impurity of the NiCo₂S₄/CFC. In general, the EIS results clearly

demonstrate that the NiCo₂S₄/CFC migeneral, the EIS results clearly demonstrate that the NiCo₂S₄/CFP exhibits favourable charge-transfer kinetics and fast electron transport compared to 55 NiCo₂S₄/CFC, and thus further proving that NiCo₂S₄/CFP electrode has superior electrochemical performance compared to its counterpart.

Conclusions

In summary, we have prepared two kinds of NiCo₂S₄ electrodes 60 supported on carbon fiber paper and carbon fiber cloth respectively using a facile one-step solvothermal method. Although they both belong to carbon fiber materials, however, the substrates do matter in terms of the supported NiCo₂S₄ purity and activity! The NiCo₂S₄/CFP exhibited favourable charge-65 transfer kinetics and fast electron transport compared to NiCo₂S₄/CFC, and thus showing superior electrochemical performance than its counterpart. The self-supported hybrid NiCo₂S₄/CFP electrode showed high specific capacitance of 1.19 and 0.83 F cm⁻² at current densities of 1 and 25 mA cm⁻², 70 respectively, and exhibited desirable cycling stability as well as high rate capability. Considering the facile and cost-effective synthesis route and relatively high performance, the NiCo₂S₄/CFP might hold great promise as an active electrode for electrochemical supercapacitor.

Acknowledgments

75

100

This work was financially supported by the National Natural Science Foundation of China (21306026), Natural Science Foundation of Guangdong Province (S2012010009680), the 80 Foundation of Higher Education of Guangdong Province (cgzhzd1104, 2013CXZDA016), and Foundation for Distinguished Young Talents in Higher Education of Guangdong (2013LYM0024).

85 Notes and references

^a School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R.China. Fax: 86 20 3932 2237; *E-mail: Gych@gdut.edu.cn

[†] Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

- 95 1. P. Simon and Y. Gogotsi, Nat. Mater., 2008, 7, 845-854.
 - G. Wang, L. Zhang and J. Zhang, Chem.Soc. Rev., 2012, 41, 797-828.
 - P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-Bey, G. Wilson, A. Cruden and R. Carter, *Energy Environ. Sci.*, 2010, 3, 1238.

Page 8 of 9

- 4. Z. Wu, Y. Zhu and X. Ji, J. Mater. Chem. A, 2014, 2, 14759-14772.
- M. R. Gao, Y. F. Xu, J. Jiang and S. H. Yu, *Chem. Soc. Rev.*, 2013, 42, 2986-3017.
- X. Wang, B. Liu, Q. Wang, W. Song, X. Hou, D. Chen, Y. B. Cheng and G. Shen, *Adv. Mater.*, 2013, 25, 1479-1486.
- J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang and Y. Xie, J. Am. Chem. Soc., 2011, 133, 17832-17838.
- T. Y. Wei, C. H. Chen, H. C. Chien, S. Y. Lu and C. C. Hu, *Adv. Mater.*, 2010, 22, 347-351.
- 10 9. G. Zhang and X. W. Lou, Adv. Mater., 2013, 25, 976-979.
 - G. Zhang, B. Y. Xia, X. Wang and X. W. David Lou, *Adv. Mater.*, 2014, 26, 2408-2412.
 - J. Xu, Q. Wang, X. Wang, Q. Xiang, B. Liang, D. Chen and G. Shen, ACS Nano, 2013, 7, 5453-5462.
- 15 12. W. Wei, L. Mi, Y. Gao, Z. Zheng, W. Chen and X. Guan, *Chem. Mater.*, 2014, 26, 3418-3426.
 - J. Pu, Z. Wang, K. Wu, N. Yu and E. Sheng, *Phys. Chem. Chem. Phys.*, 2014, 16, 785-791.
- 14. S. Amaresh, K. Karthikeyan, I. C. Jang and Y. S. Lee, *J. Mater.* 20 *Chem. A*, 2014, **2**, 11099-11106.
 - S. Peng, L. Li, H. Tan, R. Cai, W. Shi, C. Li, S. G. Mhaisalkar, M. Srinivasan, S. Ramakrishna and Q. Yan, *Adv. Funct. Mater.*, 2014, 24, 2155-2162.
- Z. Xing, Q. Chu, X. Ren, C. Ge, A. H. Qusti, A. M. Asiri, A. O. Al Youbi and X. Sun, J. Power Sources, 2014, 245, 463-467.
- 17. Q. Wang, L. Jiao, H. Du, J. Yang, Q. Huan, W. Peng, Y. Si, Y. Wang and H. Yuan, *CrystEngComm*, 2011, **13**, 6960-6963.
- Z. Zhang, X. Wang, G. Cui, A. Zhang, X. Zhou, H. Xu and L. Gu, Nanoscale, 2014, 6, 3540-3544.
- 30 19. J. Xiao, L. Wan, S. Yang, F. Xiao and S. Wang, *Nano Lett.*, 2014, 14, 831-838.
 - H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi and D. Xia, *Nanoscale*, 2013, 5, 8879-8883.
 - 21. S. Peng, L. Li, C. Li, H. Tan, R. Cai, H. Yu, S. Mhaisalkar, M.
- 35 Srinivasan, S. Ramakrishna and Q. Yan, *Chem Commun* 2013, 49, 10178-10180.
 - Y. Zhang, M. Ma, J. Yang, C. Sun, H. Su, W. Huang and X. Dong, Nanoscale, 2014, 6, 9824-9830.
- 23. J. Pu, F. Cui, S. Chu, T. Wang, E. Sheng and Z. Wang, ACS
 Sustainable Chemistry & Engineering, 2014, 2, 809-815.
- 24. W. Du, Z. Wang, Z. Zhu, S. Hu, X. Zhu, Y. Shi, H. Pang and X. Qian, J. Mater. Chem. A, 2014, 2, 9613-9619.
- W. Du, Z. Zhu, Y. Wang, J. Liu, W. Yang, X. Qian and H. Pang, RSC Advances, 2014, 4, 6998-7002.
- 45 26. L. Yu, L. Zhang, H. B. Wu and X. W. Lou, Angew. Chem. Int. Ed., 2014, 53, 3711-3714.
 - 27. L. Liu, Nanoscale, 2013, 5, 11615-11619.
 - H. Wan, J. Jiang, J. Yu, K. Xu, L. Miao, L. Zhang, H. Chen and Y. Ruan, *CrystEngComm*, 2013, 15, 7649-7651.
- 50 29. J. Pu, T. Wang, H. Wang, Y. Tong, C. Lu, W. Kong and Z. Wang, *ChemPlusChem*, 2014, **79**, 577-583.
 - H. Chen, J. Jiang, L. Zhang, D. Xia, Y. Zhao, D. Guo, T. Qi and H. Wan, J. Power Sources, 2014, 254, 249-257.
- 31. Y. Li, L. Cao, L. Qiao, M. Zhou, Y. Yang, P. Xiao and Y. Zhang, J.
- 55 Mater. Chem. A, 2014, 2, 6540-6548.

- 32. L. Mei, T. Yang, C. Xu, M. Zhang, L. Chen, Q. Li and T. Wang, *Nano Energy*, 2014, 3, 36-45.
- W. Chen, C. Xia and H. N. Alshareef, ACS Nano, 2014, 8, 9531-9541.
- 60 34. C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen and X. W. D. Lou, Adv. Funct. Mater., 2012, 22, 4592-4597.
 - F. Deng, L. Yu, G. Cheng, T. Lin, M. Sun, F. Ye and Y. Li, J. Power Sources, 2014, 251, 202-207.
- 36. Y. Zhang, H. Wang, B. Wang, H. Yan and M. Yoshimura, J. Cryst.
 Growth, 2002, 243, 214-217.
 - 37. Y. Shimizu and T. Yano, Chem. Lett., 2001, 1028-1029.
 - 38. J. Grau and M. Akinc, J. Am. Ceram. Soc., 1996, 79, 1073-1082.
 - R. B. Rakhi, W. Chen, D. Cha and H. N. Alshareef, *Nano Lett.*, 2012, 12, 2559-2567.
- 70 40. L. Yang, S. Cheng, Y. Ding, X. Zhu, Z. L. Wang and M. Liu, *Nano Lett.*, 2012, **12**, 321-325.
 - H. Li, M. Yu, F. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. Tong and G. Yang, *Nat Commun*, 2013, 4, 1894.
- 42. H. Wang, Z.Hu, Y. Chang, Y.Chen, H.Wu, Z. Zhang and Y.Yang, *J. Mater. Chem.*, 2011, **21**, 10504-10511.
 - 43. H. Wang, Q. Gao and L. Jiang, Small, 2011, 7, 2454-2459.
 - L. Huang, D. Chen, Y. Ding, S. Feng, Z. L. Wang and M. Liu, *Nano Lett.*, 2013, 13, 3135-3139.
- 45. N. Padmanathan and S. Selladurai, *RSC Advances*, 2014, **4**, 8341-80 8349.

table of contents entry

 $NiCo_2S_4$ /CFP displayed good cycle ability and high rate capability with capacitance loss of 24.1 % after 5000 cycles.