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Stability of Nitro-NNO-azoxy Substituted Explosives. 
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Nitro-NNO-azoxy group: The unique structure that contains one nitro group, one 

N-oxide group and one azo-linkage, could improve the density, heat of formation, 

detonation velocity and detonation pressure of an explosive. Compared with nitro 

group, the nitro-NNO-azoxy group has a stronger energetic and electron-attracting 

property. 
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2,4-Di-nitro-NNO-azoxytoluene and 2,6-dinitro-4-nitro-NNO-azoxytoluene were synthesized as energetic 
compounds. Their structures and properties were studied by X-ray diffractometry, nuclear magnetic 
resonance and infrared spectroscopy. The differences between the nitro-NNO-azoxy and the nitro groups 
are discussed. The detonation properties as predicted using EXPLO5 indicate that the detonation velocity 
and pressure of 2,4-di-nitro-NNO-azoxytoluene increased by 21.7% and 74.3%, respectively, compared 10 

with 2,4-dinitrotoluene. Nucleus independent chemical shift analysis was used to investigate skeleton 
aromaticity and the effect of the nitro-NNO-azoxy and nitro groups on ring aromaticity. Electrostatic 
potential, bond dissociation energy, Mulliken charges and Wiberg bond order were estimated by density 
functional theory to establish the molecular electron distribution and their stabilities. The nitro-NNO-
azoxy group has a stronger electron-withdrawing property than that of the nitro group. 15 

Introduction 
Energetic compounds are one of the most important organic 
components because of their unique energy storage and stability 
properties1-3. It is a challenge to design and synthesize novel 
energetic compounds with improved energetic performance and 20 

stability since propellants must transport increasing payloads and 
more powerful explosives are required. The performance of 
energetic compounds is linked closely to structure. In general, 
energetic compounds are composed of backbones and functional 
groups4-6. Only a few energetic compounds contain oxygen atoms 25 

in their backbones, and the oxygen balance is usually improved 
by introducing oxygen-rich groups. A nitro group is often 
introduced to improve the oxygen balance of an explosive. Other 
nitro-containing groups, such as the nitrato (ONO2), nitramino 
(NHNO2), geminal dinitro (CH(NO2)2) and trinitromethyl 30 

(C(NO2)3) groups are also introduced frequently into parent 
backbones to produce novel energetic derivatives with excellent 
detonation performance7-10. Recently, the introduction of N→O 
on nitrogen-heterocycles has been found to be useful to increase 
the energetic performance of energetic materials11, 12. However, 35 

these new oxygen-rich groups have drawbacks in that they may 
be difficult to synthesise or they may be sensitive to thermal 
conditions, impact and friction. Therefore, further research is 
required to develop new oxygen-rich groups. 

We have become interested in the nitro-NNO-azoxy group, 40 

which has not been studied fully. Its unique structure that contains 
one nitro group, one N-oxide group and one azo-linkage, could 
improve the oxygen balance and heat of formation (HOF) of 
energetic compounds. The nitro-NNO-azoxy group was first 
reported by Churakov et al. in 199613. After the first synthesis, 45 

Churakov modified the synthesis route by using tert-butyl-NNO-

azoxy-benzenes as intermediates14. Bis-3,3’-(nitro-NNO-azoxy)-
difurazanyl ether (1)15, and bis-3,3’-(nitro-NNO-azoxy)-4,4’-
azofurazan (2)16 were then synthesized (see Scheme 1). 

However, the nitro-NNO-azoxy group has not been studied 50 

thoroughly as an energetic functional group, and the influence of 
the group on the structural and energetic properties has not yet 
been clarified. Differences between the nitro-NNO-azoxy and 
nitro groups must still be explored. To investigate the above 
problems systematically, we designed two nitro-NNO-azoxy 55 

derivatives by substituting nitro groups of energetic compounds 
with nitro-NNO-azoxy groups, and studied their properties (see 
Scheme 2). Two traditional explosives, 2,4,6-trinitrotoluene 
(TNT) and 2,4-dinitrotoluene (DNT), were selected since they are 
used widely and are obtained easily. Consequently, 2,4-di-nitro-60 

NNO-azoxytoluene (3) and 2,6-dinitro-4-nitro-NNO-
azoxytoluene (4) were synthesized and their structures were 
confirmed by mass spectrometry, 1H nuclear magnetic resonance 
(NMR), 13C NMR, infrared spectroscopy (IR) and elemental 
analysis. Changes in structural and performance features that 65 

resulted from the introduction of the new group onto the parent 
compounds are discussed in detail. X-ray diffractometry (XRD) 
and density functional theory (DFT) were used to reveal 
differences between the nitro-NNO-azoxy and nitro groups such 
as configuration and electrostatic potential (ESP) 70 

Scheme 1 Reported nitro-NNO-azoxy substituted furazan 
derivatives. 
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Table 1 X-Ray data and parameters of compounds 3 and 4. 

 3 4 
CCDC 1023014 1023015 
Empirical formula C7H6N6O6 C7H5N5O7 
Formula mass 270.03 271.02 
Crystal system Monoclinic Monoclinic 
Space group P21/n P 21/n 
Z 4 4 
a (Å) 5.3336(13) 5.2932(15) 
b (Å) 7.9688(19) 29.236(8) 
c (Å) 25.494(6) 6.907(2) 
α (°) 90 90 
β (°) 94.454(3) 98.746(4) 
γ (°) 90 90 
Volume (Å3) 1080.3(5) 1056.4(5) 
Dcalc (g·cm-3) 1.661 1.705 
Temperature (K) 153 (2) 153 (2) 
F(000) 552 552 
h, k, l 7, 10, 32 7, 37, 9 
μ (cm-1) 0.147 0.155 
R1[I > 2σ(I)] 0.0393 0.0461 
Reflections collected 9291 8887 
Completeness to theta full (%) 0.994 0.998 
wR2 (all data) 0.1061 0.1290 
S on F2 0.999 1.003 

Differential scanning calorimetry 

T To determine the thermal behavior of the compounds, 
differential scanning calorimetry (DSC) measurements were 
carried out at 5°C·min-1 using dry oxygen-free nitrogen at 20 mL 5 

min-1. As shown in Fig. 3, an endothermic peak is observed at 
58.5°C, which indicates the melt of 3. The exothermic peak at 
139.5°C illustrates that 3 decomposed. It is likely that 4 melts at 
114.0°C and decomposes at 137.0°C. Their decomposition 
temperature decreases compared with the parent compounds DNT 10 

(250°C) and TNT (295°C). This is presumably because the long 
nitrogen chain is more vulnerable to heat, and conjugation of the 
N-NO2 bond in the chain is less stable than the C-NO2 bond 
between the benzene ring and the nitro group. However, 
compared with previously reported benzene derivatives (85–15 

110°C) and 2 (132°C)13, 16, the decomposition temperature of 
139.5°C of 3 makes it the most stable compound in this series. 
This provides a clue for the synthesis of new energetic nitro-
NNO-azoxy compounds with better thermal stabilities. 

20 

Fig. 3 DSC spectra of 3 and 4. 

Sensitivity 

The impact sensitivity (IS) and friction sensitivity (FS) of 3 and 4 
were determined according to general methods. The ISs of 3 and 
4 are 5 J and 15 J, respectively. Both compounds are classified as 25 

“sensitive” explosives20. The results indicate that 4 has a similar 
IS to its parent compound TNT (IS = 15 J), whereas 3 is more 
sensitive towards impact than DNT (measured IS > 40 J). The IS 
is not affected significantly when one nitro group is substituted 
by a nitro-NNO-azoxy group. However, it decreases significantly 30 

when the two nitro groups are replaced by nitro-NNO-azoxy 
groups. The FSs for 3 and 4 are 120 N and 160 N, respectively. 
These compounds are less stable than DNT (FS > 360 N) and 
TNT (FS = 353 N)21. Detailed sensitivity information is given in 
the Electronic Supplementary Information (ESI†). 35 

Density, heat of formation and detonation properties 

Density and HOF are important parameters used to predict the 
detonation performance of an explosive22. Their precise values 
play a significant role in obtaining accurate results. The crystal 
densities of 3 and 4 measured at 153 K are 1.661 g·cm-3 and 40 

1.705 g·cm-3, which is higher than the measured values of DNT 
(1.559 g·cm-3, 173 K) and TNT (1.704 g·cm-3, 123 K) at low 
temperature23, 24. The nitro-NNO-azoxy group is more powerful 
than the nitro group in improving the density. An increase of 0.1 
g·cm-3 was obtained when both nitro groups were replaced with 45 

nitro-NNO-azoxy groups. To obtain more reliable results for 
detonation performance, the low temperature densities are 
converted to those at room temperature by using Sun’s method25. 
Densities used for the calculation of the detonation performance 
of 3 and 4 are 1.63 g·cm-3 and 1.67 g·cm-3, respectively. 50 

HOFs were estimated by isodesmic reaction and molecule 
optimization was accomplished by using the Gaussian 03 
program package26. The calculation was carried out using the 
density functional theory (DFT) B3LYP method 27, 28 and the 6-
311++G(d,p) basis set29, 30. Vibrational analysis confirmed that 55 

the structures obtained correspond to the minima on their 
potential energy hypersurfaces. To guarantee the accuracy, the 
solid-phase HOF was calculated by subtracting the heat of 
sublimation (ΔHs) from the gas-phase HOF by Politzer’s 
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method31, 32. The calculated HOFs of the title compounds are 
summarized in Table 2. More HOF calculation details are shown 
in the ESI†.   

∆H Solid ∆H Gas ∆H Sublimation     (1) 

∆H Sublimation a SA b σT ν c    (2) 5 

∆H(Solid), ∆H(Gas) and ∆H(Sublimation) refer to the solid-phase 
HOF, gas-phase HOF and heat of sublimation, respectively; a, b, 
and c are fitting parameters, respectively; SA is the molecular 
surface area; σ2

Tot is the total variance of the calculated ESP on 
the molecular surface and ν is a balance parameter. 10 

The calculated HOFs of 3 and 4 are 415.7 kJ·mol-1 and 55.4 

kJ·mol-1, respectively, and are higher than those of DNT and TNT. 
The HOF of toluene (50.1 kJ·mol-1) decreased when toluene was 
nitrated, and increased when the nitro-NNO-azoxy groups were 
introduced. According to our calculations, when one nitro group 15 

is displaced by one nitro-NNO-azoxy group in TNT, an 
increment of 135.9 kJ·mol-1 in HOF is obtained. The phenomenon 
is more evident when the nitro groups in DNT are displaced 
completely by nitro-NNO-azoxy groups. Compare with DNT, 3 
obtains an extra 480 kJ·mol-1 in HOF. The nitro-NNO-azoxy 20 

group enhances the HOF in the skeleton more positively than the 
nitro group. The azo and N-N bonds are the main contributors33, 

34. 

Table 2 Properties of title compounds. 

compound ρ/g·cm-3 OB/% N/% HOF/kJ·mol-1 D/km·s-1 P/GPa Tm/°C Td/°C IS/J FS/N 

3 1.63 -65.2 31.1 415.7 7.78 24.4 58.5 139.5 5 120 

4 1.67 -56.1 25.8 55.4 7.64 23.9 114 137 15 160 

DNT a 1.52 -114.3 15.4 -64.3 c 6.39 14.0 70 250 40 360 

TNT b 1.65 -74 18.5 -80.5 c 6.88 19.5 80.4 295 15 353 

a Record of 2,4-dinitrotoluene in the GESTIS Substance Database from the IFA, accessed on 9. October 2007. b Reference 35 . c Reference 36. 25 

The detonation velocity and pressure of the title compounds 
were calculated using EXPLO5 v 6.01 with a rectified density 
and HOF37. As expected, with a better density, oxygen balance, 
nitrogen content and HOF, 3 and 4 achieved better detonation 
performance than their corresponding nitro-compounds. The new 30 

nitro-NNO-azoxy energetic group improves the energetic 
performance, especially for the disubstituted 3, with its 
performance compared with DNT being as follows: 0.11 g·cm-3 
increase in density; 49.1% increase in oxygen balance; additional 
480 kJ·mol-1 HOF; and most importantly, 1.39 km·s-1 and 10.4 35 

GPa increase in detonation velocity and pressure, respectively. 
The nitro-NNO-azoxy group therefore enhanced every energetic 
level parameter. However, as shown in Table 2, adverse effects 
also result. In 3, for example, the decomposition temperature 
drops by 110°C after substitution. There is a simultaneous 40 

decrease in IS and FS of 35 J and 240 N, respectively. Thus, the 
nitro-NNO-azoxy group could improve the energetic performance 
of a compound but weakened its heat and mechanical stability. To 
explain the origin of the instability of the nitro-NNO-azoxy group, 
a series of computations were carried out that addressed structural 45 

and electronic differences between the nitro-NNO-azoxy and 
nitro groups. 

Nucleus independent chemical shift 

The nucleus independent chemical shift (NICS) is a useful tool to 
describe compound aromaticity or the magnetic properties of a 50 

structure. The original definition of the NICS is the negative 
value of the absolute magnetic shielding computed at ring 
centers38, 39. The NICS(1) concept is more practical for 
illustration of the π-electron structure character since it is defined 
as an NICS of 1 Å above the ring plane. However, NICS(1) is 55 

still based on the total isotropic shielding value40, 41. NICS(1)zz 

was therefore proposed to reflect contributions arising from the zz 
component of the shielding tensor39, 42. Larger negative values 
imply a stronger molecule aromaticity. NICS(1)zz is believed to 
offer an improved interpretation of aromaticity with fewer errors.  60 

To compare the aromatic differences that result from the 
substitution of the nitro and nitro-NNO-azoxy groups, the 
NICS(1)zz values of 3, 4, DNT, TNT and toluene were calculated 
using the GIAO/B3LYP/6-311++G** method. The results are 
summarized in Table 3. 65 

Table 3 NICS(1)zz values of title compounds. 

 3 4 DNT TNT Toluene

NICS(1)zz/

ppm 
-24.2309 -23.0447 -24.5468 -23.0761 -27.8042

The NICS(1)zz values of 3 and 4 are higher than those of 
DNT and TNT even though the increases are not very evident. 
Both 3 and 4 have a slightly weaker aromaticity than DNT and 
TNT, respectively. Compared with toluene, the four other 70 

compounds have high NICS values, which means that the 
aromaticity of the benzene ring decreases after the H atoms are 
substituted by electron-withdrawing groups. The nitro-NNO-
azoxy group has a stronger ability than the nitro group to weaken 
the aromaticity of the toluene skeleton.   75 

To investigate the shielding distribution of the zz component 
1 Å above the plane, the NICS of 125000 points around the 
molecule was computed using the same method. Color-filled 
shielding maps were sketched using Multiwfn v 3.3.443 (see Fig. 
4). The colors range from -45 to +40 ppm with dark blue denoting 80 

extremely anti-shielding regions and red denoting shielding 
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attracting property than that of the nitro group. The bond order of 
the C-NNO bond on 3 or 4 and the C-NO2 bond on DNT or TNT 
in the same place did not show much difference. The rebalance of 
electrons between the ring and the group made the C-NNO bond 
as stable as the C-NO2 bond. 5 

Experimental 

The synthesis method of 3 and 4 is shown in Scheme 3. 

Scheme 3 Synthesis methods used in the study. 

2,4-Dihydroxaminotoluene: DNT (3 g, 16.5 mmol), 
dichloromethane (18 mL), Ethanol (75 mL) and water (18 mL) 10 

were added to a 250 mL three-necked flask followed by zinc 
powder (27 g, 412.8 mmol). A dropwise solution of 3 g (56.1 
mmol) ammonium chloride and 30 mL water was added to the 
vigorously stirred mixture under nitrogen. The reaction was 
maintained at 15°C in an ice bath for 30 min. MgSO4 was used to 15 

remove residual water after the reaction. The precipitate was 
filtered, washed with dichloromethane and a solution of 2,4-
dihydroxaminotoluene was obtained. The solution was 
concentrated to 50 mL using a rotary evaporator. 
2,4-Dinitrosotoluene: Activated MnO2 (150 g) and 250 mL 20 

dichloromethane were added to a 500 mL three-necked flask. A 
dropwise solution of 2,4-dihydroxaminotoluene was added to the 
stirred mixture under nitrogen and at ambient temperature. Thirty 
minutes after the solution had been added, the MnO2 was filtered 
off and the solution was concentrated to 50 mL. 25 

2,4-Di-tert-butyl-NNO-azoxytoluene: Under nitrogen, N,N-
dibromo-tert-butylamine (8 g, 35.1 mmol) was added to the 
vigorously stirred 2,4-dinitrosotoluene solution at room 
temperature. After one hour, the solution was evaporated in a 
rotary evaporator and the residue passed through a silicagel 30 

column to yield 2,4-di-tert-butyl-NNO-azoxytoluene (3.14 g, 
65.1%, three steps). 
2,4-Di-nitro-NNO-azoxytoluene: 2,4-Di-tert-butyl-NNO-toluene 
(4.4 g, 15 mmol) was dissolved in 50 mL dry acetonitrile, to 
which 5 g (37.5mmol) NO2BF4 was added in a nitrogen 35 

atmosphere. The solution was stirred for 5 h at 0°C, poured into 
200 mL water, and extracted with dichloromethane three times. 
The solvent was removed and 2,4-di-nitro-NNO-azoxytoluene 
(2.13 g, 52.3%), a yellow solid, was obtained after passing it 
through a silicagel column. (Found: C, 31.26; H, 2.47; N, 30.65; 40 

O, 35.62; calc. for C7H6N6O6: C, 31.12; H, 2.24; N, 31.11; O, 
35.53). m/z 270, 180, 91. 1H NMR: (400 MHz, acetone-d6 Me4Si) 
δ 2.58 (3H, s, Me), 7.91-7.93 (1H, m, Ph), 8.48-8.50 (1H, m, Ph), 
8.88 (1H, m, Ph), 13C NMR: (400 MHz, acetone-d6 Me4Si) δ 

22.93 (1C, Me), 114.99 (1C, Ph), 124.18 (1C, Ph), 131.45 (1C, 45 

Ph), 139.81 (1C, Ph), 145.63 (1C, Ph). IR KBr ν/cm-1 1617, 1484, 
1275, 860, 828, 710, 576. 

2,6-Dinitro-4-nitro-NNO-azoxytoluene could be synthesized 
in a similar way and only half the moles of zinc powder, 
ammonium chloride, N,N-dibromo-tert-butylamine and NO2BF4 50 

were needed. Yield 38.6%, yellow solid. (Found: C, 30.52; H, 
1.96; N, 26.07; O, 41.45; calc. for C7H5N7O8: C, 31.01; H, 1.86; 
N, 25.83; O, 41.30) m/z 181, 165, 89. 1H NMR: (400 MHz, 
acetone-d6 Me4Si) δ 2.72 (3H, s, Me), 9.04 (2H, s, Ph) 13C NMR: 
(400 MHz, acetone-d6 Me4Si) δ 15.77 (1C, Me), 110.71 (1C, Ph), 55 

122.70 (2C, Ph), 134.72 (1C, Ph), 152.70 (2C, Ph). IR KBr ν/cm-1 
3090, 1603, 1536, 1487, 1352, 1272, 909, 852, 723. All spectra of 
3 and 4 are shown in the ESI†. 

Conclusions 
2,4-Di-nitro-NNO-azoxytoluene and 2,6-dinitro-4-nitro-NNO-60 

azoxytoluene were designed and synthesized. Differences 
between the nitro-NNO-azoxy and nitro groups were compared 
systematically. The structures of the two new compounds were 
determined by mass spectrometry, IR, NMR, elemental analysis 
and XRD. Their intramolecular interactions were studied by 65 

investigating their crystal structures and their electron distribution 
properties were obtained by calculating their NICS, ESP, BDE, 
Mulliken atomic charges and Wiberg bond order. Substitution of 
the nitro-NNO-azoxy group could enhance the energetic levels of 
the toluene system such as density, HOF, detonation velocity and 70 

pressure. The nitro-NNO-azoxy derivatives also have an adverse 
effect in terms of lower decomposition temperature, higher 
impact and friction sensitivities than the traditional nitro-
containing counterparts. The nitro-NNO-azoxy group has a 
stronger electron-withdraw capability than the nitro group. Its 75 

higher electronegativity makes the nitro-NNO-azoxy group more 
able to influence the aromaticity and electron distribution of the 
benzene ring than the nitro group. The BDE and Wiberg bond 
order results indicate that the N-NO2 bond is the most vulnerable. 
The comprehensive performance of the nitro-NNO-azoxy group 80 

proves it is a competitive energetic group for designing new 
compounds with high energetic levels. We anticipate that the 
results from this paper could contribute to further studies of 
compounds of this kind. 
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