# Journal of Materials Chemistry A

Accepted Manuscript



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/materialsA

### Page 1 of 6 Journal of Materials Chemistry

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

## ARTICLE TYPE

### A Novel Strategy to Prepare Pt-SnO<sub>2</sub> Nanocomposite as Highly Efficient Counter Electrode for Dye-Sensitized Solar Cells

Xiao Chen<sup>a†</sup>, Yu Hou<sup>a†</sup>, Shuang Yang<sup>a</sup>, Xiao Hua Yang<sup>\*a</sup> and Hua Gui Yang<sup>\*a,b</sup>

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A novel strategy was introduced to prepare Pt-SnO<sub>2</sub> nanocomposite, where the reduction of  $Pt^{4+}$  and the exfoliation of SnS<sub>2</sub> were finished in one step. The Pt-SnO<sub>2</sub> nanocomposite was applied as the counter electrode (CE) for dye-sensitized solar cells (DSCs). Compared with the energy conversion efficiency (E<sub>ff</sub>) of SnO<sub>2</sub> CE based DSCs, the DSCs with Pt-SnO<sub>2</sub> CE showed an overall E<sub>ff</sub> of 8.83%, giving an improvement of 198%. Meanwhile, better electrocatalytic

10 activity towards  $I_3/I$  redox pairs than Pt CE indicated that the Pt-SnO<sub>2</sub> was a promising electrocatalyst for DSCs.

Moreover, the low Pt content of Pt-SnO<sub>2</sub> composite would accelerate the large-scale applications of DSCs in the future.

#### 1. Introduction

The dye-sensitized solar cells (DSCs) were firstly reported by O'Regan and Grätzel in 1991 and have achieved great <sup>15</sup> advancement due to its low consumption, easy fabrication and powerful harvesting efficiency.<sup>1, 2</sup> To date, the highest energy conversion efficiency of DSCs is up to 13%.<sup>3</sup> Generally, there are three key components containing a sensitizer dye adsorbed nanocrystalline TiO<sub>2</sub> anode, an electrolyte containing <sup>20</sup> iodide/triiodide (I<sup>-</sup>/I<sub>3</sub><sup>-</sup>) redox couple and a counter electrode (CE)<sup>4, 5</sup> in a typical DSC. As a superior CE material, platinum (Pt) is confirmed to own excellent catalytic activity for I<sub>3</sub><sup>-</sup> reduction. However, the limited reserve and high cost of Pt

severely restrict the large-scale application of the DSCs.<sup>6</sup> <sup>25</sup> Therefore, many efforts have been devoted to exploring low-cost and high performance materials as replacements for Pt.

The CE materials investigated so far include different forms of carbon materials<sup>7-9</sup>, conducting polymers<sup>10</sup>, metal sulphides<sup>11, 12</sup>, metal carbides<sup>13</sup>, metal nitrides<sup>14</sup>, metal phosphides<sup>15</sup> and metal <sup>30</sup> oxides<sup>16-20</sup>. Compared to other materials, metal oxides have unique properties, such as high stability, low cost, environment-friendly and high catalytic activity.<sup>21, 22</sup> Among the common metal oxides, tin dioxide (SnO<sub>2</sub>) as a wide bandgap semiconductor has been utilized as CE materials.<sup>23, 24</sup>

<sup>35</sup> Unfortunately, slightly low electrocatalytic activity of pure SnO<sub>2</sub> has restricted its application. Recently, Wu *et al.* prepared SnO<sub>2</sub> under N<sub>2</sub> atmosphere yielded energy conversion efficiency of 6.09%.<sup>23</sup> Pan et al. utilized a highly active nonstoichiometric SnO<sub>2- $\delta$ </sub> as CE materials and achieved overall efficiency of 40 4.81%.<sup>24</sup> Meanwhile, loading traditional materials with Pt was also confirmed to be a useful method to improve the catalytic

target of low-cost.<sup>26</sup> Here, we demonstrate a novel method to synthesize Pt-SnO<sub>2</sub> <sup>45</sup> nanocomposite, and utilize it as CE materials in DSCs. In this method, the reduction of Pt<sup>4+</sup> and the exfoliation of SnS<sub>2</sub> are

activity.<sup>25</sup> However, the Pt percentage is still too high to reach the

finished in one step by the treatment of *n*-Butyllithium (*n*-BuLi) solution. The Pt-SnO<sub>2</sub> based solar cells yields an energy conversion efficiency of 8.83%, significantly higher than that of SnO<sub>2</sub> with an improvement of 198%. Moreover, the electrocatalytic activity of Pt-SnO<sub>2</sub> is even better than traditional Pt, indicating that the Pt-SnO<sub>2</sub> nanocomposite is a promising catalyst in DSCs. Meanwhile, indicatively coupled plasma atomic emission spectroscopy (ICP-AES) confirms that the weight ratio 55 of Pt in Pt-SnO<sub>2</sub> composite is 23.1%, lower than previous reports (66.7%-93.0%).<sup>26, 29</sup>

#### 2. Experimental

#### 2.1 Preparation of Pt-SnO<sub>2</sub> nanocomposite

The Pt-SnO<sub>2</sub> nanocomposite was synthesized by a two-step <sup>60</sup> method. Firstly, the mixture of 0.6 g SnS<sub>2</sub> nanoparticles (synthesized by a previous method<sup>12</sup>) and 140 mg PtCl<sub>4</sub> (Sinopharm, AR) were added into 50 mL hexane (Sinopharm, AR) in a argon atmosphere, followed by stirring for 3 h under 323 K. Secondly, 8 mL *n*-BuLi solution (1.6 M in hexane) was <sup>65</sup> injected into the above solution under vigorous stirring for 24 h. After the reaction, black powder was obtained by filter, washed with hexane and ethanol and dried in air at 333 K. Finally, the product was sintered in a muffle furnace at 673 K for 30 min.

#### 2.2 Preparation of counter electrodes

<sup>70</sup> The Pt-SnO<sub>2</sub> coated counter electrodes were prepared on F-doped tin oxide conducting glass (FTO) substrate (NSG, 8  $\Omega$ /square) using a paste that made from the obtained Pt-SnO<sub>2</sub> power by screen-printing technology. The paste was made by mixing 0.5 g Pt-SnO<sub>2</sub> nanocomposites powder with 2.03 g anhydrous <sup>75</sup> terpineol, 2.6 g ethyl celluloses in ethanol (10 wt%) and 8 mL ethanol followed by stirring, sonication and concentration. For comparison, the SnO<sub>2</sub> (AR) was purchased from Sinopharm and the SnO<sub>2</sub> CE films were prepared by the same procedure. The Pt electrode was prepared by drop-casting 0.5 mM H<sub>2</sub>PtCl<sub>6</sub>/ethanol <sup>80</sup> solution on the clean FTO conductive glass. Subsequently, these formed films were annealed at 723 K for 30 min at ambient condition.

#### 2.3 Fabrication of DSCs

- The procedure of preparing the TiO<sub>2</sub> photoanode was described <sup>5</sup> in detail as follow. Firstly, the FTO substrate was dipped into 40 mM TiCl<sub>4</sub> for 30 min at 343 K (TiCl<sub>4</sub> treatment). Then a 12 µmthick layer of 20 nm-sized TiO<sub>2</sub> particles was loaded on the FTO by screen printer technique with an area of about 0.25 cm<sup>2</sup>. After sintering at 398 K, the obtained layer was further coated with a 4
- <sup>10</sup> µm-thick scattering layer of 200 nm-sized TiO<sub>2</sub> particles (HEPTACHROMA, DHS-NanoT200) followed by sintering at 773 K. Another TiCl<sub>4</sub> treatment was carried followed by sintering at 773 K for 30 min. After cooling to 353 K, the photoanodes (TiO<sub>2</sub> films) were immersed in a  $5 \times 10^{-4}$  M solution of N719 dye
- <sup>15</sup> (Solaronix SA, Switzerland) in acetonitrile/tert-butyl alcohol (V/V=1/1) for 24 h. DSCs were assembled together with the dyesensitized TiO<sub>2</sub> electrode and the Pt-SnO<sub>2</sub> CE by a 25  $\mu$ m-thick hot-melt film (Surlyn 1702, DuPont) and sealed up by heating. The cell internal space was filled with typical liquid electrolytes
- <sup>20</sup> using a vacuum pump. The liquid electrolyte was composed of 0.60 M 1-butyl-3-methylimidazolium iodide, 0.03 M I<sub>2</sub>, 0.50 M 4-tert-butyl pyridine, and 0.10 M guanidinium thiocyanate with acetonitrile as the solvent. The assembled DSCs were used for the photocurrent-voltage test with an active area of 0.25 cm<sup>2</sup>. For
- <sup>25</sup> electrochemical impedance spectroscopy (EIS) measurement, the symmetrical dummy cells were assembled by two identical CEs clipping the above liquid electrolyte.<sup>25</sup>

#### 2.4 Characterization

The morphology and structure of the samples were characterized <sup>30</sup> by high-resolution transmission electron microscopy (HRTEM, JEOL JEM-2010F, F20, 200 kV) and field emission scanning electron microscopy (FESEM, HITACHI S4800) and X-ray diffraction (XRD, Bruker D8 Advanced Diffractometer, Cu Kα radiation, 40 kV). The current-voltage tests of DSCs were

- <sup>35</sup> performed under one sun condition using a solar light simulator (Oriel, 91160, AM 1.5 globe). The power of the simulated light was calibrated to 100 mW·cm<sup>-2</sup> using a Newport Oriel PV reference cell system (model 91150 V). The EIS experiments were measured with dummy cells in the dark by using an
- <sup>40</sup> electrochemical workstation (Parstat 2273, Princeton). The frequency range of EIS experiments was from 100 mHz to 1 MHz with an AC modulation signal of 10 mV and bias DC voltage of 0.60 V. The curves were fitted by the Zview software. Cyclic voltammetry (CV) was conducted in a three-electrode
- <sup>45</sup> system in an acetonitrile solution of 0.1 M LiClO<sub>4</sub>, 10 mM LiI, and 1 mM I<sub>2</sub> at a scan rate of 20 mV s<sup>-1</sup> by using a BAS 100 B/W electrochemical analyzer. Platinum served as a CE and the Ag/Ag<sup>+</sup> couple was used as a reference electrode. Tafel polarization curves were measured with dummy cells in the dark <sup>50</sup> using an electrochemical workstation (Parstat 2273, Princeton).
- Element analysis was conducted by indicatively coupled plasma atomic emission spectroscopy (ICP-AES, Vanan 710). The chemical states of elements in nanocomposites were analysed using X-ray photoelectron spectroscopy (XPS, Kratos Axis Ultra
- <sup>55</sup> DLD), and the binding energy of the C 1s peak at 284.8 eV was taken as an internal reference. The nitrogen sorption isotherms

were measured by a Micromeritics ASAP 2010N system.

#### 3. Results and discussion

### 3.1. Preparation and characterization of Pt-SnO<sub>2</sub> 60 nanocomposite

The schematic diagram of the synthesis of Pt-SnO<sub>2</sub> was shown in Fig. 1A. In this procedure, in order to bind the Pt precursors from the solution on the SnO<sub>2</sub> surface and obtain ultrafine dispersions of Pt nanocrystallites, SnS<sub>2</sub> nanosheets were utilized as raw <sup>65</sup> materials because sulfur exhibited a strong affinity for noble metals owing to a soft acid-soft base interaction.<sup>25, 27</sup> The *n*-BuLi solution functioned not only as a strong reducing agent, providing a reduced condition to reduce the Pt<sup>4+</sup> but also as an exfoliation agent. SnS<sub>2</sub> was one kind of layered transition metal <sup>70</sup> dichalcogenides (LMDCs). The *n*-BuLi solution offered Li<sup>+</sup>, which could intercalate inside the LMDCs and crush the bulk material into small particles.<sup>28</sup> Residual sulfur can be completely removed from the product by heat-treatment.



Fig. 1 (A) Schematic illustration of the Pt-SnO<sub>2</sub> synthesis procedure, (B) XRD patterns of the synthesized Pt-SnO<sub>2</sub> nanocomposite (red triangle: <sup>105</sup> peaks of SnO<sub>2</sub>, black circle: peaks of Pt), (C,E) SEM and TEM images of raw SnS<sub>2</sub> nanosheets, (D,F) SEM and TEM images of the synthesized Pt-SnO<sub>2</sub> nanocomposite.

The overall morphology of both SnS<sub>2</sub> nanosheets and Pt-SnO<sub>2</sub> nanocomposite were analyzed using the typical scanning electron <sup>110</sup> microscope (SEM) and the transmission electron microscopy (TEM), shown in Fig. 1. The raw SnS<sub>2</sub> nanosheets present typically hexagonal structure and the mean diameter is in the range of 20-30 nm, which can be confirmed by the TEM image (see Fig. 1E). After the treatment of *n*-BuLi solution, the bulk materials were exfoliated and crushed into uniform ultra-small particles, whose average diameter was around 2-3 nm (see Fig.

- <sup>5</sup> 1D and Fig. 1F). From the X-ray diffraction (XRD) pattern (see Fig. 1B) of the Pt-SnO<sub>2</sub> nanocomposite, it can be seen that all diffraction peaks of the typical XRD pattern could be attributed to SnO<sub>2</sub> (JCPDS No. 41-1445) and Pt (JCPDS No. 65-2868), respectively. The ICP-AES measurement indicates that the <sup>10</sup> weight ratio of Pt in Pt-SnO<sub>2</sub> nanocomposite is 23.1%.
- In order to investigate the impact of sintering (723K) in preparation of CEs, the obtained Pt-SnO<sub>2</sub> nanocomposite was further calcined at 723K for 30min. SEM images and XRD pattern indicate that no obvious changing in morphology and
- <sup>15</sup> composition (see Fig. S1). The valence state of the Pt after the second thermal treatment is Pt<sup>0</sup> and Pt (IV), analyzed by XPS (Fig. S2). The nitrogen sorption isotherms indicate the specific surface area of Pt-SnO<sub>2</sub> is 36.96 m<sup>2</sup>/g, much larger than that of Pt (10.48 m<sup>2</sup>/g) in previous report.<sup>18</sup> Furthermore, SEM images of
- <sup>20</sup> Pt-SnO<sub>2</sub> and Pt CEs on FTO are shown in Fig. S1. Both Pt-SnO<sub>2</sub> nanocomposites and Pt nanoparticles disperse well on the surface of FTO. In order to compare the surface area of Pt-SnO<sub>2</sub> and Pt CEs, the mass of materials on different CEs are obtained by ICP-AES measurement. As a result, the surface area of Pt-SnO<sub>2</sub> CE <sup>25</sup> (1.63 cm<sup>2</sup>) is larger than that of Pt CE (0.63 cm<sup>2</sup>), and the detail
- data are summarized in Table. S1.

3.2 Photovoltaic measurement



<sup>45</sup> Fig. 2 J–V characteristics of the DSCs with Pt CE, Pt-SnO<sub>2</sub> CE and SnO<sub>2</sub> CE, measured at 100 mW cm<sup>-2</sup>.

The photocurrent-voltage (J-V) curves (Fig. 2) of the DSCs with different CEs were measured under illumination at 100 mW cm<sup>-2</sup> and the detailed photovoltaic parameters were summarized in <sup>50</sup> Table 1. As shown in Fig. 2, the DSC using SnO<sub>2</sub> CE shows an overall energy conversion efficiency (E<sub>ff</sub>) of 2.96%, which

- indicates that the pure SnO<sub>2</sub> CE present poor electrocatalytic activity for  $I_3^-$  reduction. In contrast, the short-circuit photocurrent density ( $J_{sc}$ ), open-circuit voltage ( $V_{oc}$ ), fill factor (EE) and E. of DSCs based on Pt SnO<sub>2</sub> CEs are 16.24 mA cm<sup>-2</sup>
- $_{55}$  (FF) and  $E_{\rm ff}$  of DSCs based on Pt-SnO<sub>2</sub> CEs are 16.24 mA cm<sup>-2</sup>, 731 mV, 0.74 and 8.83%, respectively. The higher V<sub>oc</sub> and FF of Pt-SnO<sub>2</sub> may be due to the more interfacial active sites of Pt-

 $SnO_2$  CEs. It is worth noting that the  $E_{\rm ff}$  of Pt-SnO<sub>2</sub> CEs is even larger than that of Pt CEs based DSCs (8.04%), indicating that 60 the Pt-SnO<sub>2</sub> CEs exhibit better electrocatalytic activity than that of Pt CEs.

Table 1Photovoltaic parameters of DSCs with different counterelectrodes, measured at 100 mW  $cm^{-2}$  illumination.

| CE                  | J <sub>SC</sub>    | Voc | FF   | η    | R <sub>s</sub> | <b>R</b> <sub>ct</sub> | С     |
|---------------------|--------------------|-----|------|------|----------------|------------------------|-------|
|                     | mA/cm <sup>2</sup> | mV  |      | %    | Ω              | Ω                      | μF    |
| SnO <sub>2</sub>    | 16.18              | 506 | 0.36 | 2.96 | $\times$       | $\succ$                | >     |
| Pt                  | 15.50              | 725 | 0.71 | 8.04 | 21.95          | 3.70                   | 21.87 |
| Pt/SnO <sub>2</sub> | 16.24              | 731 | 0.74 | 8.83 | 21.46          | 3.59                   | 38.00 |

6

#### 3.3 Electrochemical measurements

In order to further investigate the different catalytic activity for triiodide reduction between the Pt-SnO<sub>2</sub> CEs and Pt CEs, EIS technique was employed and the Nyquist plots of the symmetrical 70 cells are shown in Fig. 3. After fitting the spectra with an EIS spectrum analyzer, the values of the series resistance  $(R_s)$ , the charge-transfer resistance  $(R_{ct})$  and constant phase element (CPE) are obtained and summarized in Table 1. The equivalent circuit used to fit the experimental EIS data is shown in the inset of Fig. 75 3. R<sub>s</sub> is mainly composed of the bulk resistance of CEs materials, resistance of FTO glass substrate and contact resistance, etc. The  $R_s$  of Pt-SnO<sub>2</sub> CEs is 21.46  $\Omega$ , while this value of Pt CEs is 21.95  $\Omega$ . Smaller R<sub>s</sub> indicates that Pt-SnO<sub>2</sub> CEs have a faster electron transfer kinetics and better electrical conductivity than Pt CEs, so which is consistent with the improvement of  $J_{sc}$ .<sup>16</sup> R<sub>ct</sub> is a measure of the ease of electron exchange between the counter electrode and the electrolyte and thus varies inversely with the triiodide reduction activity of the CEs. The slightly lower R<sub>ct</sub> of Pt-SnO<sub>2</sub> CEs leads to a better catalytic activity, explaining the 85 better performance than that of Pt CEs based cells.<sup>17</sup> Although the difference of R<sub>s</sub> and R<sub>ct</sub> between Pt-SnO<sub>2</sub> and Pt CEs isn't obvious, the larger capacitance (C) of Pt-SnO<sub>2</sub> CE indicates a higher surface area than that of Pt CE, which is responsible for higher Eff, in agreement with the measured surface area of various 90 CEs in Table S1.30 In conclusion, low R<sub>s</sub>, low R<sub>ct</sub> and high C resulted in the high power-conversion efficiency of DSCs with Pt-SnO<sub>2</sub> CE and agreed well with the photovoltaic experiments.



100 mW cm<sup>-2</sup> light intensity.

As a powerful electrochemical characterization method, Tafel polarization measurement was carried out to further examine the interfacial charge-transfer properties of the triiodide/iodide s couple on the electrode surface with dummy cells fabricated with two identical electrodes (CE//electrolyte//CE). The Tafel curves in Fig. 4 show that the current density (*J*) is a logarithmic function of the voltage (*U*). Generally, the Tafel curve is composed of three zones via the value of overpotential: the polarization zone at low overpotential, Tafel zone at middle overpotential (with a sharp slope), diffusion zone at high overpotential. In Tafel zone, the curve of the Pt-SnO<sub>2</sub> CE shows a larger slope than the conventional Pt CE, indicating the presence of a large exchange current density on the electrode surfaces, 15 which means that Pt-SnO<sub>2</sub> CE has a higher catalytic activity than

the Pt CE. Moreover, the current densities of Pt-SnO<sub>2</sub> CE obtained in all three zones are higher, which is consistent with the results of photovoltaic and EIS measurements.<sup>25</sup>





Fig. 4 Tafel curves of the symmetrical cells fabricated with two identical counter electrodes of  $Pt-SnO_2$  and Pt nanoparticles, respectively.

 $_{\rm 55}$  Fig. 5 Cyclic voltammograms of iodide species for Pt-SnO\_2 and Pt  $_{\rm 110}$  electrodes.

$$+2e = 3I^{-} \tag{1}$$

(2)

$$3I_2 + 2e = 2I_3^-$$

The peak-to-peak splitting ( $E_{pp}$ ) of Pt-SnO<sub>2</sub> CE is 492 mV, much smaller than that of bare Pt CE (670 mV), suggesting that the electrocatalytic activity and reversibility of I<sub>3</sub><sup>-</sup>/I<sup>-</sup> redox reaction on Pt-SnO<sub>2</sub> CE are better.<sup>12</sup>

 $I_3$ 

#### 70 Conclusions

In summary, we have demonstrated a novel method to synthesize Pt-SnO<sub>2</sub> nanoparticles, where the reduction of Pt<sup>4+</sup> and the exfoliation of SnS<sub>2</sub> are performed in one step (the treatment of *n*-BuLi). As a high-efficient CE material for DSCs, Pt-SnO<sub>2</sub> 75 composite exhibit better photovoltaic performance than the conventional Pt electrode. Furthermore, the low Pt content of Pt-SnO<sub>2</sub> composite is correspond to the objective of low-cost and this design strategy would be very promising to pave the way to the large-scale commercialization of DSCs.

#### Acknowledgement

This work was financially supported by National Natural Science Foundation of China (21373083, 21203061), SRF for ROCS, SEM, SRFDP, Programme for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Fundamental Research Funds for the Central Universities (WD1313009, WD1214036), and China Postdoctoral Science Foundation (2013T60425).

#### Notes and references

<sup>90</sup> <sup>a</sup> Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 (China). Fax: (+86)21-6425-2127; Tel: (+86)21-6425-2127; E-mail:

#### hgyang@ecust.edu.cn

105

95 <sup>b</sup> Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222 (Australia)

† These authors contributed equally to this work.

- 1. B. O'Regan and M. Grätzel, Nature, 1991, 353, 737-740.
- 100 2. M. Grätzel, Nature, 2001, 414, 338-344.
  - S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, Md. K. Nazeeruddin and M. Grätzel, *Nature chemistry*, 2014, 6, 242-247.
  - 4. G. R. Li, F. Wang, Q. W. Jiang, X. P. Gao and P. W. Shen, *Angew. Chem. Int. Ed.*, 2010, **49**, 3653-3656.
  - H. Zhang, Y. Wang, D. Yang, Y. Li, H. Liu, P. Liu, B. J. Wood and H. Zhao, *Adv. Mater.*, 2012, 24, 1598-1603.
  - K. C. Huang, Y. C. Wang, R. X. Dong, W. C. Tsai, K. W. Tsai, C. C. Wang, Y. H. Chen, R. Vittal, J. J. Lin and K. C. Ho, *J. Mater. Chem.*, 2010, 20, 4067-4073.
  - P. Joshi, Y. Xie, M. Ropp, D. Galipeau, S. Bailey and Q. Q. Qiao, Energy Environ. Sci., 2009, 2, 426-429.

5

- 8. M. Wu, X. Lin, T. Wang, J. Qiu and T. Ma, *Energy Environ. Sci.*, 2011, **4**, 2308-2315.
- 9. L. Kavan, J. H. Yum and M. Grätzel, *ACS Nano*, 2011, **5**, 165-172.
- S. Ahmad, J. H. Yum, H. J. Butt, M. K. Nazeeruddin and M. Grätzel, *ChemPhysChem*, 2010, 11, 2814-2819.
- M. Wang, A. M. Anghel, B. T. Marsan, N. L. Cevey Ha, N. Pootrakulchote, S. M. Zakeeruddin and M. Grätzel, *J. Am. Chem.* Soc., 2009, 131, 15976-15977.
- 12. X. Chen, Y. Hou, B. Zhang, X. H. Yang and H. G. Yang, *Chem.* 10 *Commun.*, 2013, **49**, 5793-5795.
- 13. M. Wu, X. Lin, A. Hagfeldt and T. Ma, *Angew. Chem. Int. Ed.*, 2011, **50**, 3520-3524.
- 14. A. M. Hung, N. A. Konopliv and J. N. Cha, *Langmuir*, 2011, **27**, 12322-12328.
- 15 15. M. Wu, J. Bai, Y. Wang, A. Wang, X. Lin, L. Wang, Y. Shen, Z. Wang, A. Hagfeldt and T. Ma, *J. Mater. Chem.*, 2012, **22**, 11121-11127.
  - Y. Hou, Z. P. Chen, D. Wang, B. Zhang, S. Yang, H. F. Wang, P. Hu, H. J. Zhao and H. G. Yang, *Small*, 2014, **10**, 484-492.
- 20 17. Y. Hou, D. Wang, X. H. Yang, W. Q. Fang, B. Zhang, H. F. Wang, P. Hu, H. J. Zhao and H. G. Yang, *Nat. Commun.*, 2014, **4**, 1583.
- B. Zhang, D. Wang, Y. Hou, S. Yang, X. H. Yang, J. H. Zhong, J. Liu, H. F. Wang, P. Hu, H. J. Zhao and H. G. Yang, *Sci. Rep.*, 2013, 3, 1836.
- 25 19. M. Wu, X. Lin, A. Hagfeldt and T. Ma, Chem. Commun., 2011, 47, 4535-4537.
- L. Cheng, Y. Hou, B. Zhang, S. Yang, J. W. Guo, L. Wu and H. G. Yang, *Chem. Commun.*, 2013, 49, 5945-5947.
- 21. X. Lin, M. Wu, Y. Wang, A. Hagfeldt and T. Ma, *Chem. Commun.*, 2011, **47**, 11489-11491.
- 22. S. Yun, H. Zhang, H. Pu, J. Chen, A. Hagfeldt and T. Ma, *Adv. Energy Mater.*, 2013, **3**, 1407-1412.
- 23. M. Wu, X. Lin, W. Guo, Y. Wang, L. Chu, T. Ma and K. Wu, *Chem. Commun.*, 2013, **49**, 1058-1060.
- 35 24. J. Pan, L. Z. Wang, C. Y. Jimmy, G. Liu, and H. M. Cheng, *Chem. Commun.*, 2014, **50**, 7020-7023.
  - J. W. Guo, B. Zhang, Y. Hou, S. Yang, X. H. Yang and H. G. Yang, J. Mater. Chem. A, 2013, 1, 1982–1986.
- 26. L. -Y. Chang, C. -P. Lee, K. -C. Huang, Y. -C. Wang, M. -H. Yeh, J.
- 40 -J. Lin and K. -C. Ho, J. Mater. Chem., 2012, **22**, 3185-3191.
- J. T. Miller and D. C. Koningsberger, *J. Catal.*, 1996, 162, 209-219.
  G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen and M. Chhowalla, *Nano letters*, 2011, 11, 5111-5116.
- K. -C. Huang, Y. -C. Wang, R. -X. Dong, W. -C. Tsai, K. -W. Tsai,
  C. -C. Wang, Y. -H. Chen, R. Vittal, J. -J. Lin and K. -C. Ho, J. Mater. Chem., 2010, 20, 4067-4073.
- 30. T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Pechy and M. Grätzel, *J. Electrochem. Soc.*, 2006, **153**, A2255-A2261.

#### **TOC figure:**



A novel strategy was introduced to prepare Pt-SnO<sub>2</sub> nanocomposite by combining reduction of  $Pt^{4+}$  and exfoliation of SnS<sub>2</sub> in one step. When the Pt-SnO<sub>2</sub> nanocomposite was applied as counter electrode (CE) for dye-sensitized solar cells (DSCs), energy conversion efficiency (E<sub>ff</sub>) of 8.83% was achieved with an improvement of 198% by comparing with the E<sub>ff</sub> of SnO<sub>2</sub> CE based DSCs. Meanwhile, better electrocatalytic activity towards I<sub>3</sub><sup>-</sup>/I<sup>-</sup> redox pairs than Pt CE indicated that the Pt-SnO<sub>2</sub> was a promising catalyst for DSCs. Moreover, the low Pt content of Pt-SnO<sub>2</sub> composite would accelerate the large-scale applications of DSCs in the future.