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The modification of CeO2 properties by means of aliovalent doping is investigated within the ab-initio density functional
theory framework. Lattice parameters, dopant atomic radii, bulk moduli and thermal expansion coefficients of fluorite type
Ce1−xMxO2−y (with M= Mg, V, Co, Cu, Zn, Nb, Ba, La, Sm, Gd, Yb, and Bi) are presented for 0.00 ≤ x ≤ 0.25. The relative
stability of the doped systems is discussed, and the influence of oxygen vacancies is investigated. It is shown that oxygen va-
cancies tend to increase the lattice parameter, and strongly decrease the bulk modulus. Defect formation energies are correlated
with calculated crystal radii and covalent radii of the dopants, and are shown to present no simple trend. The previously observed
inverse relation between the thermal expansion coefficient and the bulk modulus in group IV doped CeO2 [J. Am. Ceram. Soc.
97(1), 258 (2014)] is shown to persist independent of the inclusion of charge compensating vacancies.

1 Introduction

Cerium oxide based materials have been receiving increasing
attention during the last decades. This is due to their versa-
tile nature in industrial applications, which originate from the
remarkable oxidation and reduction properties of CeO2. As
such the majority of ceria-based-materials research is linked
to solid oxide fuel cells and catalysis.1–12 In case of the lat-
ter, these materials play both the role of catalyst support and
catalyst. In addition to being used in automotive three-way-
catalyst (TWC) and water-gas-shift reactions, ceria-based-
materials are also used as oxygen sensors, thermal barrier
coatings and much more.11–15 CeO2 and doped CeO2 have
also been used as buffer layers for thin film YBa2Cu3O7−δ

coated superconductors.16–22

In experiments, CeO2 has been doped with many differ-
ent types of elements.2,23 These experiments show different
dopant elements to have different effects on different proper-
ties. Furthermore, based on the application of interest, dopant
concentrations can vary from < 1% up to mixed oxides where
dopant concentrations of 50% and more are used. In addition,
also the preparation methods vary greatly (e.g. combustion
synthesis,24,25 chemical and physical vapor deposition,26,27

sol-gel deposition18,21,22 etc.), which may have a significant
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impact on the investigated properties.28–32 In contrast to all
this variation, ceria-based-materials generally have the same
crystal structure (i.e. the fluorite crystal structure), adding to
their usefulness for general applications.

Although the amount of theoretical work on ceria is sig-
nificantly smaller than the experimental body of work, it is
still extensive. Much of this work focusses on a single as-
pect of a single application, often investigating the effect
of a single dopant element.7–9,33–42 Investigations of series
of dopant elements are much less frequent, and with only
few exceptions almost exclusively focus on the lanthanide se-
ries.36,43–46 This is mainly due to the fact that this series (or
elements from it) is also the most often investigated in experi-
ments.2,5,13,22,23,31,32,47–50 Recently, also the series of tetrava-
lent/group IV elements have been investigated by means of
ab-initio calculations. Andersson et al.51,52 focused on the
ionic conductivity of oxygen vacancies in CeO2 doped with
tetravalent elements, while Tang et al.53 studied the influ-
ence of tetravalent dopants on the redox properties of CeO2.
The present authors investigated the stability and influence of
group IV dopants on mechanical and structural properties of
CeO2.54,55

With the large variety of applications comes a large varia-
tion in desired properties. The optimal value for one and the
same property may even be opposite for different applications:
e.g. for a system to be a good solid oxide fuel cell, it should
exhibit high ionic conductivity, whereas for it to be a good
buffer layer, it should have a low ionic conductivity. A second
example: lattice matching through doping of a buffer layer re-
quires a homogenous distribution of the dopants in the bulk of
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Fig. 1 (color online) Ball-and-stick representations of doped CeO2
c111 (a) and p222 (b) supercells. Yellow (red) spheres indicate the
positions of the Ce (O) atoms, while the dopant position is given by
the blue sphere. Vacancy positions are indicated (VA and VB), as is
the surrounding tetrahedron (red lines). The single dopant/oxygen
vacancy gives rise to a dopant/vacancy concentration of 25%/12.5%
in the c111, and 12.5%/6.25% in the p222 supercell, respectively.

the material, while catalysts often benefit from dopants resid-
ing at or near the surface.

With this in mind, this work aims at presenting general
trends for doped ceria, and does not focus on either one spe-
cific application or one specific dopant. This paper extends our
previous work through the study of aliovalent dopants, and the
introduction of charge compensating vacancies.55,56 For prac-
tical reasons we have limited our work to a subset of the alio-
valent dopants investigated in experimental work: Mg, V, Co,
Cu, Zn, Nb, Ba, La, Sm, Gd, Yb, and Bi.2,3,13,20–25,47,50,57–77

In this paper, we investigate the influence of aliovalent dop-
ing on the properties of CeO2 using ab-initio density func-
tional theory (DFT) calculations. The theoretical methods and
different supercells used are presented in Sec. 2. To study the
contributions due to the dopants and vacancies separately, we
first consider systems containing dopants only (Sec. 3), and
then systems containing combinations of dopants and charge
compensating oxygen vacancies (Sec. 4). For systems with-
out oxygen vacancies, the atomic radii of the dopants are cal-
culated and compared to the values tabulated as the Shannon
atomic crystal radii.78,79 Concentration dependent defect for-
mation energies are calculated and put in relation to the cal-
culated dopant radii and covalent dopant radii. The change
in the bulk modulus (BM) and thermal expansion coefficient
(TEC) of CeO2 due to the dopants is studied, and it is shown
that the BM and TEC follow opposite trends. In addition, we
investigate the modification, due to charge compensating va-
cancies, of the dopant (Cu, Zn, and Gd) influence on the BM,
defect formation energy and lattice parameter. Summary and
conclusions are presented in Sec. 5.

Fig. 2 (color online) Ball-and-stick representations of different
Ce0.75Gd0.25O1.875 configurations in a double c111 supercell.
Yellow, red, and purple spheres indicate the positions of the Ce, O,
and Gd atoms. Possible vacancy positions are indicated (VA, VB,
and VC).

2 Computational setup

We perform ab-initio density functional theory (DFT) calcu-
lations using the projector augmented waves (PAW) method
as implemented in the Vienna ab-initio Package (VASP)
program. The LDA functional as parameterized by Ceperley
and Alder and the GGA functional as constructed by Perdew,
Burke and Ernzerhof (PBE) are used to model the exchange
and correlation behavior of the electrons.80–86 The plane
wave kinetic energy cutoff is set to 500 eV.

To optimize the structures, a conjugate gradient method
is used. During relaxation both atom positions and cell-
geometry are allowed to change simultaneously. The
convergence criterion is set to the difference in energy
between subsequent steps becoming smaller than 1.0× 10−6

eV.
Because this work focusses on general trends in the properties
of doped CeO2 as function of dopant concentration, we
assume the dopants to be distributed homogeneously in an
ordered fashion. This allows for the investigation of a wide
range of concentrations going from about 3 % up to 25 %. In
specific cases, doped systems are known to show clustering
or disordered distributions of the dopants, often depending
on the actual dopant concentration and the method of syn-
thesis.28,38,87 As such, small deviations from the presented
results are to be expected in experiments. In Sec. 2.1 and 2.2
the supercells used for systems with and without vacancies
are presented.

The TEC is calculated as the numerical derivative of V(T)
data, which is obtained from the minimization of the thermal
non-equilibrium Gibbs function. The latter is calculated using
the quasi-harmonic Debye approximation,88–90 and is imple-
mented as a module in our in-house developed HIVE code.91
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The BM is calculated by fitting E(V) data from fixed volume
calculations to the third order isothermal Birch-Murnaghan
equation of state.92,93

The accurate description of the electronic structure of re-
duced ceria (CeO2−x and Ce2O3) is a well known issue for
regular DFT approaches.94,95 It is closely related to the lo-
calized nature of the Ce 4 f electron. To correctly model the
strong on-site Coulomb repulsion of the Ce 4 f electron in re-
duced ceria, a tunable Hubbard type correction term can be
included into the DFT framework: DFT+U. This tunable U
is generally obtained from fitting to experimental data (e.g.
band gap width). For reduced ceria several theoretical stud-
ies exist where a wide range of U values is scanned, lead-
ing to the suggestion of U=5–6 eV for LDA, and U=4–5 eV
for GGA functionals.95–98 Most of these studies focus on the
accurate description of the electronic structure near the band
gap. It is, however, interesting to note that the optimum U
depends on the property investigated. This is because an im-
portant side effect of the standard DFT+U formalism is the
fact that many properties (lattice parameter, band gap, for-
mation energy,...) vary with the value of U.95–99 Despite the
issues with the electronic structure of reduced ceria, regular
DFT describes the crystal structure and electronic structure of
pure CeO2 accurately (LDA slightly underestimates the lat-
tice parameter, while PBE overestimates it slightly).96,98–101

In previous work, it was shown that the formation energies of
CeO2 doped with group IV elements remains qualitatively un-
changed, while for La2Ce2O7 the lattice parameters and rela-
tive stability showed the same behavior for regular DFT as for
DFT+U.38,55 Also for ionic migration and defect association
in Sm and Gd codoped CeO2 it was shown that regular DFT
presents qualitatively accurate results.46

In Table 1 DFT, DFT+U, and experimental values of the
properties of interest in this work are compared for pure CeO2
and Ce0.75Gd0.25O2. In the DFT+U calculations, a U= 5.0 eV
for the Ce 4 f electrons and U= 6.7 and J= 0.7 eV for the Gd
4 f electrons is used, in accordance with the values suggested
for these materials in literature.95–99,102,103 The results pre-
sented in Table 1 show DFT and DFT+U to give qualitatively
the same results, with variations due to the +U correction that
are (much) smaller than those resulting from the use of differ-
ent functionals. Furthermore, all calculated values are in good
agreement with the experimental values.

As such, since the current work does not focus on the
electronic structure (which is sensitive to small changes in
geometry, topology and stoichiometry) but instead focusses
on the structure (lattice parameter) and derived mechanical
properties (bulk modulus and thermal expansion coefficients),
we make the pragmatic choice of not going beyond the
LDA/PBE level of theory.

2.1 Non-vacancy systems

Symmetric supercells, containing a single dopant per cell are
used to simulate a homogeneous distribution of dopant ions
without charge compensating vacancies.56 For each system,
structural optimization is started from the fluorite geometry
(space group Fm3̄m), maintaining the crystal symmetry. The
supercells used are the fluorite cubic 1× 1× 1 cell with 12
atoms (c111), the primitive 2× 2× 2 cell with 24 atoms
(p222), the primitive 3×3×3 cell with 81 atoms (p333) and
the cubic 2× 2× 2 cell with 96 atoms (c222). Replacing
a single Ce atom with a dopant element results in dopant
concentrations of 25,12.5,3.7037, and 3.125 %, respectively.
The doped c111 and p222 supercells are shown in Fig. 1, with
the dopant element position indicated by the blue spheres.

Monkhorst-Pack special k-point grids are used to sample
the Brillouin zone:116 an 8× 8× 8 k-point grid for the two
smaller cells, and a 4× 4× 4 k-point grid for the two large
supercells.

2.2 Systems containing compensating oxygen vacancies

For doped systems containing a single oxygen vacancy, only
the c111 and p222 supercells are used, giving rise to dopant
concentrations of 25 and 12.5%, respectively, and oxygen va-
cancy concentrations of 12.5 and 6.25%, respectively. The
c111 and p222 configurations are shown in Fig. 1, where pos-
sible oxygen vacancy positions are labeled VA and VB (cf.
further). Every oxygen atom is positioned at the center of
a cation-tetrahedron, as is shown in Fig. 1. As a result, ev-
ery vacancy site can have up to four dopant atoms as nearest
neighbor. For calculations containing two dopants and one va-
cancy a double c111 supercell is used, this to retain the crystal
structure of our 25 % doped model, allowing for direct com-
parison. Four inequivalent dopant distributions (A, B, C, and
D) are used, shown in Fig. 2. To investigate the influence of
oxygen vacancies, a homogeneous distribution of the vacan-
cies is assumed, similar as for the dopants. For low oxygen va-
cancy concentrations, we assume that results for random dis-
tributions of vacancies (e.g. Ref.38,103) can be approximated
as linear combinations of the configurations presented here.
However, to retain a clear image of the specific influence dif-
ferent configurations have, only these homogeneous distribu-
tions of vacancies are investigated. Effects due to clustering
are beyond the scope of this work as they are dopant and syn-
thesis method dependent, and as such will not be treated. Note
however, that such clustering may lead to deviations in the ex-
perimentally obtained results when compared to the theoreti-
cal results presented in this work.

In this work vacancy sites with 0 neighboring dopants are
indicated as VA, while configurations with 1 or 2 dopants in
the surrounding tetrahedron are indicated as VB and VC, re-
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Table 1 Comparison of DFT and DFT+U.a

CeO2 Ce0.75Gd0.25O2 Ce0.8Gd0.2O1.9
LDA LDA+U PBEe PBE+U exp. PBEe PBE+U exp.d

E f (eV) −11.484 −11.641 −10.418 −10.493 −10.44/−11.30b 2.396 2.664
a0 (Å) 5.362 5.394 5.463 5.488 5.406/5.411b 5.468 5.497 5.419/5.429
B0 (Mbar) 2.014 2.094 1.715 1.803 2.04/2.36b 1.588 1.654 1.60/1.77
α (10−6 K−1) 11.214 10.577 12.953 12.040 10.7/12.68c 13.753 12.839 11.59/13.3

a E f : Calculated defect formation energy for Ce0.75Gd0.25O2 and heat of formation for CeO2, a0: the lattice parameter, B0: bulk modulus, and
α: linear thermal expansion coefficient, calculated at 500 K.
b Taken from references96–98,101,104–108 and references therein.
c Taken from references109,110 and references therein.
d Taken from references46,111–114 and references therein.
e In the work of Lejaeghere et al.115 general error bars for PBE derived materials properties were calculated based on pure materials (single
atomic species, excluding lanthanides and actinides). Assuming these error bars can be transferred to Lanthanide based oxides, the error bar
on B0 would be 0.15 Mbar, and the error bar on a0 would be about 2.5%.

spectively (cf. Figs. 1 and 2). Because only single oxygen
vacancies are present, all Ce atoms in each of the systems will
either be 7-or 8-coordinated.

Similar as for the supercells without vacancies, Monkhorst-
Pack special k−point grids of 8× 8× 8 grid points are used
for the c111 and p222 cells.116 For the double c111 supercells
a 4×8×8 grid is used instead.

3 Aliovalent dopants without compensating
oxygen vacancies

The use of aliovalent dopants in CeO2 introduces two (related)
complications from the theoretical point of view. Firstly, alio-
valent dopants give rise to charge compensating vacancies,
which increases the number of possible configurations per
dopant concentration significantly if the ground state configu-
ration is unknown. Secondly, since many elements can have
multiple oxidation states this introduces additional uncertain-
ties with regard to the number of required compensating va-
cancies and thus the ground state crystal structure.

For these reasons, we start by investigating uncompensated
dopants in fluorite Ce1−xMxO2 with M=Mg, V, Co, Cu, Zn,
Nb, Ba, La, and Bi. This has the advantage that only ef-
fects directly due to the aliovalent dopants are observed. In
Sec. 4 compensating vacancies are added. This approach al-
lows us to discriminate between dopant and oxygen vacancy
induced changes of the investigated property. In addition,
the uncompensated situation can be physically interpreted as
doped systems under highly oxidizing atmosphere, which may
be of interest for catalytic processes in for example automotive
TWC.2,4,11,117,118

3.1 Lattice parameters, dopant radii and Vegard’s law

In previous work, it was shown that for cubic systems with-
out oxygen vacancies the radius of the dopant element can be
calculated as:54,55

RM =
(√3

4
aCe1−xMxO2 −RO− (1−nx)RCe

)
/nx, (1)

with nx the dopant concentration, aCe1−xMxO2 the lattice pa-
rameter of the doped system, and RO and RCe the radii of O
and Ce, respectively. From this the empirical Vegard law was
obtained.54,119 In doping experiments, lattice parameters are
often linearly fitted with regard to the dopant concentration.
Deviation with respect to this Vegard law behavior is inter-
preted as an indication of the presence of secondary phases,
phase transitions or saturation, depending on the observed de-
viation.22,47,50,65,73,120,121

Table 2 shows the calculated dopant radii and coefficients
of Vegard’s Law. The intercept a and slope b of this linear
relation are found by rewriting Eq. (1) as

aCe1−xMxO2 = aCeO2 +

(
4√
3
(RO +RM)−aCeO2

)
nx, (2)

as is shown elsewhere.54 The small standard deviations on
the calculated dopant radii (≤ 0.01Å) show consistent values
are found for the systems with different concentrations. The
calculated lattice parameter for Ce0.75Sm0.25O2 seems to be
in good agreement with the experimental lattice parameter of
5.4314Å for Ce0.8Sm0.2O2−δ by Yao et al.77 and ∼ 5.435Å
for Ce0.85Sm0.15O1.925 by Xu et al.76, knowing that PBE gen-
erally overestimates lattice parameters by a few percent. Also
the very small variation of the experimental lattice parameter
with the Sm concentration is in qualitative agreement with the
calculated slope of the Vegard law, if one takes into account
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Table 2 Dopant radii and Vegard law for aliovalent dopantsa

RM (Å) Vegard’s Law LDA PBE
LDA PBE LDA PBE a0 aRT a0 aRT

avg stdev avg stdev a(Å) b a(Å) b (Å) (Å) (Å) (Å)

CeO2 1.0819b 0.0001 1.1257b 0.0004 5.362 5.388 5.463 5.492

Mg 0.958 0.008 1.022 0.011 5.364 −0.315 5.465 −0.273 5.285 5.316 5.396 5.432
V 0.823 0.005 0.870 0.005 5.363 −0.613 5.464 −0.610 5.209 5.235 5.312 5.341
Co 0.883 0.005 0.949 0.007 5.363 −0.478 5.464 −0.427 5.243 5.273 5.357 5.392
Cu 0.913 0.002 0.991 0.006 5.362 −0.395 5.463 −0.307 5.264 5.299 5.387 5.428
Zn 0.952 0.005 1.028 0.008 5.363 −0.317 5.464 −0.239 5.283 5.315 5.404 5.440
Nb 0.926 0.005 0.961 0.005 5.363 −0.375 5.464 −0.395 5.269 5.292 5.365 5.392
Ba 1.332 0.003 1.403 0.001 5.363 0.566 5.464 0.635 5.504 5.533 5.622 5.656
La 1.186 0.001 1.242 0.004 5.362 0.237 5.464 0.260 5.422 5.448 5.529 5.559
Sm − − 1.169 0.004 − − 5.464 0.095 − − 5.487 5.517
Gd − − 1.139 0.005 − − 5.464 0.015 − − 5.468 5.498
Yb − − 1.104 0.008 − − 5.464 −0.056 − − 5.449 5.482
Bi 1.107 0.003 1.165 0.009 5.363 0.044 5.465 0.060 5.373 5.400 5.480 5.511

a Dopant radii calculated using Eq. (1), averaged over the four dopant concentrations (avg), and standard deviation (stdev) of this value. This
is done for both LDA and PBE calculated geometries. a and b are the intercept and slope of Vegard’s law linear fit (cf. Eq. (2)) to the
calculated geometries for doped CeO2 systems. Lattice parameters at zero Kelvin a0 and room temperature (RT) aRT (300 K) are given for
Ce0.75M0.25O2. The CeO2 values are given as reference.86

b The Ce radius is calculated using Eq. (1), where the 4-coordinated Shannon crystal radius for oxygen is taken as 1.24 Å78,79.

that the different synthesis methods have an influence on the
obtained lattice parameters.76,77 Yao et al. also calculated the
Vegard law slope for Co doped Ce0.8Sm0.2O2−δ and find a
lattice contraction, in qualitative agreement with our theoret-
ical results.77 The smaller experimental lattice contraction is
mainly due to the presence of oxygen vacancies. As will be
shown in Sec. 4.2.2, oxygen vacancies give rise to a lattice
expansion relative to a system without oxygen vacancies. As
such, they compensates the lattice contraction due to the Co
dopants to some extent, lowering the degree of lattice contrac-
tion.

The obtained lattice parameters for Gd, Sm and La also
agree well with the theoretical work of Wang et al.103 In their
study, the authors made use of special quasi random structures
to model disordered systems with dopant and oxygen vacancy
concentrations ranging from 19 to 25 % and 5 to 6 %, re-
spectively. Their obtained lattice parameters are about 1–2 %
larger than those presented in Table 2, due to both the presence
of oxygen vacancies (as will be shown in sec. 4.2.2) and the
use of a DFT+U formalism. Using the slope and intercept ob-
tained for Sm and Gd doped CeO2, perfect agreement is found
with the theoretical work of Alaydrus et al.46. Note that al-
though the systems of these authors contain oxygen vacancies,
their concentration (1.56 %) is so low that their contribution to
the lattice expansion is negligible (cf. sec. 4.2.2: for Gd the va-
cancy contribution can be estimated to be about 4×10−4 Å).
The calculated slopes for Gd and Sm doped CeO2 are also in

good agreement with the experimental work of Wang et al.122

They observe Vegard law behavior with slopes of 0.0813 and
0.134 for Gd and Sm respectively. These values are somewhat
larger than those presented in Table 2, which is to be expected
due to the presence of oxygen vacancies in the experimental
samples.

In Fig. 3 the calculated atomic radii are compared to the
Shannon crystal radii for 6-,7-, and 8-coordinated configura-
tions.78,79 For tetravalent V and Nb, both LDA and PBE re-
sults are in good agreement with the 8-coordinate Shannon
crystal radius, and also the radii for divalent Mg and Zn show
good agreement with the 8-coordinate radii.123 For the triva-
lent lanthanides on the other hand, the calculated radii in this
8-coordinated environment agree better with tabulated Shan-
non radii for lower coordination. This is also the case for triva-
lent Bi and monovalent Cu. This may suggest a tendency for
these elements to prefer a lower than 8-coordination. If this
is the case, then in experiments with these specific dopants
significant structural reconstructions in the environment of the
dopant are to be expected (including but not necessarily the
presence of oxygen vacancies). For Cu this is in good agree-
ment with the coordination number 5–6 obtained by Wang et
al. from X-ray adsorption fine structure (XAFS) measure-
ments.59 Lu et al.37, however, found a 4-coordination in their
calculations, where a broken symmetry structure for the Cu
doped CeO2 was used. The resulting tetragonal structure for
such a broken symmetry system is 0.667% larger in volume
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than the cubic fluorite structure used in this work, making the
calculated atomic radius for Cu slightly larger than the one
presented. The value for divalent Co in turn tends toward 7-
fold coordination. Note that the Shannon crystal radii for CoIII

and CoIV would be too small,78,79 showing that the divalent
nature, inferred from the calculated radius, supports the ex-
perimental suggestion of divalent Co dopants.30,69,72–74,124

The results for Ba are a bit peculiar, since the calculated ra-
dius is significantly lower than either 6-, 7-, or 8-coordinate
Shannon crystal radii for divalent Ba.78,79 Assuming the gen-
eral trends seen in the Shannon crystal radii for other elements
are also valid for Ba (i.e. increasing valence results in decreas-
ing radius under constant coordination) this would lead to the
conclusion that Ba behaves as having an oxidation state higher
than II when used as a substituent for CeO2, which is puzzling.

In conclusion, in contrast to our previous work on group IV
elements, we observe 8-coordinated aliovalent dopants to act
as if they are undercoordinated.54,55 This may indicate that
many aliovalent dopants will give rise to local deformations
of the crystal structure, in order to effectively realize such un-
dercoordination. Dopant-vacancy complexes are one example,
but also square planar reconstructions of the dopant-oxide en-
vironment may be expected for mono-and divalent (d-block)
elements (cf. the case of Cu).

On the other hand, as might be expected, perfect Vegard
law behavior is found for all the systems under investigation.
Combined with the calculated atomic radii, this provides a
way to estimate the valence of dopant elements in experi-
ments, based on the obtained lattice parameter under oxidizing
atmosphere:

1. Calculate the atomic crystal radius of the dopant, RM ,
based on the measured lattice parameter.(cf. Eq. 1)

2. Compare RM to the tabulated values by Shannon.78,79

3. The best fit between calculated and tabulated atomic
crystal radius provides an estimate for the dopant va-
lence.

It is important to note that this scheme only provides an esti-
mate for the valence/coordination in an experiment based on
the lattice parameter. Depending on the actual system the re-
sult may be inconclusive or be open to interpretation for sev-
eral reasons: e.g. (i) missing tabulated data (e.g. the Ba results
in this work ),(ii) overlap in the tabulated data (the calculated
RM matches several coordination-oxidation sets equally well),
(iii) lack of accurate experimental lattice parameters, (iv) the
presence of oxygen vacancies (as will be shown in Sec. 4.2,
oxygen vacancies lead to an expansion of the lattice relative to
system without vacancies, which in turn will lead to an over-
estimation of the calculated atomic radius) and, (v) clustering
of defects. However, combined with additional experimen-
tal knowledge (e.g. X-ray Photoelectron spectroscopy) this

Fig. 3 Comparison of calculated dopant radii in Ce1−xMxO2 to the
Shannon crystal radius for M=Mg II , V IV , Co II , Cu I , Zn II , Nb IV ,
Ba II , La III , Sm III , Gd III , Yb III , and Bi III with coordination
numbers 6, 7, and 8 (where available).78,79 The top of the boxes
coincides with the PBE values, while the bottoms indicate the LDA
values. Where no LDA values exist, the calculated PBE values are
indicated as a blue dash.86 The dopant elements are sorted
according their Covalent radius, with Zn the smallest and Ba the
largest element.125 The Shannon crystal radii for 8-coordinate Ce III

and Ce IV are indicated with dashed lines.78,79

scheme could lead to conclusive results, which could not be
obtained by either method independently.

3.2 Defect formation energies

The stability of the doped systems is investigated through the
comparison of the defect formation energy E f defined as:

E f = ECe1−xMxO2 −ECeO2 +Nd f (ECe−EM), (3)

with ECe1−xMxO2 the total energy of the doped system, ECeO2
the total energy of a CeO2 supercell of equal size, Nd f the
number of dopant atoms, and ECe and EM the bulk energy per
atom of α-Ce and the bulk phase of the dopant element M.
Positive values indicate the amount of energy required to sub-
stitute a single Ce atom by a dopant.

Defect formation energies given in Table 3 show the same
qualitative behavior for the LDA and PBE calculations. Fur-
thermore, as was observed for group IV dopants, formation
energies show only limited dependence on the dopant con-
centration.55 The results in Table 3 also show that only Sm
doping is stable in an absolute sense with regard to segrega-
tion into CeO2 and bulk Sm. This is in line with the DFT+U
study of Sm doped CeO2 by Ismail et al.126 The positive
defect formation energy for the other dopant elements indi-
cates a threshold exists for the formation of these compounds.
All dopants presented in this work have been used in exper-
iments, and of several a Ce1−xMxO2−y phase is experimen-
tally observed.2,3,13,20–25,47,50,57–77 However, in contrast to the
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Table 3 Defect formation energy E f for doped CeO2 at different
dopant concentrations.86

E f (eV)
25% 12.5% 3.704% 3.125%

LDA
CeO2 -11.484a

Mg 8.221 8.409 8.470 8.475
V 6.243 6.313 6.338 6.322
Co 12.353 12.425 12.479 12.473
Cu 13.517 13.464 13.463 13.458
Zn 11.465 11.651 11.696 11.707
Nb 3.738 3.445 3.400 3.415
Ba 7.621 7.777 7.933 7.956
La 2.403 2.389 2.418 2.422
Bi 7.902 8.069 8.114 8.095

PBE
CeO2 -10.418a

Mg 8.036 8.223 8.275 8.284
V 6.256 6.320 6.348 6.361
Co 11.750 11.780 11.800 11.801
Cu 12.922 12.878 12.878 12.879
Zn 11.057 11.249 11.282 11.300
Nb 4.059 3.746 3.726 3.761
Ba 7.518 7.681 7.850 7.882
La 2.438 2.429 2.464 2.469
Sm −2.181 −2.218 −2.228 −2.236
Gd 2.396 2.445 2.449 2.448
Yb 4.438 4.495 4.508 4.500
Bi 7.912 8.069 8.111 8.093

a Instead of the defect formation energy the heat of formation is
given.

above calculations, experiments are not performed at zero at-
mosphere and zero Kelvin, and often involve one or more steps
that introduce additional energy into the system, providing a
means to overcome energy barriers. In addition, the experi-
mental compounds also contain charge compensating vacan-
cies, that are not included in the systems presented in this sec-
tion. In Sec. 4, we will show that the inclusion of such va-
cancies has only limited influence on the formation energies,
allowing the presented defect formation energies to be used as
initial indicators of the system stability.

Since the formation energies presented in Table 3 spread
over quite a wide range it is obvious that not all dopants will
form a compound system equally easily. In consequence, a
reference energy is needed to indicate which are more likely
to form a doped bulk phase and which dopants are more likely
to segregate either to the surface of the nanocrystals or imbed-
ded clusters. It is well-known for CeO2 to spontaneously form
oxygen vacancies, so the oxygen vacancy formation energy of
pure CeO2 can be used as a reference for the likelihood of

forming a Ce1−xMxO2 bulk-phase.2,23 Table 5 shows the cal-
culated oxygen vacancy formation energy for CeO1.96875 to be
4.035 and 3.097 eV for LDA and PBE, respectively, going up
to 5.006 and 4.145 eV in CeO1.75. From this we conclude
that Nb and the lanthanides presented in this work are likely
to form fluorite based bulk-phases of Ce1−xMxO2, while the
other dopants are expected to segregate either into internal do-
mains or to the surface of the grains.

Combined with the calculated dopant radii of Table 2, a
high defect formation energy and a crystal radius indicative of
a preference for lower coordination points toward the possibil-
ity for local reconstructions around the dopant to be present in
experiment. Such reconstructions lead to a better suited chem-
ical environment, with better matched coordination and lower
defect formation energies.

Of all dopants presented in this work, Cu shows the high-
est formation energy, making it the most likely candidate for
phase segregation and/or reconstruction. The existence of
such a reconstruction is shown in the work of Wang et al.59

and Lu et al.37 where a symmetry breaking reconstruction for
the Cu dopant was found and investigated. But even when this
reconstructed structure is taken into account, Cu doped CeO2
remains one of the most unstable systems. The tetragonal re-
construction is only 1.223 eV more stable than the cubic flu-
orite structure, resulting in a defect formation energy of about
11.7 eV in PBE calculations. In the literature several experi-
mental groups have investigated CuO doped/modified CeO2
showing a general trend of phase segregation for medium
to high Cu content.24,57–60,66,67,127 Kundakovic and Flytzani-
Stephanopoulos investigated the reduction characteristics of
CuO dispersed on Ce1−xLaxO2 catalyst supports.57,58 They
found that for low Cu content, copper is present as small clus-
ters or even isolated ions. For higher concentrations, also CuO
particles are observed.57 Similar observations have been re-
ported by Lin et al. and also de Biassi and Grillo present
evidence of Cu clustering.66,127 In addition, Kundakovic and
Flytzani-Stephanopoulos also present the observation of bulk
doped Ce0.99Cu0.01O2−y for calcination temperatures below
500◦C, and state that for higher calcination temperatures the
Cu ions segregate to the surface to form clusters. This supports
the instability of Cu doped CeO2 predicted by our calculated
formation energies.

In contrast, Bera et al. do not observe any CuO related lines
in their X-ray diffraction spectra for 3−5% Cu doping, nor do
they observe CuO particles in their TEM measurements. As a
result they conclude Cu ions to be present in the CeO2 crystal
matrix. However, they also note that there are 4 to 6 times as
many Cu ions located on the surface of the CeO2 particles.24

Combined with the results for low calcination temperatures of
Kundakovic and Flytzani-Stephanopoulos this would appear
to indicate that a significant kinetic barrier is present for the
Cu ions, limiting the mobility of the Cu ions, which in turn
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also limits their ability to cluster and/or segregate to the sur-
face after their initial dispersal in the CeO2 bulk during (for
example) high temperature treatment.

Co bulk-doping, on the other hand, which is shown in Ta-
ble 3 to be almost as unfavorable as Cu doping, is widely used
in experimental studies in the context of dilute semiconduc-
tors. In many of these experiments, samples which are often
thin films, are prepared via pulsed laser deposition.69,70,72 Ob-
servation of Ce1−xCoxO2−y in these samples may be an indi-
cation that high kinetic barriers are present, effectively pin-
ning the Co ions at their initial position despite the unfavor-
able energetics. Alternatively, Co may segregate into very
small Co/CoO clusters, which could at higher Co concentra-
tions give rise to the Co3O4 impurities observed by Sacanell et
al.75 This would be in agreement with the XPS results of Ali et
al.,30 which indicate Co not to be present in metallic form. It
would also be in line with the calculated preference of oxygen
vacancies to reside near Co ions.128 Yao et al. investigated the
codoping of Co and Sm in CeO2 and observed no secondary
CoO or Co3O4 phases.77 Combined with the observed Vegard
law behavior for Co doping, they conclude that the Co ions
are incorporated into the ceria lattice forming a solid solution.
This seems to indicate that the codoping with Sm in this case
stabilizes the Co dopants somewhat, which is not unreason-
able based on the Sm defect formation energy given in Ta-
ble 3. In addition, Yao et al. also observe the grain boundary
conductivity to show a maximum at 5% of Co doping.77 They
link this to the segregation of Co to the grain boundary, show-
ing that the Sm dopants can only stabilize a limited amount of
Co.

Of the dopants investigated in this work, Ba shows the
largest decrease in defect formation energy with increasing
concentration. Combined with its relatively large defect for-
mation energy this could indicate that the BaCeO3 interface
observed between superconducting YBa2Cu3O7−δ thin films
and CeO2 buffer layers is rather due to Ce moving into BaO
layers than Ba moving into the CeO2 buffer layer.19,129 On
the other hand, if there are Ba atoms that diffuse into a CeO2
buffer layer, then doping the CeO2 buffer layer using dopants
that have a lower defect formation energy may prevent the Ba
diffusion by occupying and thus blocking possible sites. How-
ever, before any conclusive statement is possible further theo-
retical work is required; e.g. a comparative study of Ce doping
of bulk BaO or BaO layers in YBa2Cu3O7−δ and Ba doping
in CeO2 or doped CeO2. This is, however, beyond the scope
of the current work.

In Fig. 4 the obtained defect formation energies are com-
pared to the calculated atomic crystal radius RM (Fig. 4(a))
and the covalent radius (Fig. 4(b)).125 Figure 4(a) shows the
most stable dopants to have a crystal radius between that of
8−coordinate Ce IV and Ce III , while Fig. 4(b) shows high sta-
bility for elements with a covalent radius close to that of Ce. In

both cases, the Nb dopant appears as an exception, showing a
reasonably beneficial defect formation energy, while present-
ing a significantly lower atomic radius than the other more
stable dopants. The Nb covalent radius and calculated radius
RM , however, is nicely in the range of those of the group IVb
elements (Ti: 1.60Å, Zr and Hf: 1.75Å) which were shown to
provide stable dopant elements.54,55,125 The main difference
between Nb and the other elements presented in this work is
the fact that Nb acts as a tetravalent dopant in the Ce1−xNbxO2
system. This shows that the relation between dopant stability
and radius is more complex, and that the oxidation state (in
the final compound) plays an important role. As such, a higher
oxidation state results in a smaller radius for stable dopant el-
ements. In addition, it is also apparent from these figures that
the order of the atomic radii differs significantly depending
on the definition used. Consequently, simple stability rules
based on ratios of atomic radii, for example used in the study
of fluorite-pyrochlore transitions, should be treated with con-
siderable caution since they appear to be ill-defined.43,130

Based on these results some extrapolations can be made re-
garding other dopant elements. Let us assume that the trend
observed for the defect formation energies of group IVa and
IVb dopants also hold for other groups.55 Then, from the de-
fect formation energies for Mg and Ba, we can conclude that
all other group IIa elements (Be, Ca, Sr, and Ra) should seg-
regate when used as dopant in CeO2 making the latter well
suited as support for the alkaline earth metals and their ox-
ides.

Based on the values calculated for V and Nb, the value for
Ta is expected to be below the oxygen vacancy formation en-
ergy. This indicates that Ta should be a good candidate for
bulk doping of CeO2. This is supported by the experimental
work of Zhao and Gorte, who studied the influence of Ta2O5
doping of CeO2 on its catalytic activity for n-butane.

Turning our attention to the first row d-block elements, the
high defect formation energy for Co, Cu and Zn, and their
comparable radii leads us to expect similar segregation behav-
ior for Ni and Fe doping. On the other hand, the promising
defect formation energies for La, Sm and Gd are an indica-
tion that (especially the first half of) the lanthanides are good
candidates for bulk doping of CeO2.

3.3 Bulk modulus (BM) and thermal expansion coeffi-
cients (TECs)

The modification of the elastic properties of CeO2 due to alio-
valent doping is investigated through the BM and linear TEC
α . To reduce the computational cost, the BM and TEC are
only calculated for dopant concentrations of 25%. Table 4
shows the BM and the linear TEC at 500 K. The BM and TEC
for pure CeO2 are given as reference. These show the LDA
based value for the TEC at 300 K to be in excellent agreement
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Fig. 4 The calculated formation energy E f , for Ce1−xMxO2 with
x = 0.03125, as function of the calculated atomic radius RM (top)
and the covalent radius (bottom).125 Top: Vertical dashed lines
indicate the Shannon crystal radii for 8−coordinate Ce III and
Ce IV .78,79 Bottom: Vertical dashed line indicates the covalent
radius for Ce Rcov

Ce . 125 Top+Bottom: The O vacancy formation
energy at a vacancy concentration of 1.5% is indicated with a solid
(LDA) or dotted (PBE) line.

Table 4 Bulk moduli and thermal expansion coefficients for
aliovalent dopantsa

ox. B0 (Mbar) α (10−6 K−1)
LDA PBEb LDA PBE

CeO2 2.017 1.715 11.218 12.955
Mg II 1.644 1.389 14.693 16.867
V IV 2.132 1.796 11.510 13.601
Co II 1.867 1.542 13.779 16.567
Cu I 1.704 1.374 16.186 19.902
Zn II 1.712 1.410 14.968 17.656
Nb IV 2.187 1.871 10.621 12.226
Ba II 1.580 1.321 13.544 15.608
La III 1.835 1.556 11.809 13.618
Sm III − 1.595 − 13.678
Gd III − 1.588 − 13.744
Yb III − 1.534 − 15.229
Bi III 1.874 1.575 12.631 14.836

a Calculated BM B0 for CeO2 at a dopant concentration of 25%, for
LDA and PBE calculations. The linear TEC α at the same dopant
concentration and a temperature of 500 K.86 A best guess for the
oxidation state (ox.) of the dopants is given.123

b In the work of Lejaeghere et al.115 general error bars for PBE
derived materials properties were calculated based on pure materials
(single atomic species, excluding lanthanides and actinides).
Assuming these error bars can be transferred to Lanthanide based
oxides, the error bar on B0 would be 0.15 Mbar.

with the experimental value ( (11.0±0.5)×10−6 K−1 at room
temperature (RT), and (11.5± 0.5)× 10−6 K−1 at 500 ◦C ),
while the PBE value is clearly an over-estimation.23 With re-
gard to the BM it is again the LDA value that shows best
agreement with experiment where values in the range of 2.04–
2.36 MBar have been measured.104–106 The PBE value shows
a significant underestimation, in line with the overestimation
of the TEC. Of all dopants investigated in this work, only V
and Nb give rise to an increase in the BM, all other dopants
reduce the BM to varying degree. Comparing the BM for (the
tetravalent) V and Nb dopants to those found for group IVb
dopants shows them to present similar values.54,55 For Cu, the
BM was also calculated for Ce0.875Cu0.125O2, and found to be
1.867 and 1.553 Mbar for LDA and PBE, respectively. This
is within 0.01 Mbar of the average of the BM for pure CeO2
and Ce0.75Cu0.25O2, showing that a linear relation between the
BM and dopant concentration is a reasonable assumption for
Ce1−xMxO2 systems.

With the exception of Nb, all investigated dopants result
in an increase of the TEC. The data in Table 4 reveal that
low dopant valence leads to a large increase in the TEC and
high valence leads to a small increase and even decrease of
the TEC.

Comparison of the BM and the TEC in Fig. 5 shows clearly
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Fig. 5 Calculated BM and linear TEC α at 500 K for
Ce0.75M0.25O2. Calculated values (LDA: solid line, PBE: dotted
line) for pure CeO2 are given for reference. The elements are sorted
with regard to increasing Covalent radius.125

opposite trends of the BM and TEC, as was also observed for
group IV elements, again showing the expected inverse cor-
relation between the BM and the TEC.55,131,132 Only vana-
dium shows a slightly different behavior with both the TEC
and BM being larger than the CeO2 values. Close investiga-
tion of the vanadium TEC in Fig. 6a shows that the vanadium
curve crosses the TEC curve for pure CeO2 at around 250 K,
so below this temperature the inverse behavior of the TEC and
BM is restored.

Figure 6a also shows the TEC for two different Cu dopant
concentrations. From RT up to at least 1000 K a nearly lin-
ear influence of the dopant concentration on the TEC change
is observed, indicating that for aliovalently doped systems in
highly oxidizing atmosphere the TEC may also be linearly in-
terpolated. This linear behavior supports the inherent assump-
tion underlying the experimental practice of codoping in sev-
eral ceria based applications.68,133

Figure 6b shows the TEC of the lanthanides La, Sm, and
Gd to coincide nicely, while the Yb curve shows much higher
values. This difference in behavior is most likely linked to
the filled 4 f shell of Yb (which is only partially filled for Sm
and Gd). Further investigation of lanthanide doped systems
is required to have the full picture of the mechanism at work.
Similar as was found for group IV doped systems, this behav-
ior shows the importance of filled shells near the Fermi-level.

Several authors have noted that one should be very careful
when comparing calculated and experimentally obtained lat-
tice parameters for CeO2, since the former are generally cal-
culated at zero Kelvin, while the latter are measured at RT.
These authors suggest to linearly extrapolate the calculated
lattice parameter making use of the ‘linear TEC’. In this setup
the coefficient is assumed to be a constant, and often taken
from experiment. As is shown in Fig. 6, the linear TEC shows
quite a non-linear behavior at low temperature.134 Taking this

Fig. 6 Calculated linear TEC α for different dopants based on (a)
LDA and (b) PBE total energies and volumes. The calculated TEC
of CeO2 (black solid curve) is given as reference.

behavior into account one can obtain a more accurate value of
the lattice parameter at RT. Zero Kelvin and RT values of the
lattice parameter of doped CeO2 are shown in Table 2. The
thermal contribution to the lattice parameter at RT is fairly
limited and is of the order of 0.02–0.04 Å, for dopant con-
centrations of 25%. Because this can be comparable to the
variation of the lattice parameter due to doping, this can result
in differently doped systems having the same lattice param-
eter at elevated temperatures (e.g. Sm and Bi doped (25%)
CeO2 at about 1065 K, and pure and Yb doped (25%) CeO2
at about 1024 K). As a result, codoped systems or interfaces
between layers of differently doped CeO2 may experience re-
duced strain at elevated temperatures. The opposite is to be
expected as well, and increased segregation or interface strain
at elevated temperatures could be a consequence. This latter
aspect is of importance when perfect interfaces are required,
and should be considered when crack formation in thin films
is an issue.16,17,19,21

4 Inclusion of Vacancies

Since the configuration of dopants and oxygen vacancies for
the systems studied is essentially unknown, different config-
urations need to be investigated. However, since it is neither
our goal nor our intent to find the exact ground state configura-
tion of these systems, but rather to investigate the influence of
vacancies, we restrict ourselves to a subset of dopant elements
and a small set of configurations for the different dopants. A
full study of the configurational space is beyond the scope of
this study. The subset of dopant elements consists of Cu I ,
Zn II , and Gd III . In addition, vacancies in pure CeO2 are added
as reference.

The different vacancy geometries are described in Sec. 2
and the notation ‘NV’ is used to indicate the ‘No Vacancy’
reference systems, i.e. Ce1−xMxO2 with M=Cu, Zn, or Gd.
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All systems presented, contain 1 oxygen vacancy per dopant
atom, resulting in charge under-compensation (Cu), compen-
sation (Zn), and over-compensation (Gd).56 For these systems
the vacancy formation energy Evac is calculated as:

Evac = ECe1−xMxO2−y +
Nvac

2
EO2 −ECe1−xMxO2 , (4)

with Nvac the number of oxygen vacancies,135 EO2 the total en-
ergy of an oxygen molecule, and ECe1−xMxO2−y and ECe1−xMxO2
the total energies of the system with and without vacancies,
respectively.

4.1 Oxygen and cerium vacancies in CeO2

Before investigating the combined influence of dopants and
vacancies, the influence of oxygen and cerium vacancies on
pure CeO2 is briefly discussed. Table 5 shows the vacancy for-
mation energy of both Ce and O vacancies, which are in good
agreement with the vacancy formation energies calculated by
Keating et al.136 From this, it is clear that Ce vacancies are
highly unfavorable, in agreement with experimental observa-
tions.2,23 In addition, the relatively small change of the lattice
parameter appears to be strongly functional dependent.

The vacancy formation energy of the oxygen vacancies on
the other hand shows a significant concentration dependence
(in contrast to the calculations for the doped systems of the
previous section). In addition, the calculated lattice expansion
is clearly non-linear, with a similar trend for LDA and PBE
calculations. The expansion of the lattice parameter due to
the presence of oxygen vacancies is experimentally known,
and theoretically understood as a consequence of the tran-
sition from Ce IV to Ce III of two Ce atoms neighboring the
oxygen vacancy. Since the atomic crystal radius of Ce III is
significantly larger than Ce IV (1.283Å instead of 1.11Å) the
lattice will expand.2,23,78,79 The non-linearity shown here, in-
dicates that for aliovalent dopants charge compensating va-
cancies may give rise to non-Vegard law behavior, due to
Ce IV −−→ Ce III transitions.

Interesting to note is the large impact of the vacancies on
the BM and TEC of CeO2. Figure 7a shows a dramatic in-
crease in the linear TEC due to the presence of vacancies. It is
clear that the inverse relation between the BM and the TEC is
retained for vacancies.

4.2 Aliovalent dopants Cu, Zn and Gd combined with a
single oxygen vacancy

4.2.1 Vacancy formation energy. If one assumes the ox-
idation states of Cu, Zn and Gd as dopants for CeO2 to be
I, II, and III, respectively, then the introduction of a single
oxygen vacancy for every dopant ion will result in under-
compensation in case of Cu, nominal charge compensation

Fig. 7 Calculated linear TEC α for different systems containing
vacancies. (a) Comparison of the influence of oxygen and cerium
vacancies, (b) Cu doping with and without oxygen vacancies. LDA
results are shown as solid lines and PBE as dashed lines.

for Zn, and over-compensation in case of Gd.123 Table 6
shows the vacancy formation energies for these three dopant
elements. For all systems, the absolute value of Evac is
of the order of 1 eV. Because the formation energy of a
doped system including oxygen vacancies can be written as
E f ,vac =E f+Evac, where E f is the formation energy of the NV
system, the introduction of an oxygen vacancy in a Cu or Zn
doped system will result in an improved stability. However,
since E f ,vac is positive this means that the formation of oxy-
gen vacancies will not prevent phase segregation and promote
the formation of bulk doped CeO2. This would require Evac to
be more negative than E f is positive.

In contrast, the Gd doped system appears to destabilize
due to the introduced oxygen vacancy. This destabilization
is merely a consequence of the fact that the vacancy concen-
tration is higher than the nominal concentration required for
charge compensation. Table 7 shows the vacancy formation
energies for different configurations containing two Gd dopant
ions and a single vacancy leading to exact charge compensa-
tion. In this situation, the vacancies also have a stabilizing
effect on the Gd doped system. Note that the different con-
figurations without vacancies are nearly degenerate; all have
defect formation energies within a range of 50 meV. The oxy-
gen vacancy formation energies on the other hand are spread
over a wider range, and show a correlation with the chemi-
cal environment defined as the surrounding cation tetrahedron
(cf. Fig. 1a). The oxygen vacancy appears to prefer multi-
ple dopant cations in the tetrahedral surrounding in case of
Gd doping. Based on the A and B configurations, there ap-
pears to be an improvement of the vacancy formation energy
of 150 meV per Gd cation included in the tetrahedron. This
shows good agreement with the association energy of 0.13 eV
for the Gd-oxygen vacancy complex.5 It is also in line with
earlier atomistic calculations of Catlow and collaborators, and
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Table 5 Properties of vacancies in non-doped CeO2
a

Evac ∆a0 B0 α

(eV) (%) (Mbar) (10−6 K−1)
Vac. conc. (%) 12.5% 6.25% 1.852% 1.563% 12.5% 6.25% 1.852% 1.563% 12.5% 12.5%

O Vac.
LDA 5.006 4.440 4.054 4.035 0.775 0.510 0.176 0.141 1.568 12.912
PBE 4.145 3.476 3.075 3.097 0.908 0.606 0.193 0.165 1.320 15.287

Vac. conc. (%) 25% 12.5% 3.704% 3.125% 25% 12.5% 3.704% 3.125% 25% 25%

Ce Vac.
LDA 17.549 17.779 17.857 17.829 −0.270 −0.032 −0.016 −0.028 1.023 20.650
PBE 16.255 16.543 16.611 16.592 0.560 0.266 0.063 0.061 0.858 21.609

a Properties of vacancies in non-doped CeO2: vacancy formation energy Evac as given in Eq. (4), lattice expansion ∆a0, bulk modulus B0 and
linear thermal expansion coefficient α . Vacancy concentrations are indicated and the linear thermal expansion coefficient value α is given for
a temperature of 500 K.

Table 6 Properties for Cu, Zn and Gd doped CeO2 containing oxygen vacanciesa

Evac (eV) B0 (Mbar) ∆V (%) ∆a0 (%)
Cu Zn Gd Cu Zn Gd Cu Zn Gd Cu Zn Gd

c111 NV 12.922b 11.057b 2.396b 1.37 1.41 1.59 −4.124 −3.189 0.274 −1.394 −1.074 0.091
c111 VB −0.800 −0.882 1.929 0.87 0.38 0.86 −0.568 −1.529 1.563 −0.190 −0.512 0.518
p222 NV 12.878b 11.249b 2.445b 1.55 – – −2.145 −1.529 0.158 −0.733 −0.526 0.039
p222 VA −0.048 −0.604 1.395 1.01 1.03 1.00 0.619 0.552 1.371 0.193 0.170 0.442
p222 VB −0.422 −1.200 1.364 1.04 1.09 1.31 −1.173 −1.416 1.116 −0.406 −0.488 0.357

a Calculated vacancy formation energy (Evac) as given by Eq. (4), bulk modulus (B0), and change in volume (∆V ) and lattice expansion (∆a0)
for Cu, Zn, and Gd doped CeO2 including a single vacancy per supercell. ∆V and ∆a0 are taken with regard to pure CeO2. All calculations are
performed using PBE functionals. Vacancy concentrations are 12.5 (c111) and 6.25% (p222). The different configurations are shown in
Fig. 1. NV indicates the reference systems without vacancies.
b For the systems without vacancies, the formation energy E f is repeated. Note that the formation energy of a doped system with oxygen
vacancies E f ,vac =E f+Evac.

supports the predicted instability of a pyrochlore phase for
Ce2Gd2O7 by Minervini and collaborators.43,137,138 For La,
which is also a trivalent dopant for CeO2, an opposite trend
was noted for the 50% doped system.38 Also for Cu and Zn
dopants, beneficial behavior is observed when dopant cations
are present in the tetrahedron surrounding the vacancy, al-
though in these cases the effect is more pronounced. In addi-
tion, comparison of the vacancy formation energies at differ-
ent dopant concentrations shows that the dopant concentration
(annex vacancy concentration) has a strong influence on Evac.
For Cu doping an increase in Evac with the dopant concentra-
tion is shown, while a decrease is seen for both Zn and Gd.
The origin of this different behavior may be either due to the
dopant species or the fact that the Cu system contains a too low
vacancy concentration per dopant. In the latter case, increas-
ing the Cu concentration also increases the system vacancy
concentration. As a result, single oxygen vacancies may inter-
act with different Cu ions, presenting a higher apparent oxy-
gen vacancy concentration for the Cu ions. This reduces the
effective vacancy deficiency increasing Evac. The same inter-

Table 7 Oxygen vacancy formation energies for several
Ce0.75Gd0.25O1.875 configurationsa

Evac (eV) ∆V (%)c

NVb VA VB VC VB
# Gd na 0 1 2 1
A 2.380 −0.137 −0.273 −0.440 0.943
B 2.365 −0.037 – −0.310 –
C 2.398 – −0.392 – 0.871
D 2.402 – −0.402 – 0.866

a Oxygen vacancy formation energies for different
Ce0.75Gd0.25O1.875 configurations. NV indicates configurations
without oxygen vacancies. The different configurations are shown in
Fig. 2. The number of Gd ions in the tetrahedron surrounding the
vacancy is given.
b For the systems without vacancies, the formation energy E f is
presented. Note that the formation energy of a doped system with
oxygen vacancies E f ,vac =E f+Evac.
c Change of the volume relative to the NV configuration.
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action between the vacancies and the dopant elements would,
in the case of Zn, result in an apparent over-compensation, or,
in the case of Gd, even further increase the already present
over-compensation.

It is clear that aliovalent dopants induce additional oxygen
vacancies in CeO2 resulting in a stabilization of the structure.
The formation of oxygen vacancies is, however, limited by
the number of dopants and their oxidation state, supporting
the concept of charge compensating vacancies. The formation
of dopant-vacancy complexes in case of Cu and Gd may re-
duce some of the strain due to the undercoordinated nature of
these dopants (cf. Fig. 3 and sec. 3.1). In addition, the forma-
tion of such complexes may lead to small dopant-oxide clus-
ters in the CeO2 crystals or at their boundaries, masking the
dopant segregation in experiment. X-ray diffraction investiga-
tions searching for signatures of the pure metals will, in such
case, reveal (accurately) that no metal clusters are present,30

despite the segregation of the dopant atoms from the CeO2
bulk.

4.2.2 Crystal structure. Where the introduction of a
homogeneous distribution of dopants mainly results in an
isotropic lattice expansion, the addition of charge compen-
sating oxygen vacancies also results in an increase of the an-
gles between the lattice vectors. Although these changes tend
to be quite small (< 5◦ in Ce0.75Cu0.25O1.75, and < 0.5◦ in
Ce0.75Gd0.25O1.75), they are often anisotropic. As a result we
define the change in the lattice parameter for doped systems
containing oxygen vacancies as:

∆a0 =
( 3
√

V −aCeO2)

aCeO2

·100% (5)

with aCeO2 the lattice parameter of pure CeO2 and V the vol-
ume per formula unit of the doped system. Table 6 shows both
the change in the volume and lattice parameter for the Cu, Zn,
and Gd doped systems. In each case, the oxygen vacancies
result in an expansion of the volume (lattice parameter) com-
pared to the system without vacancies, either compensating
the lattice compression (Cu and Zn) or further increasing the
lattice expansion.

In experiments, Bera et al. observe only a very small lattice
contraction of −0.01% for a system with 5% Cu doping.24

This is much smaller than the value presented in Table 6, but
this can easily be understood. Firstly, the Cu doped systems
presented here, contain much higher Cu concentrations (25
and 12.5%) than the system of Bera et al., and secondly, the
oxygen vacancy concentration in the system of Bera et al.
contains a much higher relative oxygen vacancy concentration
than in the presented systems. As a result, the lattice contrac-
tion theoretically presented in Table 6 would be even further
compensated if a higher vacancy concentration was used, in-
dicating that values of the order presented by Bera et al. are

reasonable (and even small expansions should be considered
possible).

In case of Gd doping without oxygen vacancies, we found
the lattice expansion to be very small (slope of 0.015 for its
Vegard law in Table 2). However, Table 7 shows the lattice
will expand further due to the presence of oxygen vacancies
(volume increase of +0.9% for Ce0.75Gd0.25O1.875 compared
to Ce0.75Gd0.25O2). Taking this additional expansion into ac-
count the Vegard law slope increases to 0.0804 in perfect
agreement with the experimentally measured slope of 0.0813
for Gd doped CeO2.122

In addition, comparison of ∆V for Ce0.75Gd0.25O1.75 in Ta-
ble 6 (+1.563%) to the values for Ce0.75Gd0.25O1.875 in Ta-
ble 7 (+0.9%) shows a clear dependence on the vacancy con-
centration. As a result, doped CeO2 compounds should be
expected to show breathing behavior under varying oxidizing
atmosphere, such as for example car exhaust catalysts.

As would be expected from the vacancy induced
Ce IV −−→ Ce III transition, Table 6 also shows the volume (lat-
tice parameter) to increase with the number of Ce atoms in the
tetrahedral surrounding. This is also in line with earlier results
obtained for Ce0.5La0.5O1.75.38

4.2.3 Bulk modulus. In Sec. 4.1 it was shown that the
introduction of vacancies has a strong influence on the CeO2
BM. Unlike the volume and lattice parameter change, dopants
and the oxygen vacancies have a compound effect on the BM
(and TEC), as is seen in Table 6. However, it is interesting
to note that the chemical environment of the vacancy has only
limited influence on the BM (compare the VA and VB values
of the p222 supercell), when no charge over-compensation is
present. Figure 7b shows that the decrease of the BM goes
hand in hand with the increase of the TEC as was observed
for systems without vacancies, showing this behavior to be a
universal trend.

5 Conclusion

In summary, we have studied the structural and mechani-
cal properties of fluorite CeO2 doped with several aliovalent
dopants using ab-initio DFT calculations. Dopant concentra-
tions in the range of 0 ≤ x ≤ 25 % are investigated, and for
Cu, Zn, and Gd dopants also the influence of additional oxy-
gen vacancies is studied.

We have shown that for fluorite CeO2 doped with aliova-
lent dopants the lattice expansion shows Vegard law behavior
under oxidizing atmosphere. In addition, the Shannon crys-
tal radius of the dopant element can be calculated in a simple
way from the lattice parameter. The calculated atomic radii
indicated a preference for a lowered coordination for (most)
aliovalent dopants. This preference is expected to be a driv-
ing force for local lattice reconstructions at dopant sites. The
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introduction of charge compensating oxygen vacancies results
in an increase of the lattice parameter, which (partially) com-
pensates the lattice contraction observed for small dopants.

As was previously found for group IV dopants, aliovalent
dopants also show an inverse relation between the change in
bulk modulus and thermal expansion coefficient.55 Different
dopant elements give rise to different changes in the bulk mod-
uli and thermal expansion coefficients, however, the introduc-
tion of oxygen vacancies has a much larger effect, and de-
creases the bulk modulus significantly.

Defect formation energies are calculated and compared to
the oxygen vacancy formation energy to indicate the prefer-
ence for bulk doping over segregation of the dopant ions. For
the systems investigated we conclude that bulk (substitutional)
doping is very unfavorable for Cu, Co, and Zn, while La, Gd,
and Sm present themselves as very favorable bulk dopants. No
clear relation between the defect formation energy and either
the covalent or calculated crystal radius appears to exist.

Vacancy formation energies are calculated for different con-
figurations containing 25 and 12.5% Cu, Zn or Gd. For sys-
tems where the oxygen vacancies over compensate the charge
deficiency due to the aliovalent dopant, the oxygen vacancies
are found to be unstable, while being stable otherwise.The
strong dependence of the oxygen vacancy formation energy
on the chemical environment is indicative for the formation of
metal-vacancy complexes for many aliovalent dopants. Clus-
tering of such complexes, essentially leading to dopant-oxide
clusters in CeO2 may effectively hide dopant segregation in
experiments. Although oxygen vacancies are found to stabi-
lize the systems, their contribution remains too small to make
bulk doping favorable for Cu, Co and Zn.
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50 D. Horlait, L. Claparède, N. Clavier, S. Szenknect, N. Dacheux,
J. Ravaux and R. Podor, Inor. Chem., 2011, 50, 7150–7161.

51 D. A. Andersson, S. I. Simak, N. V. Skorodumova, I. A. Abrikosov and
B. Johansson, Phys. Rev. B, 2007, 76, 174119.

52 D. A. Andersson, S. I. Simak, N. V. Skorodumova, I. A. Abrikosov and
B. Johansson, Appl. Phys. Lett., 2007, 90, 031909.

53 Y. Tang, H. Zhang, L. Cui, C. Ouyang, S. Shi, W. Tang, H. Li, J.-S. Lee
and L. Chen, Phys. Rev. B, 2010, 82, 125104.

54 D. E. P. Vanpoucke, S. Cottenier, V. Van Speybroeck, P. Bultinck and
I. Van Driessche, Appl. Surf. Sci., 2012, 260, 32–35.

55 D. E. P. Vanpoucke, S. Cottenier, V. Van Speybroeck, I. Van Driessche
and P. Bultinck, J. Am. Ceram. Soc., 2014, 97, 258–266.

56 It is at this point important to note that all the systems under study in
this work are charge neutral from the electronic point of view, i.e. there
are as many positive as negative charges in each cell. As such the term
“charge compensating vacancy” and reference to it by the use of terms
like “charge compensation” may be considered confusing. The termi-
nology, however, originates in the study of ionic conductivity. There, the
substitution of one cation by another will, when using the Kröger-Vink
notation, always indicate the change in valence at the substitution site as
a charge on the substituent element. For example, if MgO is dissolved
in CeO2, tetravalent Ce is substituted by divalent Mg, which in Kröger-
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138, 224705.

104 S. J. Duclos, Y. K. Vohra, A. L. Ruoff, A. Jayaraman and G. P. Espinosa,
Phys. Rev. B, 1988, 38, 7755–7758.

105 A. Nakajima, A. Yoshihara and M. Ishigame, Phys. Rev. B, 1994, 50,
13297–13307.

106 L. Gerward, J. S. Olsen, L. Petit, G. Vaitheeswaran, V. Kanchana and
A. Svane, J. Alloys Compd., 2005, 400, 56–61.

107 P. J. Hay, R. L. Martin, J. Uddin and G. E. Scuseria, J. Chem. Phys.,
2006, 125, 034712.

108 J. Kullgren, C. W. M. Castleton, C. Muller, D. M. Ramo and K. Her-
mansson, J. Chem. Phys., 2010, 132, 054110.

109 T. Hisashige, Y. Yamamura and T. Tsuji, J. Alloys Compd., 2006, 408–
412, 1153–1156.

110 H. T. Handal and V. Thangadurai, J. Power Sources, 2013, 243, 458–
471.

111 S. Sameshima, M. Kawaminami and Y. Hirata, J. Ceram. Soc. Japan,
2002, 110, 597–600.

112 X.-L. Zhao, J.-J. Liu, T. Xiao, J.-C. Wang, Y.-X. Zhang, H.-C. Yao, J.-S.
Wang and Z.-J. Li, J. Electroceramics, 2012, 28, 149–157.

113 F. Iguchi, S. Onodera, N. Sata and H. Yugami, Solid State Ionics, 2012,
225, 99 – 103.

114 K. C. Anjaneya, G. P. Nayaka, J. Manjanna, G. Govindaraj and K. N.
Ganesha, J. Alloys Compd., 2013, 578, 53–59.

115 K. Lejaeghere, V. Van Speybroeck, G. Van Oost and S. Cottenier, Criti-
cal Reviews in Solid State and Materials Sciences, 2014, 39, 1–24.

116 H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 1976, 13, 5188–5192.
117 F. Deganello and A. Martorana, J. Solid State Chem., 2002, 163, 527–

533.
118 F. Deganello, A. Longo and A. Martorana, J. Solid State Chem., 2003,

175, 289 – 298.
119 A. R. Denton and N. W. Ashcroft, Phys. Rev. A, 1991, 43, 3161–3164.
120 B. C. Morris, W. R. Flavell, W. C. Mackrodt and M. A. Morris, J. Mater.

Chem., 1993, 3, 1007–1013.
121 V. Bellière, G. Joorst, O. Stephan, F. M. F. de Groot and B. M. Weck-

huysen, J. Phys. Chem. B, 2006, 110, 9984–9990.
122 F.-Y. Wang, S. Chen and S. Cheng, Electrochemistry Communications,

2004, 6, 743–746.
123 In ab-initio calculations as presented in this work, the oxidation state of

the atoms is not strictly defined, and our reference to any type of oxida-
tion state should not be taken as an absolute truth, but rather an educated
guess. All elements used as dopants in this work have either a single
(most common) oxidation state which is different from IV (e.g. Zn) or
are multivalent with most common oxidation states different from IV
(e.g. Yb or V). Since Shannon crystal radii are given both for different
coordinations and different oxidation states (although some combina-
tions which might be of interest for this work are missing) we have at-
tempted to derive the oxidation state of the dopants in the presented sys-
tems, based on the magnetization of the ground state system, under the
assumption of integer values for this magnetization. In most cases these
results pointed toward the most common oxidation state, while in other
cases degeneracies were present, with Co being the most extreme case
(cf. Ref. 124). When the oxidation state was uncertain, Shannon crystal
radii in the ball-park of our calculated atomic radii were used as indicator
for the dopant oxidation state. As a result, the stated oxidation numbers
should only be considered as a guess, although they might point at an
underlying physical relation with the atomic oxidation states.

124 Of all systems investigated, Co doping is the most problematic one due
to the near degeneracy of different magnetic configurations (magnetiza-
tion varying from 1 to 5 µB show differences in total energy of ∼ 0.20
and ∼ 0.08 eV for 3% doped systems). Interestingly enough, experi-
ments seem to encounter similar variation in the observed magnetic mo-
ment, with values varying with the Co concentration, substrate, and de-
position method. Where Tiwari et al. present 6µB at 3% Co doping, Vo-
dungbo et al. measure about 1.5µB at 4.5%, while Fernandez et al. and
Song et al. measure about 5µB at concentrations of 5 and 3% , respec-
tively. 69–72.

125 B. Cordero, V. Gomez, A. E. Platero-Prats, M. Reves, J. Echeverria,
E. Cremades, F. Barragan and S. Alvarez, Dalton Transactions, 2008,
2832–2838.

126 A. Ismail, J. Hooper, J. B. Giorgi and T. K. Woo, Phys. Chem. Chem.
Phys., 2011, 13, 6116–6124.

127 R. Lin, M.-F. Luo, Y.-J. Zhong, Z.-L. Yan, G.-Y. Liu and W.-P. Liu, Appl.
Catal., A, 2003, 255, 331–336.

128 G. Murgida, V. Vildosola, V. Ferrari and A. Llois, Solid State Communi-
cations, 2012, 152, 368–371.

129 N. Van de Velde, T. Bruggeman, L. Stove, G. Pollefeyt, O. Brunkahl and
I. Van Driessche, Eur. J. Inor. Chem., 2012, 2012, 1186–1194.

130 H. Yamamura, H. Nishino and K. Kakinuma, J. Ceram. Soc. Jpn, 2004,
112, 553–558.

131 Y. Tsuru, Y. Shinzato, Y. Saito, M. Shimazu, M. Shiono and M. Mori-
naga, J. Ceram. Soc. Jpn., 2010, 118, 241–245.

132 K. Lejaeghere, J. Jaeken, V. Van Speybroeck and S. Cottenier, Phys. Rev.
B, 2014, 89, 014304.

133 D. Fagg, J. Frade, V. Kharton and I. Marozau, J. Sol. State Chem., 2006,
179, 1469–1477.

134 Note that the ‘linear’ in linear TEC refers to thermal expansion in one
dimension, and does not indicate any linearity with regard to this coef-
ficient. Adding to the confusion is the fact that for a large experimental
temperature range the coefficient changes roughly linearly, as is shown
in Fig. 6.

135 In this, Nvac is related to y via the relation Nvac = yNuc with Nuc the
number of unit cells required to build the supercell of the doped system.

136 P. R. L. Keating, D. O. Scanlon, B. J. Morgan, N. M. Galea and G. W.
Watson, J. Phys. Chem. C, 2012, 116, 2443–2452.

137 C. Catlow, Solid State Ionics, 1983, 8, 89–107.
138 V. Butler, C. Catlow, B. Fender and J. Harding, Solid State Ionics, 1983,

8, 109–113.
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