Journal of Materials Chemistry A

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsA

Page 1 of 30

Solvothermal Synthesis of ZnO-Decorated α-Fe₂O₃ Nanorods with Highly Enhanced Gas-Sensing Performance toward n-Butanol

Yusuf V. Kaneti^a, Quadir M.D. Zakaria^a, Zhengjie Zhang, Chuyang Chen^a, Jeffrey Yue^b,

Minsu Liu^{a,} Xuchuan Jiang^{a,*} and Aibing Yu^a

^aSchool of Materials Science and Engineering, The University of New South Wales, Sydney NSW 2052, Australia

^bDepartment of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom.

Abstract

This paper reports a newly-developed solvothermal strategy for the synthesis of ZnO-decorated α -Fe₂O₃ nanorods based on the reaction of α -Fe₂O₃ nanorods with zinc sulfate and urea in autoclaves at 180 °C. The resulted nanocomposites consist of porous α -Fe₂O₃ nanorods with diameters of 100-200 nm, surface decorated with small ZnO nanoparticles (10-20 nm). The ZnO NPs are found to grow epitaxially on {110} planes of α -Fe₂O₃, forming an interfacial orientation relationship of (100)_{ZnO}/(110)_{α -Fe₂O₃. The addition of ZnO is found to shift the Fe 2p peak position in the α -Fe₂O₃/ZnO nanocomposites to higher binding energies due to the formation of the α -Fe₂O₃ nanorods exhibit excellent sensitivity selectivity, and stability toward n-butanol gas at a low optimum temperature of 225 °C. In particular, they show higher sensitivity compared to pure α -Fe₂O₃ (4 times higher) and ZnO nanorods (2.5 times higher), respectively, along with faster response times. The significant enhancement in sensitivity may be attributed to the chemical and electronic sensitization induced by the ZnO nanoparticles deposited on the surfaces of the α -}

Fe₂O₃ nanorods. The findings reported in this study will be useful for the design and construction of surface modified-metal oxide nanostructures with enhanced gas-sensing performance.

Keywords: iron oxide, zinc oxide, nanocomposites, n-butanol, sensitivity, gas sensing, nanorods

1. Introduction

Hetero-nanostructures consisting of two or more metal oxides have attracted increasing attention due to the possibilities of integrating the physical and chemical properties of these oxides. To date, many different metal oxide nanocomposites have been reported, including α -Fe₂O₃@SnO₂ nanorattles¹, ZnO-SnO₂ nanofibres², SnO₂@CuO core-shell nanorods³, and ZnO-TiO₂ nanofibres.⁴ These nanocomposites have shown enhanced properties and functionalities compared to their individual metal oxide counterparts in applications such as photocatalysis,^{5, 6} gas-sensors,^{7, 8} and lithium-ion batteries.^{9, 10}

Hematite (α -Fe₂O₃), an *n*-type semiconductor with band-gap (E_g) of 2.1 eV, is particularly attractive for gas-sensing applications due to its high chemical stability, low manufacturing cost, low toxicity and high resistance to corrosion. Various α -Fe₂O₃ nanostructures (nanotubes,¹¹ nanospheres,¹² and nanowires¹³) have shown good sensitivity and/or selectivity toward various volatile and toxic gases, such as H₂S, acetic acid and ethanol. To further enhance the sensitivity and selectivity, surface modification of the α -Fe₂O₃ nanomaterials with noble metals (e.g., Ag,¹⁴ Au¹⁵) or other metal oxides such as TiO₂¹⁶ and SnO₂¹⁷ have been proposed. Zinc oxide (ZnO) is particularly attractive as an additive due to its low cost, good thermal stability, and high mobility of conduction electrons.^{18, 19} For example, Zhang et al.¹⁸ prepared α -Fe₂O₃@ZnO core-shell nanospindles by multiple-step dip-coating of the α -Fe₂O₃ nanospindles in zinc acetate solution,

followed by annealing at 350 °C for 2 h. Wu et al.¹⁹ reported a seed-mediated synthesis of α -Fe₂O₃@ZnO core-shell nanoshuttles by heating the α -Fe₂O₃ nanoshuttles in a basic solution containing zinc acetate, followed by calcination at 550 °C for 2 h. Despite some success, previous methods to synthesize α -Fe₂O₃/ZnO nanocomposites have suffered from the following limitations, including (i) the use of multiple seeding steps and (ii) the need for high-temperature treatment (\geq 350 °C), and (iii) the complete enclosure of the α -Fe₂O₃ core by the ZnO shell, which reduced the adsorption of oxygen molecules on the surface of the α -Fe₂O₃, leading to a reduction in sensitivity.^{18, 19} This is because the sensitivity of a metal oxide gas sensor is greatly dependent on the amount of chemisorbed oxygen on the surface of the oxide material.²⁰ Therefore, it is important to develop a simple and effective fabrication method for the synthesis of α -Fe₂O₃/ZnO nanocomposites with highly accessible surfaces for gas adsorption. Furthermore, in these reports,^{18, 19} the growth mechanism of the ZnO nanoparticles on the α -Fe₂O₃ nanorods were not investigated.

This work demonstrates a facile and efficient strategy for the fabrication of ZnO-decorated α -Fe₂O₃ nanostructures through the solvothermal reaction of α -Fe₂O₃ nanorods with zinc sulfate and urea under mild reaction conditions. The morphology and composition of the products have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and energy dispersive spectroscopy (EDS). The formation and growth mechanisms of the ZnO NPs on the surfaces of the α -Fe₂O₃ nanorods are discussed and the influence of the Zn content on the gassensing performance of the α -Fe₂O₃/ZnO products has been investigated. The gas-sensing properties such as sensitivity, selectivity, stability and response-recovery behaviors have been

evaluated, and the possible gas-sensing mechanism is discussed. The findings will be useful for the design of metal oxide nanocomposites for applications such as gas sensors and catalysts.

2. Experimental Section

2.1. Chemicals

Iron(III) chloride hexahydrate (FeCl₃.6H₂O, 97%), zinc sulfate heptahydrate (ZnSO₄.7H₂O, 99.9%), zinc chloride (ZnCl₂, 99%), sodium hydroxide (NaOH, 99%), urea (CO(NH₂)₂, 99%), 1methyl-2-pyrrolidinone (C₅H₉NO, 99.5%), polyvinylidene fluoride (CH₂CF₂)_n, 99.5%), methanol (CH₄, 99%), ethanol (C₂H₆O, 95%), absolute ethanol (C₂H₆O, 99.9%), n-butanol (C₄H₁₀O, 99%), formaldehyde (HCHO, 37.5 wt% in H₂O), and acetone (C₃H₆O, 99.9%) were purchased from Sigma Aldrich and used as received without further purification. Ultra-pure water was used in all the synthesis processes.

2.2. Synthesis

2.2.1. Synthesis of porous α -Fe₂O₃ nanorods

In a typical procedure, 6.758 g of FeCl₃.6H₂O was dissolved in 250 mL of distilled water to make a 0.1 M FeCl₃.6H₂O solution. This solution was subsequently heated at 80 °C for 16 h to obtain akaganeite (β -FeOOH) nanorods. These nanorods were then collected by centrifugation and thoroughly washed with deionized water and 1.0 M NaOH solution several times to remove excess chlorine (Cl⁻) ions and finally dried at 60 °C for 5 h. Upon drying, the β -FeOOH nanorods were calcined in air at 400 °C for 2 h to convert them to porous α -Fe₂O₃ nanorods.

2.2.2. Synthesis of ZnO nanorods

In a typical procedure, a 0.05 M ZnCl₂ solution was first prepared by dissolving 0.0682 g of ZnCl₂ salt in 10 mL of water. In a separate beaker, 0.024 g of NaOH pellets was dissolved in 40 mL of water to form a 0.15 M NaOH solution. Then, 2 mL of 0.05 M ZnCl₂ solution was added to the 0.15 M NaOH solution and rapidly stirred for 15 minutes to produce a white-colored suspension. Finally, this suspension was transferred to a 50 mL Teflon-lined stainless steel autoclave, sealed and heated at 150 °C for 16 h. The obtained white precipitates were then collected by centrifugation and thoroughly washed with deionized water and ethanol several times and finally dried at 60 °C for 5 h.

2.2.3. Synthesis of ZnO-decorated a-Fe₂O₃ nanorods

In a typical protocol, 0.0359 g of ZnSO₄.7H₂O and 0.036 g of CO(NH₂)₂ were first dissolved in 20 mL of a water/ethanol (95% purity) mixture (water/ethanol = 5:3) until a clear solution is achieved. Secondly, 0.032 g of porous α -Fe₂O₃ nanorods was well sonicated into the above mixture and then stirred for 15-20 minutes. Finally, this solution was transferred to a 50 mL Teflon-lined stainless steel autoclave. The autoclave was sealed and heated at 180 °C for 24 h and then cooled to room temperature naturally. The reddish-brown product was collected by centrifugation and washed with deionized water and ethanol several times and finally dried at 60 °C for 6 h. To investigate the effect of the Zn content on the gas sensing properties, a series of α -Fe₂O₃/ZnO samples were prepared by using different amounts of the ZnSO₄.7H₂O, i.e. 0.0036 g (S1), 0.0180 g (S2), 0.0269 g (S3) and 0.036 g (S4), with other parameters such as the concentration of urea, the amount of α -Fe₂O₃ nanorods, the reaction temperature and the reaction time kept constant.

2.3. Characterization

The phase composition and purity of the α -Fe₂O₃/ZnO nanocomposites were examined using Phillips X'pert Multipurpose X-Ray Diffraction System (MPD) with Cu K α radiation ($\lambda = 1.54$ Å) operated at 40 kV and 40 mA, in the 2 θ range of 20-70°, with a step size of 0.02°. Scanning electron microscopy (SEM) analysis was performed using a FEI Nova NanoSEM 230 field emission scanning electron microscope. The transmission electron microscopy (TEM) images were obtained using a Tecnai G² 20 transmission electron microscope operated at an accelerating voltage of 200 kV. High resolution transmission electron microscopy (HRTEM) images were recorded on a Phillips CM200 field emission gun transmission electron microscope with an accelerating voltage of 200 kV. The surface analysis of the ZnO-decorated α -Fe₂O₃ nanorods were carried out using an ESCALAB250Xi X-ray photoelectron spectrometer, using Al-K α radiation as the excitation source. The Brunauer–Emmett–Teller (BET) surface area and pore size distribution of the products were obtained from nitrogen physisorption isotherms (adsorption–desorption branches) at 77 K on a Micromeritics Tristar 3000 instrument. Prior to the BET measurement, the samples were degassed overnight under vacuum at 150 °C to vaporize water molecules adsorbed on the materials.

2.4. Gas sensor fabrication and measurement

The gas sensor was built as follows: firstly, the α -Fe₂O₃/ZnO nanocomposites were mixed and ground with the binder polyvinylidene fluoride (PVDF) in an agate mortar. Secondly, the solvent 1-methyl-2-pyrollidone was added into this mixture to form brownish-red slurry, which was subsequently coated on a ceramic tube with previously printed gold (Au) electrodes and platinum (Pt) conducting wires. Finally the ceramic tube was sintered at 450 °C for 3 h to enhance the stability of the sensor. The gas-sensing properties of the α -Fe₂O₃/ZnO nanocomposites were

tested using a computer-controlled WS-30A gas-sensing measurement system, as shown in Fig. S1 (see ESI).

Prior to the test, a Ni-Cr resistor was inserted into the ceramic tube as a heater, which allows for the control of the working temperature by adjusting the heating voltage (V_{heating}). A reference resistor was placed in series with the sensor to form a complete measurement circuit. The test gas was injected into the testing chamber using a micro-syringe. The sensitivity of the sensor (*S*) is defined as the ratio of the resistances measured in air (R_a) and in the tested gas atmosphere (R_g): $S = R_a/R_g$. The output voltage was fixed at 5 V and the relative humidity was between 50-65%. The response time (τ_{res}) is defined as the time required by the sensor to achieve 90% of its maximum response after the gas injection, whereas the recovery time (τ_{res}) is the time taken by the sensor to reach 10% of its initial resistance after removal of the gas. For comparison, sensors were also prepared from the pure α -Fe₂O₃ and ZnO nanorods, using similar procedures as described previously. Digital photographs of the as-prepared sensors are provided in Fig. S2.

3. Results and discussion

3.1 Composition and morphology

Fig. 1 compares the XRD patterns of pure α -Fe₂O₃ and ZnO nanorods, and α -Fe₂O₃/ZnO nanocomposites. As shown in Fig. 1a and c, the XRD patterns of the as-prepared α -Fe₂O₃ and ZnO nanorods clearly shows all the diffraction peaks of rhombohedral α -Fe₂O₃ (JCPDS No. 33-0644) and hexagonal wurtzite ZnO (JCPDS No. 36-1451), respectively. The XRD pattern of the achieved nanocomposites (Fig. 1b) contains the peaks of both α -Fe₂O₃ and ZnO. No other peaks related to impurities are observed, which indicates the high purity of the product.

Fig. 2a and b show the SEM and TEM images of the α -Fe₂O₃ nanorods, respectively, prior to the coating process. These nanorods have diameters in the range of 100-200 nm, and their surfaces are relatively smooth prior to the ZnO deposition. The EDS spectrum of the α -Fe₂O₃ nanorods (Fig. 2c) confirms the presence of both elemental Fe and O. Furthermore, the TEM image in Fig. 3a clearly indicates the highly porous nature of the synthesized α -Fe₂O₃ nanorods. These pores originate from the dehydroxilation of β -FeOOH nanorods during the calcination process.²¹

Fig. 1 XRD patterns of (a) pure α -Fe₂O₃ nanorods, (b) ZnO-decorated α -Fe₂O₃ nanorods, and (c) pure ZnO nanorods.

After coating, the surfaces of the α -Fe₂O₃ nanorods become noticeably rougher as they are decorated with numerous ZnO NPs, as shown in Fig. 2d and e. The EDS spectrum of the ZnO-

decorated α -Fe₂O₃ nanorods (Fig. 2f) clearly indicates the presence of Zn peaks, in addition to the Fe and O peaks. The morphology of the as-prepared ZnO nanorods was also investigated using SEM and TEM techniques as shown in Fig. 2g and h, respectively. The diameter of the obtained ZnO nanorods varies from 100-200 nm, and the surfaces of these ZnO nanorods are relatively smooth. The EDS spectrum of the ZnO nanorods proves the existence of both Zn and O elements, as shown in Fig. 2i.

Fig. 2 SEM and TEM images and EDS analysis of (a, b, c) pure α -Fe₂O₃ nanorods, (d, e, f) ZnOdecorated α -Fe₂O₃ nanorods, and (g, h, i) pure ZnO nanorods.

To gain further insights into the crystallographic features of the pure α -Fe₂O₃ and ZnO nanorods as well as the ZnO-decorated α -Fe₂O₃ nanorods, HRTEM and the associated diffraction techniques were employed. The HRTEM analysis of a single α -Fe₂O₃ nanorod (Fig. 3b) reveals three groups of lattice fringes, each with a *d*-spacing of 0.252 nm, which corresponds to the *d*spacing of (110), ($\overline{120}$) and ($\overline{210}$) planes of α -Fe₂O₃, respectively. The lateral growth direction of the α -Fe₂O₃ nanorods is [110], as indicated in Fig. 3b. The corresponding selected area diffraction (SAED) pattern of the α -Fe₂O₃ nanorods (Fig. 3c) reveals a diffraction pattern which can be indexed to the [001] zone axis of rhombohedral α -Fe₂O₃.

Fig. 3 TEM, HRTEM, and SAED images of (a, b, c) porous α -Fe₂O₃ nanorods and (d, e, f) ZnO nanorods.

Similar HRTEM and diffraction analysis were also conducted following the ZnO decoration on the α -Fe₂O₃ nanorods. Fig. 4a and b shows the TEM images of a single α -Fe₂O₃ nanorod with many small ZnO NPs deposited on its surface. The rectangular area at the edge of the α -Fe₂O₃ particle in Fig. 4b is magnified in Fig. 4d to highlight the lattice fringes. The *d*-spacing between adjacent lattice fringes in the α -Fe₂O₃ nanorod is ~0.257 nm, which corresponds well to the (110) plane of α -Fe₂O₃. The *d*-spacing between the adjacent lattice fringes of the ZnO NP is ~0.285 nm, which can be well indexed to the (100) plane of ZnO.

Fig. 4 (a, b) Bright field TEM and (c, d) HRTEM images of the ZnO-decorated α -Fe₂O₃ nanorods. SAED patterns of the encircled area in 1 and 2 in Fig. c are shown in (e) combination of α -Fe₂O₃ (at [111] zone axis) and ZnO and (f) of the single ZnO NP, respectively.

The lattice information conform to the corresponding SAED patterns in Fig. 4e and f. Using the smallest aperture of the TEM, the SAED pattern in Fig. 4e covers both α -Fe₂O₃ nanorod and

ZnO NP within the schematic circle 1 in Fig. 4c. Likewise, the SAED pattern in Fig. 4f is taken exclusively from the ZnO NP within the schematic circle 2 in Fig.4c. Therefore, the SAED in Fig. 4e combines both α -Fe₂O₃ nanorod and ZnO NP, and the SAED pattern in Fig. 4f is only from the ZnO NP alone. Indexing of the SAED pattern in Fig. 4e shows that the (110) and ($\overline{110}$) planes of the α -Fe₂O₃ nanorod coincides with the (100) and ($\overline{100}$) planes of ZnO NP, respectively. Being consistent with the SAED, the HRTEM image in Fig. 4d reveals that the (100) planes of ZnO are stacked parallel to the (110) planes of α -Fe₂O₃, forming an interfacial orientation relationship of ($(110)_{\alpha-Fe2O3}$ //($(100)_{ZnO}$. The deposited ZnO NPs are found to preferentially grow along the [$(100)_{ZnO}$ direction as supported by the strong relative intensity of the ZnO(100) peak (at 2θ = 38°) in the XRD pattern of the ZnO-decorated α -Fe₂O₃/ZnO nanorods (Fig. 1b).²²

Importantly, it is noted in Fig. 4e that the (110) and ($\overline{110}$) diffraction spots of α -Fe₂O₃ overlap the (100) and ($\overline{100}$) diffraction spots of ZnO, respectively, in the axial direction, which implies the good lattice compatibility between these two lattice planes ((110)_{α -Fe₂O₃ and (100)_{ZnO}). Such overlapping has also been previously observed in the case of α -Fe₂O₃/SnO₂ hierarchical heterostructures where the (110) diffraction spot of α -Fe₂O₃ overlapped with the (200) diffraction spot of SnO₂.⁶ The HRTEM and SAED results therefore prove that the interfacial orientation relationship is (110)_{α -Fe₂O₃//(100)_{ZnO}. The HRTEM image of the ZnO nanorods shown in Fig. 3e reveals clear lattice fringes with a *d*-spacing of 0.26 nm, indexed to the *d*-spacing of (001) plane of ZnO, implying the [001] growth direction of the ZnO nanorods.}}

Fig. 5 SEM images of α -Fe₂O₃/ZnO products obtained with different amounts of Zn precursor (ZnSO₄.7H₂O): (a) 0.0036 g (S1), (b) 0.018 g (S2), (c) 0.0269 g (S3), and (d) 0.0359 g (S4).

The influence of the Zn precursor concentration on the morphology of the obtained α -Fe₂O₃/ZnO products is shown in Fig. 5 and S4. It is evident from Fig. 5a and S4a that when a low amount of Zn precursor (0.0036 g) is used (S1), only few ZnO NPs are coated onto the nanorods and a number of the α -Fe₂O₃ nanorods disassemble into irregular box like-structures. This may be caused by the presence of insufficient amounts of Zn²⁺ ions (due to the low concentration of the Zn precursor) in the solution to react with OH⁻ ions released by urea at 180 °C. This subsequently results in the destruction of the α -Fe₂O₃ nanorods as a result of highly basic

environment. When the quantity of $ZnSO_4$ is gradually increased from 0.018 (S2) to 0.036 g (S4), increasing density and more uniform coverage of ZnO NPs are observed on the surfaces of the nanorods, with the best result achieved at a Zn precursor amount of 0.036 g (S4). The particle size of the ZnO NPs in these samples is similar, with the size ranging from 10 to 20 nm.

XPS analysis was used to obtain further information regarding the surface structure and composition of the α -Fe₂O₃, ZnO and α -Fe₂O₃/ZnO products, as shown in Table 1 and Fig. 6. The XPS quantitative results reveal that the Zn atomic% of samples S1, S2, S3, and S4 are 3.27, 12.7, 14.6, and 17.0 at%, respectively. It is clear from Table 1 that with increasing amounts of Zn, the atomic% of Fe gradually decreases, indicating the increasing coverage of the surfaces of the α -Fe₂O₃ nanorods by the ZnO NPs.

0 3 27	53.2
3 27	
5.27	56.6
12.7	56.4
14.6	56.4
17.0	56.7
49.2	47.7
	12.7 14.6 17.0 49.2

Table 1 XPS quantitative analysis of the α -Fe₂O₃, ZnO and α -Fe₂O₃/ZnO products

Fig. 6a displays the high resolution spectra of Fe species in pure α -Fe₂O₃ and α -Fe₂O₃/ZnO samples containing varying amounts of Zn. In the pure α -Fe₂O₃ nanorods, the peaks at 710.68 eV and 724.28 eV can be ascribed to the peaks of Fe 2p_{3/2} and Fe 2p_{1/2}, respectively, and the

presence of the Fe 2p satellite peak at ~719 eV confirms the Fe³⁺ state of the iron oxide product. However after ZnO modification, the intensities of the Fe 2p peaks are reduced and their positions are gradually shifted to higher binding energies with increasing Zn content, with the positions of Fe 2p_{3/2} and Fe 2p_{1/2} shifting to 711.28 and 724.98 eV, respectively, at 17.0 at% Zn (sample S4). These observations suggest the slight alteration of Fe electronic structure due to the formation of α -Fe₂O₃/ZnO heterojunction interface which plays an important role in the gassensing mechanism of the nanocomposites.¹⁸ Despite the shift, the locations of the Fe 2p satellite peaks in the α -Fe₂O₃/ZnO samples remain more or less the same, indicating that the Fe remains in a 3+ valence state.

The high resolution spectra of the Zn species in the α -Fe₂O₃/ZnO products (Fig. 6b) show a strong peak at 1021.48 eV for sample S1, 1021.38 eV for sample S2, 1021.58 eV for sample S3, and 1021.68 eV for sample S4, which can be indexed to the Zn 2p_{3/2} peak, corresponding to Zn²⁺ bonded to O in ZnO. Moreover, it can be observed from Fig. 6b that the intensities of the Zn 2p peaks clearly rises with increasing Zn content in the α -Fe₂O₃/ZnO product, which corresponds to the increase in the amount of ZnO NPs decorated on the surfaces of the α -Fe₂O₃ nanorods. For pure ZnO nanorods, the Zn 2p peak is located at a slightly lower binding energy of 1021.28 eV. The deconvolution of the O 1s peak of a typical α -Fe₂O₃/ZnO composite material (Fig. 6c) reveals the existence of three oxygen species: the peaks at 529.88 eV and 531.68 eV corresponds to the Presence of different M-OH bonds or chemisorbed water.¹⁸

Fig. 6 (a) Fe 2p XPS peaks of pure α -Fe₂O₃ and α -Fe₂O₃/ZnO products containing different amounts of Zn, (b) Zn 2p peaks of ZnO nanorods and α -Fe₂O₃/ZnO nanocomposites containing various amounts of Zn and, (c) comparison of O 1s XPS peaks of pure α -Fe₂O₃ (inset) and ZnOdecorated α -Fe₂O₃ nanorods, and (d) survey spectra of pure α -Fe₂O₃ (blue) and ZnO-decorated α -Fe₂O₃ nanorods (red).

BET analysis was also carried out to further confirm the highly porous nature of the as-prepared α -Fe₂O₃ nanorods and ZnO-decorated α -Fe₂O₃ nanorods. Fig. S5a and b show the N₂ adsorptiondesorption isotherms and Barret-Joyner-Halenda (BJH) pore size distribution plot of the asprepared α -Fe₂O₃ nanorods. Based on the IUPAC classification, the isotherm can be ascribed to a type IV isotherm with a type H3 hysteresis loop in the *P*/*P*₀ range of ~0.4-0.9. The BJH distribution plot shown in Figure S5b shows the presence of a primary pore size distribution peak centered at ~2.5 nm and a secondary distribution peak centered at ~8 nm. These results indicate the mesoporous nature of the as-prepared α -Fe₂O₃ nanorods. The BET surface area of the assynthesized α -Fe₂O₃ nanorods is measured to be 60.86 m²/g. In comparison, The BET surface area of the ZnO-decorated α -Fe₂O₃ nanorods (sample S4) is slightly lower (~44 m²/g), because of the slight increase in the size of the α -Fe₂O₃ nanorods following the ZnO coating process (Figure S5c). Similar to the pure α -Fe₂O₃ nanorods, the isotherm of the ZnO-decorated α -Fe₂O₃ nanorods can also be indexed to a type IV isotherm with a type H3 hysteresis loop in the *P*/*P*₀ range of ~0.4-0.95. The BJH pore distribution plot of the ZnO-decorated α -Fe₂O₃ nanorods depicted in Figure S5d reveals the existence of a primary pore size distribution peak centered at ~2.2 nm and a secondary distribution peak centered at ~7 nm, which confirms their mesoporous nature.

3.2 Formation mechanism

The formation mechanism of the ZnO NPs on the surfaces of the α -Fe₂O₃ nanorods can be explained as follows. Firstly, the Zn precursor, ZnSO₄, dissolves in the water/ethanol solvent to produce Zn²⁺ ions:

$$ZnSO_4 \to Zn^{2+} + SO_4^{2-} \tag{1}$$

At high temperatures ($\geq 140^{\circ}$ C), the hydrolysis of urea occurs, generating OH⁻ ions in the solution, which in turn increases the basicity of the solution:²³

 $CO(NH_2)_2 + H_2O \rightarrow 2NH_3 + CO_2\uparrow$ (2)

$$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$$
(3)

The Zn^{2+} ions then react with the OH⁻ ions produced by the hydrolysis of urea to form zinc hydroxide, $Zn(OH)_2$:

$$Zn^{2+} + 2OH^{-} \rightarrow Zn(OH)_{2} \tag{4}$$

After a prolonged heating period, the zinc hydroxide decomposes and forms ZnO according to Eq. 5:

Fig. 7 Schematic diagram illustrating the formation of ZnO NPs on the surfaces of α -Fe₂O₃ nanorods.

Previously, our simulation study has shown that the interaction energies of Ag, Pt or Pd NPs are much higher when deposited on a porous surface of α -Fe₂O₃ relative to a smooth one, resulting in easier depositions on the α -Fe₂O₃ surface.²⁴ In the current reaction system, the as-prepared α -Fe₂O₃ nanorods are highly porous in nature and therefore the total potential energy of the ZnO NPs can also be significantly decreased when deposited on such porous surfaces. Hence, the ZnO NPs are more likely to nucleate and grow on the surfaces of the α -Fe₂O₃ nanorods (Fig. 7) via heterogeneous nucleation rather than forming separate nuclei by homogenous nucleation during the synthesis process.

3.2 Gas-sensing performance

Fig. 8 (a) The sensitivity of the α -Fe₂O₃, ZnO and α -Fe₂O₃/ZnO (S1-S4) sensors toward 100 ppm of n-butanol as a function of the operating temperature, (b) dynamic response-recovery behaviors of the α -Fe₂O₃, ZnO and α -Fe₂O₃/ZnO sensors toward various concentrations of n-butanol at the optimum working temperature of 225 °C, (c) the sensitivity *vs.* concentration curves of the α -Fe₂O₃, ZnO and α -Fe₂O₃/ZnO (S4) sensors toward *n*-butanol at 225 °C, and (d) response-recovery time *vs.* n-butanol concentration plots of the three sensors at 225 °C.

As *n*-type semiconductors, α -Fe₂O₃ and ZnO nanostructures with various morphologies have been widely investigated as gas-sensing materials. However, the gas-sensing performance of a hetero-structure consisting of these two metal oxides toward volatile organic compounds (VOCs)

has been rarely investigated. In this study, we have used volatile n-butanol gas as the main target gas for detection, such that it can potentially be used in alcohol, wine and/or food analysis, e.g. for discriminating the type of alcohol in beers, wines and other alcoholic beverages.^{20, 25} Moreover, n-butanol is often used in perfumes and fragrances, repellents, petroleum refineries and is frequently used as a solvent for paints, coatings, and natural and synthetic resins. Long-term exposure to n-butanol may be hazardous as it can act as a depressant to the central nervous system.²⁶ Therefore, it may be of interest to fabricate gas sensor materials with high sensitivity, selectivity, and stability toward n-butanol.

The operating temperature is one of the most important parameters affecting the sensitivity of a metal oxide gas sensor, as it governs the mobility of electrons and therefore the conductivity of the metal oxide material.^{27, 28} Fig. 8a shows the changes in sensitivity of the six sensors toward 100 ppm of n-butanol with different operating temperatures. It can be noted that the sensitivity curves of these sensors show the typical bell-shape in the entire temperature range. Further observation of Fig. 8a reveals that α -Fe₂O₃/ZnO sensors containing higher quantities of Zn (samples S3 and S4) exhibit lower optimum operating temperatures of 225°C, as opposed to samples S1 and S2, which display highest sensitivities toward n-butanol gas at 250 °C. The maximum sensitivity values of the four α -Fe₂O₃/ZnO sensors toward 100 ppm of n-butanol are 15.1 (S1) at 250 °C, 33.3 (S2) at 250 °C, 43.8 at 225 °C, and 54.4 (S4) at 225 °C.

In comparison, the pristine α -Fe₂O₃ and ZnO sensors show the highest sensitivity toward nbutanol at much higher optimum operating temperatures of 275° and 330°C, respectively, which indicates the benefit of the ZnO modification. As sample S4 exhibit the highest sensitivity amongst the prepared α -Fe₂O₃/ZnO sensors, it is used as the main α -Fe₂O₃/ZnO sensor to proceed with subsequent gas-sensing experiments. The dynamic response-recovery curves of the three sensors shown in Fig. 8b reveals the *n*-type sensing behaviors of all the fabricated sensors, whereby the output voltage of the sensors increases as the n-butanol gas is injected into the test chamber (with the highest increase observed for the α -Fe₂O₃/ZnO sensor) and subsequently decreases as the gas is removed.

Fig. 9 (a) Selectivity tests of the α -Fe₂O₃, ZnO and α -Fe₂O₃/ZnO (S4) sensors toward various VOCs at 225 °C and (b) stability evaluation of the α -Fe₂O₃/ZnO sensor (S4) toward 100 ppm of n-butanol over a period of 14 days.

Fig. 8c compares the sensitivity of the pure α -Fe₂O₃ and ZnO, and α -Fe₂O₃/ZnO sensors (S4) as a function of n-butanol concentration at 225 °C. For all sensors, the trend is that the sensitivity initially rises quickly with increasing concentration before eventually reaching saturation at higher concentration levels. Furthermore, it can be observed from Fig. 8b that the α -Fe₂O₃/ZnO sensor (S4) shows approximately 4 times higher sensitivity compared to the pristine α -Fe₂O₃ sensor and 2.5 times higher sensitivity than the pristine ZnO sensor. These results clearly indicate the beneficial addition of ZnO NPs on the surfaces of α -Fe₂O₃ nanorods. The dynamic response-recovery properties of the α -Fe₂O₃/ZnO sensor (S4) were also compared against the pure α -Fe₂O₃ and ZnO sensors, as depicted in Fig. 8d. The response times of the α -Fe₂O₃/ZnO sensor toward 10, 20, 50, 100, and 200 ppm of n-butanol are determined to be 26, 30, 36, 55 and 57 s, respectively. These are significantly faster than the response times of the pure α -Fe₂O₃ sensor (28, 34 52, 62 and 75 s, respectively) as well as those of the pure ZnO sensor (32, 39, 45, 67, and 91 s, respectively). Moreover, the recovery times of the α -Fe₂O₃/ZnO sensor toward 10-200 ppm of n-butanol are slightly faster than those of the pure α -Fe₂O₃ sensor and are approximately twice as fast compared to the pristine ZnO sensor.

Table 2 Comparison of the gas-sensing performance of various α -Fe₂O₃ or ZnO-based sensors toward 100 ppm of different VOCs.

Sensor Materials	Gases	T (°C)	S	References
ZnO-decorated α -Fe ₂ O ₃	$C_4H_{10}O$	225	57	This work
	C_3H_6O	225	28	
	C_2H_6O	225	23	
α-Fe ₂ O ₃ /ZnO core/shell	C ₃ H ₆ O	200	12.5	29
	C_2H_6O	200	17.8	
α -Fe ₂ O ₃ /SnO ₂ core/shell	C_3H_6O	320	2.3	30
	C_2H_6O	320	3	
TiO ₂ decorated α -Fe ₂ O ₃	$C_4H_{10}O$	370	27.5	31
	C_2H_6O	370	14.2	
Porous ZnO nanoflowers	$C_4H_{10}O$	320	25	32
α -Fe ₂ O ₃ hollow spindles	$C_4H_{10}O$	180	14	33

Selectivity is another important parameter of a gas sensor. A good gas sensor can selectively detect a particular gas when it is exposed to an environment containing multiple gases with similar physicochemical properties. The selectivity of the α -Fe₂O₃, ZnO, and α -Fe₂O₃/ZnO (S4) sensor toward n-butanol was tested by comparing its sensitivity against other VOCs with nearly identical physicochemical properties, such as methanol, ethanol, and acetone. From Fig. 9a, it can be observed that the α -Fe₂O₃/ZnO sensor clearly exhibits the highest sensitivity toward volatile n-butanol gas, with *S* = 54.4 at a concentration of 100 ppm. This is around 2 to 5 times higher than the sensitivity toward other gases, indicating the excellent selectivity of the α -Fe₂O₃/ZnO sensor toward volatile n-butanol gas. In comparison, the selectivity of the pure α -Fe₂O₃ and ZnO sensors is not as satisfactory.

For practical applications, gas sensors not only need to exhibit high sensitivity and selectivity toward the target gases, but also good stability to ensure their long-term reliability. Fig. 9b shows the stability evaluation of the α -Fe₂O₃/ZnO sensor (S4) toward 100 ppm of n-butanol over a period of 2 weeks. It is obvious that the α -Fe₂O₃/ZnO sensor exhibits excellent stability toward n-butanol gas as the *S* values remain \geq 50 during the 14 days of testing period. In comparison with previous studies, the as-prepared ZnO-decorated α -Fe₂O₃ nanorods display considerably enhanced sensitivity toward n-butanol compared to ZnO nanoflowers³² and α -Fe₂O₃ hollow spindles at a much lower optimum operating temperature of 225 °C (Table 2).³³ Additionally, they also exhibit higher sensitivity toward other VOCs such as acetone and ethanol compared to previously reported α -Fe₂O₃/ZnO²⁹ and α -Fe₂O₃/SnO₂ core/shell nanocomposites,³⁰ as well as TiO₂-decorated α -Fe₂O₃ nanorods.³¹ The sensing mechanism of *n*-type semiconducting metal oxides such as pure α -Fe₂O₃ and ZnO sensors can be explained in terms of the modulation of depletion layer by oxygen adsorption.²⁷ That is, when the pure α -Fe₂O₃ or ZnO sensor is exposed to air, oxygen molecules adsorb on the surfaces of the α -Fe₂O₃ or ZnO nanorods and ionize to O⁻or O²⁻ by capturing free electrons from the conduction band of α -Fe₂O₃ or ZnO. This reduces the free charge carrier (electron) concentration and leads to the formation of an electron depletion layer. However, when the n-butanol gas is injected into the testing chamber, the *n*-butanol molecules react with the adsorbed oxygen species on the surfaces of the α -Fe₂O₃ or ZnO nanorods. This in turn, releases the trapped electrons back into the conduction band of α -Fe₂O₃ or ZnO nanorods. This in the free electron concentration, and ultimately decreases the resistance of the pure α -Fe₂O₃ or ZnO sensor.

From Fig. 8c, it is evident that the ZnO-decorated α -Fe₂O₃ nanorods exhibit 3-4 times higher sensitivity than pure α -Fe₂O₃ nanorods as well as twice the sensitivity of pure ZnO nanorods toward n-butanol gas. The significant improvement observed in the sensitivity of the α -Fe₂O₃ nanorods following the ZnO decoration can be attributed to the chemical and electronic sensitization induced by the ZnO NPs. Specifically, the presence of ZnO NPs on the surfaces of the α -Fe₂O₃ nanorods promotes the formation of a heterojunction barrier at the interface of the two metal oxides, which governs the electron transport properties of the nanocomposites. This is caused by the difference in their work functions (5.0 eV for ZnO and 5.88 eV for α -Fe₂O₃).¹⁸ As the work function of α -Fe₂O₃ is higher than that of ZnO, the Fermi energy level of α -Fe₂O₃ is lower than that of ZnO. Therefore, a transfer of electrons will occur from the conduction band of α -Fe₂O₃ to that of ZnO to equalize the Fermi energy levels of the two oxides. Hence, an electron depletion layer is formed at the heterojunction of the two metal oxides, as depicted in Fig. 10b.

Fig. 10 Schematic diagram showing the possible band-gap arrangement of (a) α -Fe₂O₃ and ZnO and (b) α -Fe₂O₃/ZnO nanocomposites.

In the prepared ZnO-decorated α -Fe₂O₃ nanorods, the surfaces of the α -Fe₂O₃ nanorods are highly accessible for the adsorption of O₂ molecules as they are not completely enclosed by the ZnO NPs. Hence, when the α -Fe₂O₃/ZnO sensor is exposed to air, O₂ molecules can easily adsorb on the surfaces of both metal oxides and capture electrons from the conduction bands of both α -Fe₂O₃ and ZnO. This promotes the formation of depletion layers on the surfaces of both oxides, in addition to the depletion layer formed at the heterojunction interface of the two oxides. The presence of these multiple depletion layers significantly drains the free charge carriers from ZnO, making the as-prepared α -Fe₂O₃/ZnO sensor to be highly resistive compared to the pure α -Fe₂O₃ sensor. Then, when the α -Fe₂O₃/ZnO sensor is exposed to the n-butanol gas, the latter reacts with the richly available chemisorbed oxygen species (O⁻ or O²⁻) on the surfaces of both oxides and release a higher amount of trapped electrons (due to the presence of multiple depletion layers) compared to the case of pure α -Fe₂O₃ or ZnO sensor. Therefore, there is a greater drop of resistance in the case of α -Fe₂O₃/ZnO sensor, which ultimately leads to the dramatic improvement observed in the sensitivity of the α -Fe₂O₃/ZnO sensor.

Aside from electronic sensitization, the introduction of the ZnO additive may also induce chemical sensitization by enhancing the catalytic properties of the base α -Fe₂O₃ material, similar to that observed in SnO₂-ZnO binary oxide.^{34, 35} Specifically, the α -Fe₂O₃ component is capable of dehydrogenating butanol (C₄H₁₀O) to butanal (C₄H₈O) effectively, according to the equation:

$$C_4H_{10}O \rightarrow C_4H_9O^- + H^+ \rightarrow C_4H_8O + H_2$$
(6)

However, it may not be as effective in the catalytic breakdown of butanal, as described in Eq. (7) or (8) (depending on the adsorbed oxygen species present on the surfaces of the α -Fe₂O₃ nanorods):

$$2C_4H_8O + 22O^- \rightarrow 8CO_2 + 8H_2O + 22e^-$$
 (7)

or
$$2C_4H_8O + 22O^{2-} \rightarrow 8CO_2 + 8H_2O + 44e^-$$
 (8)

On the other hand, the ZnO component may be able to enhance the catalytic breakdown of butanal very effectively, as demonstrated in previous studies.^{34, 35} Hence, the combination of these two materials can therefore effectively dehydrogenate butanol and subsequently catalyze the breakdown of butanal. The gas-sensing results obtained using the α -Fe₂O₃/ZnO nanocomposites clearly support this idea (Fig. 8c). This suggests that when the catalytic action of the metal oxide components complements each other, the gas-sensing performance can be improved.

4. Conclusions

A facile and efficient solvothermal method has been demonstrated for the synthesis of ZnOdecorated α -Fe₂O₃ nanorods under mild reaction conditions. The proposed method offers a number of advantages including simple synthesis procedures and the lack of further calcination at high temperatures to achieve crystalline ZnO phase. The ZnO-decorated α -Fe₂O₃ nanorods show ~4 and 2 times higher sensitivity than pure α -Fe₂O₃ and ZnO nanorods, respectively, at a low optimum operating temperature of 225 °C. Additionally, they also exhibit faster response (reducing by up to 34 s) and recovery times (reducing by up to 39 s) to n-butanol gas compared to pure α -Fe₂O₃ and ZnO sensors, and a decrease of 50°-75°C in the optimum operating temperature. The improvement in the sensitivity of the α -Fe₂O₃/ZnO sensor is possibly caused by the existence of multiple depletion layers on the surfaces of the nanocomposites, which enhances the resistivity when exposed to the gas molecules compared to the pure α -Fe₂O₃ or ZnO sensor as well as due to the enhancement in the catalytic breakdown of n-butanol by the ZnO NPs. The simple synthesis strategy and the excellent gas-sensing properties of the ZnO-decorated α -Fe₂O₃ nanorods make them promising gas-sensing materials for the detection of volatile organic gases.

Acknowledgements

We gratefully acknowledge the financial support of the Australian Research Council (ARC) projects. The authors also acknowledge access to the UNSW node of the Australian Microscopy and Microanalysis Research Facilities (AMMRF). The authors thank Dr. Jason Scott for the assistance with the BET measurements.

4. References

- J. S. Chen, C. M. Li, W. W. Zhou, Q. Y. Yan, L. A. Archer and X. W. Lou, *Nanoscale*, 2009, 1, 280-285.
- Z. Zhang, C. Shao, X. Li, L. Zhang, H. Xue, C. Wang and Y. Liu, J. Phys. Chem. C, 2010, 114, 7920-7925.

- X. Xue, L. Xing, Y. Chen, S. Shi, Y. Wang and T. Wang, J. Phys. Chem. C, 2008, 112, 12157-12160.
- 4. S. H. Hwang, J. Song, Y. Jung, O. Y. Kweon, H. Song and J. Jang, *Chem. Commun.*, 2011, **47**, 9164-9166.
- 5. Y. Liu, L. Yu, Y. Hu, C. Guo, F. Zhang and X. Wen Lou, *Nanoscale*, 2012, 4, 183-187.
- 6. J. Kang, Q. Kuang, Z.-X. Xie and L.-S. Zheng, J. Phys. Chem. C, 2011, 115, 7874-7879.
- S. Zhang, F. Ren, W. Wu, J. Zhou, X. Xiao, L. Sun, Y. Liu and C. Jiang, *Phys. Chem. Chem. Phys.*, 2013, 15, 8228-8236.
- I.-S. Hwang, S.-J. Kim, J.-K. Choi, J. Choi, H. Ji, G.-T. Kim, G. Cao and J.-H. Lee, Sens. Actuators B, Chem., 2010, 148, 595-600.
- W. Zhou, C. Cheng, J. Liu, Y. Y. Tay, J. Jiang, X. Jia, J. Zhang, H. Gong, H. H. Hng, T. Yu and H. J. Fan, *Adv. Funct. Mater.*, 2011, 21, 2439-2445.
- 10. H. Wu, M. Xu, Y. Wang and G. Zheng, Nano Res., 2013, 6, 167-173.
- 11. Z. Sun, H. Yuan, Z. Liu, B. Han and X. Zhang, Adv. Mater., 2005, 17, 2993-2997.
- 12. X. Gou, G. Wang, J. Park, H. Liu and J. Yang, *Nanotechnology*, 2008, **19**, 125606.
- 13. G. Wang, X. Gou, J. Horvat and J. Park, J. Phys. Chem. C, 2008, 112, 15220-15225.
- X. Liu, Z. Chang, L. Luo, X. Lei, J. Liu and X. Sun, J. Mater. Chem., 2012, 22, 7232-7238.
- 15. X. Liu, J. Zhang, X. Guo, S. Wu and S. Wang, *Nanotechnology*, 2010, **21**, 095501.
- Z. Lou, F. Li, J. Deng, L. Wang and T. Zhang, ACS Appl. Mater. Interf., 2013, 5, 12310-12316.
- Y.-J. Chen, C.-L. Zhu, L.-J. Wang, P. Gao, M.-S. Cao and X.-L. Shi, *Nanotechnology*, 2009, **20**, 045502.

- J. Zhang, X. Liu, L. Wang, T. Yang, X. Guo, S. Wu, S. Wang and S. Zhang, Nanotechnology, 2011, 22, 185501.
- W. Wu, S. Zhang, X. Xiao, J. Zhou, F. Ren, L. Sun and C. Jiang, ACS Appl. Mater. Interf., 2012, 4, 3602-3609.
- 20. Y. V. Kaneti, J. Yue, X. Jiang and A. Yu, J. Phys. Chem. C, 2013, 117, 13153-13162.
- S. Lian, E. Wang, Z. Kang, Y. Bai, L. Gao, M. Jiang, C. Hu and L. Xu, Solid State Commun., 2004, 129, 485-490.
- 22. M. Niu, F. Huang, L. Cui, P. Huang, Y. Yu and Y. Wang, ACS Nano, 2010, 4, 681-688.
- 23. X. Li, H. Liu, J. Wang, X. Zhang and H. Cui, Opt. Mater., 2004, 25, 407-412.
- 24. J. Yue, X. Jiang and A. Yu, J. Phys. Chem. C, 2012, 116, 8145-8153.
- 25. Y. V. Kaneti, Z. Zhang, J. Yue, X. Jiang and A. Yu, J. Nanopart. Res., 2013, 15, 1-15.
- 26. A. D. Merritt and G. M. Tomkins, J. Biol. Chem., 1959, 234, 2778-2782.
- 27. C. Wang, L. Yin, L. Zhang, D. Xiang and R. Gao, Sensors, 2010, 10, 2088-2106.
- Y. V. Kaneti, Z. Zhang, J. Yue, Q. M. D. Zakaria, C. Chen, X. Jiang and A. Yu, *Phys. Chem. Chem. Phys*, 2014, DOI: 10.1039/C4CP01279H.
- 29. S. Si, C. Li, X. Wang, Q. Peng and Y. Li, Sens. Actuators, B, 2006, 119, 52-56.
- C. Yu-Jin, Z. Chun-Ling, W. Li-Jiao, G. Peng, C. Mao-Sheng and S. Xiao-Ling, Nanotechnology, 2009, 20, 045502.
- Y. Wang, S. Wang, H. Zhang, X. Gao, J. Yang and L. Wang, *J. Mater. Chem. A*, 2014, 2, 7935-7943.
- J. Huang, Y. Wu, C. Gu, M. Zhai, K. Yu, M. Yang and J. Liu, *Sens. Actuators, B*, 2010, 146, 206-212.
- J. Huang, M. Yang, C. Gu, M. Zhai, Y. Sun and J. Liu, *Mater. Res. Bull.*, 2011, 46, 1211-1218.

- 34. B. P. J. de Lacy Costello, R. J. Ewen, P. R. H. Jones, N. M. Ratcliffe and R. K. M. Wat, *Sens. Actuators, B*, 1999, **61**, 199-207.
- 35. Y. Wang and B. H. Davis, Appl. Catal. A, 1999, 180, 277-285.