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The synthesis and the physico-chemical characterizations of 
HETPHEN based heteroleptic copper(I)-bis(diimine) 
complexes are reported. In TiO2 based dye sensitized solar 
cells (DSCs), the latter display impressive photoconversion 10 

efficiencies (PCEs), unprecedented for first row transition 
metal coordination complexes. 

 Since 19911 and the discovery of DSC (Grätzel cells), many attempts 

to replace the costly and toxic (albeit remarkably efficient) ruthenium-

polypyridine complexes have been reported.2, 3 Copper(I)-bis(diimine) 15 

complexes have early shown promising results in this field.4, 5, 6  Lately, 

the use of heteroleptic copper(I) complexes has afforded significant PCEs 

thanks to an improved extinction coefficient in the visible and electron 

transfer vectorialization.6 The latter point is an essential criterion to fulfil 

in the design of efficient sensitizers for TiO2. Indeed, each ligand is set to 20 

play one (or more) well-defined role such as anchoring, passivation of the 

surface and assisting charge injection. Accordingly, ligands differ by their 

molecular structures and therefore by their electronic natures. In the 

course of our program on heteroleptic bis-diimine copper(I) complexes,7, 

8, 9 prepared according to the HETPHEN concept developed by Schmittel 25 

and colleagues,10 we have prepared and studied four new stable 

heteroleptic copper(I) complexes [CuL0Ln]+ hereafter named Cn (n = 1-4, 

Figure 1).  

Figure 1. Molecular structures of Ln and Cn (n=1-4) 

 30 

 The anchoring ligand L0 (6,6’-dimesityl-2,2’-bipyridine-4,4’-

dicarboxylic acid) is based on the classical 4,4’-dicarboxylic acid 

bipyridine onto which were attached two mesityl groups in positions 6 

and 6’, providing the necessary steric bulk to avoid the formation of 

homoleptic complexes. The ligands completing the coordination sphere of 35 

the copper(I) ion belong to the family of 4,4’-bis(styrylphenyl)-2,2’-

bipyridines, derivatized with electron releasing moieties of different 

strength. Methyl groups in α of the chelating nitrogen atoms confer 

rigidity to the final scaffold, preserving the excited state from exciplex 

quenching and excessive flattening upon excitation, to a certain extent. 40 

Three complexes C2, C3 and C4, bearing respectively alkoxy, N,N-

diethylamine and N,N-diphenylamine moieties were thus isolated. For the 

sake of comparison, a fourth model complex [CuL0L1]+ (C1) was 

synthesized, with L1 = 2,2’,4,4’-tetramethylbipyridine. 

 The syntheses of all ligands are reported in ESI. The 45 

HETPHEN modus operandi was used to isolate C1-4 and started with the 

synthesis of the Cu(L0)]+ intermediate in DMF. An equivalent of Ln was 

subsequently added dropwise, entailing an immediate colour change of 

the medium from yellow to deep red. Impurities were removed by size 

exclusion chromatography. A similar protocol was used to isolate the 50 

dimethyl-ester forms of each complex (named hereafter Cnester, n=1-4, 

synthesis given in ESI). 

The electronic absorption spectra of the complexes were recorded in 

solution and on nanocrytalline TiO2 films (Figures 2 and S3). All the 

complexes featured the classical MLCT absorption band at ca. 500 nm 55 

(Table 1 and Figure 2).11 The increased conjugation of the π system on 

both L0 and Ln (n = 2-4) induces a stabilization of the π* orbitals, 

explaining the red-shift of this transition compared to the benchmark bis-

neocuproine Cu(I) complex C5 (Figure S7).9 One notices that the MLCT 

bands are more intense as well, because of the increased ground state 60 

dipolar moment generated by the combination of electron poor L0 and 

electron rich Ln. The complexes C3 and C4 present higher light 

harvesting efficiency in the visible than C1 and C2 because of an intense 

additional intraligand charge transfer transition (ILCT), located at the 

edge of the visible around 420 nm.9 65 

 
 λ (nm) [ε (M-1.cm-1] E (V)* [ΔE (mV)] 

C1 477 [4.7·103] 0.94 [96] ─ 

C2 500 [9.8·103] 0.91 [96] ─ 

C3 504 [1.3·104] 1.08a [-] 0.80a [-]

C4 502 [1.4·104] 1.03b [-] 0.95b [-]

 Table 1. UV-Visible and electrochemical data for C1-4. *data 

collected with the methyl ester forms of C1-4. 

 

This very intense ILCT transition corresponds to a shift of the electron 70 

density from the electron rich amine moieties to the electron poor 

pyridine. Such band does exist for C2 too, but is significantly blue-shifted 

compared to C3 and C4 because of the poorer electron donating power of 

L2. Spectra recorded on TiO2 transparent electrodes (Figure S3) feature 

the same patterns than those recorded in solution phase (Figure 2). 75 

Overall, the complexes displayed a rather broad and intense absorption 

over a large wavelength frame (λonset~620 nm), revealing their potentials 
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the Jsc for all devices. One calculates a 70% increase of the photocurrent 

for C1 and C4 and 45 and 50% for C2 and C3 based photovoltaic 

devices, respectively. For a better understanding, IPCEs of DSCs with 

and without CDCA treatment were compared (Figure S5). A significant 

increase of the IPCE is observed for CDCA–treated cells, regardless the 5 

dye (Figure 3), together with a broadening of the signals. Several reasons 

can be invoked to rationalize this important result. First, CDCA 

molecules release protons and this bends the conduction band 

downwards, increasing thus the driving force of the electron injection into 

the semi-conductor, and consequently improving the electron injection 10 

yield.13 Second, a noticeable increase of the absorbance of C1-4 based 

photo-electrodes was monitored upon CDCA treatment, along with a 

slightly broadened MLCT transition (Figure S4). These subtle changes in 

the absorption spectra of the chemisorbed complexes are in line with the 

IPCE, and are probably grounded in a reorganization of the dye 15 

monolayer upon CDCA adsorption. The role of CDCA is often 

associated with the disruption of dye aggregates and certainly comes into 

play here, especially due to the presence of organic styryl branches on the 

complexes C2-4. Based on the effect of CDCA on both IPCE 

measurements and on the Jsc enhancement, we conclude that the main 20 

role of CDCA with these complexes is certainly to decrease the 

aggregation on TiO2 surface leading to higher LHE and injection quantum 

yield. In these conditions, DSCs provided a maximum PCE of 4.66% for 

C3-based device. This is to date the highest PCE ever reported for a DSC 

based on a copper(I) complex  sensitizer, and hold great promises for the 25 

future of these cheap solar cells. Most highly performing dyes, including 

ruthenium complexes, are neutral species, while these first series of 

copper(I) complexes are positively charged. This is certainly one weak 

point of these dyes, which can be overcome by using new ancillary 

ligands 30 

Conclusions 

 We successfully isolated four stable heteroleptic copper(I)-

polypyridine complexes, using the HETPHEN concept. Through a careful 

choice of ligands, unprecedented PCE were measured, reaching 4.66%. 

The new anchoring ligand L0 paves the route to prepare other sensitizers 35 

as it certainly forms stable heteroleptic copper(I) with many unhindered 

diimine ligands. This contribution brings further credit to these molecular 

complexes as efficient sensitizers for DSCs, en route for a cheap and less 

toxic substitute to ruthenium dyes. 

 40 
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