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Ionic conductivities in solid oxide fuel cell (SOFC) elec-
trolytes yttria-stabilised zirconia (YSZ), calcia-stabilised
zirconia (CSZ), gadolinium-doped ceria (GDC) and
samarium-doped ceria (SDC) and cathode material lan-
thanum strontium cobalt oxide (LSCO) are directly calcu-
lated using DL AKMC, an adaptive kinetic Monte Carlo
(aKMC) program which assumes limited a priori knowl-
edge of the kinetics of systems. The materials were simu-
lated over several milliseconds and over the range of ex-
perimentally most relevant temperatures and dopant con-
centrations (2-18 mol% for doped zirconia, 5-25 mol% for
doped ceria and 5-80 mol% for LSCO). Ionic conductiv-
ities of the electrolytes at 1000 K are in good agreement
with the observed values: CSZ in the range 3×10−3 -
1×10−2 S cm−1 depending on dopant concentration, YSZ
4×10−3 - 3×10−2 S cm−1, GDC 1×10−2 - 5×10−2 S cm−1,
SDC 1×10−2 - 7×10−2 S cm−1. LSCO is predicted to have
an ionic conductivity of the order of 10−2 - 10−1 S cm−1

depending on Sr content. Average activation energies over
all migration processes are between 0.4-0.5 eV for the sta-
bilised zirconias and between 0.2 and 0.3 eV for the doped
cerias and 0.3 eV for LSCO, in agreement with experi-
ment. aKMC provides a distinct advantage over tradi-
tional KMC methods, for which one has to provide a list
of system state transitions. Here, all of the state transi-
tions are dynamically generated, leading to a more accu-
rate simulation of the kinetics as the system evolves.

1 Introduction

Due to growing concern about global warming and dwindling
supplies of fossil fuels, increasing interest is being directed
towards alternative sources of energy. Popular and promising
alternatives are fuel cells, and a substantial amount of research
and development has been undertaken to improve the materi-
als used in, and the design of, these devices. In solid oxide fuel
cells (SOFCs) the oxidant (e.g. air, O2) is reduced at the cath-
ode. The oxide ions produced from this process are then trans-

aSTFC, Daresbury Laboratory, Keckwick Lane, Daresbury, WA44AD, UK.
bSchool of Chemistry, University of Bristol, Bristol, BS8 1TS, UK

ported through the solid electrolyte material, ideally a purely
ionic conductor, to the anode where the fuel (e.g. H2, hydro-
carbons) is oxidised. Electrons from this process then flow
from the anode to the cathode, completing the circuit and gen-
erating power. Lowering the operating temperature of SOFCs
to an intermediate temperature range of 600◦C - 800 ◦C is
an ongoing area of intense research and many materials have
been suggested as suitable electrolytes1–3 and electrodes4–9

for this purpose.

Stabilised zirconias doped with lower valency ions such as
yttrium (YSZ) or calcium (CSZ) along with ceria doped with
gadolinium (GDC) and samarium (SDC) exhibit very high
ionic conductivities associated with mobile oxygen vacancies
formed as a consequence of the doping and are typically used
as electrolytes in SOFCs. Previous computational studies of
YSZ have tended to use molecular dynamics (MD)10 or den-
sity functional theory (DFT)11,12 in combination with kinetic
Monte Carlo (KMC) to investigate the oxide ion diffusion ki-
netics13,14, as timescales tend to be limited if MD or par-
ticularly DFT is used in isolation. Typically such common
atomistic KMC models employ an on-lattice approximation
which limits their ability to describe a system which under-
goes large structural changes. This atomistic KMC approach
also requires a list of possible event mechanisms determined
a priori, through experimental and theoretical methods, or by
estimation or even guessing. This is naturally a severe limi-
tation as the processes involved in the atomic motion are not
necessarily intuitive and can be extremely difficult to predict
in advance15. Furthermore, as the simulation advances the
structure of the system will change leading to new possible
transitions and altering the activation energies of existing tran-
sitions. To overcome these limitations various ‘on-the-fly’ ap-
proaches, such as adaptive KMC (aKMC)16, have been pro-
posed. These are designed for an off-lattice system and the
saddle-points between different possible states of the system
are located as the simulation progresses. These methods over-
come the limitations of the traditional KMC approaches by
avoiding the need for a list of mechanisms provided before-
hand. State transitions not predicted in advance are allowed,
thus permitting a thorough search of the potential space and
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ensuring that the kinetic model is as realistic as possible.Cer-
tain assumptions about the kinetics of the system are made
when using the aKMC technique, namely that the system
transitions adhere to the harmonic transition state theory17,18.
With the simulations performed in this work, we also assume
that the pre-exponential factor, used in the calculation ofthe
transition rate, is a constant equal to a typical vibrational fre-
quency (1013 s−1).

2 Methodology

2.1 aKMC

The key to the aKMC approach is an efficient way to search
for saddle points that link the current state of the system to
another. One popular method is the ‘dimer’ method19, the im-
plementation of which used in this work has been described
in detail elsewhere20. To explain briefly, the dimer algorithm
begins with a random starting position within the energy basin
and progresses by climbing uphill along the lowest eigenvec-
tor corresponding to the lowest value eigenvalue of the Hes-
sian matrix, eventually reaching a saddle point at the top. This
is a particularly efficient method as only first derivatives of the
energy21 are required. If all the saddle points leading to dif-
ferent system states can be located, the activation energies of
each of these pathways can be supplied to the KMC procedure
and, with the pre-Arrhenius frequency factor, the rates of each
pathway can be determined. The system can then be propa-
gated in a dynamically correct way to the next state, where the
entire procedure is begun again.

In practice, however, it is computationally demanding (ef-
fectively impossible) to findall of the saddle points and
demonstrate that all have been found, and the number of sad-
dle points bounding a state grows exponentially with the di-
mensionality of the system. Xu and Henkelman22 have devel-
oped a method to quantify a ‘confidence limit’ for each state
that enough relevant saddle points have been found to progress
the simulation with a pre-defined level of confidence and this
approach has been implemented here. Their method supposes
that all of the relevant kinetic events occur within amkBT of
the lowest barrier processes, for a suitably largem. For exam-
ple, with a value ofm= 20, an event at the upper limit will
be e−20 ≈ 10−9 as likely to occur as one at the lower limit,
assuming that the pre-factors of the two events are the same.
Events that occur within these limits are therefore relevant to
the kinetics of the system, and the confidence (C) that a rele-
vant saddle has not been missed is found by:

C=

(

1−
1

αNr

)

(1)

whereNr is the number of sequential searches that find rel-
evant, but redundant (non-unique) processes andα is set be-

tween zero and one and describes the relative probability of
finding each relevant saddle point.α = 1 describes a system
where there is an equal probability of finding each relevant
saddle point, and is the value that is used in this work. More
detail behind the logic of Eq. 1 is detailed elsewhere22. By
setting a confidence limit of, e.g. 95%, the simulation will run
until Nr = 20 searches finish without finding a new, unique
saddle point. Each saddle point search proceeds assuming no
knowledge of the local environment, with no saddle point re-
cycling.

We use a new adaptive KMC program, DLAKMC, as fol-
lows; initially the provided material structure is minimised us-
ing a user-specified algorithm as implemented in DLFIND23,
possibilities are - steepest descent, conjugate gradient fol-
lowing Polak-Ribiére24, L-BFGS25,26, P-RFO27–30, Newton-
Raphson/ quasi-Newton, damped dynamics, random (stochas-
tic) search31,32 or by a genetic algorithm33–35. This min-
imised structure is then used as the initial basin for the
task-farmed saddle-point searches either by the improved
dimer method19,20 or the NEB method36 as implemented in
DL FIND, as specified by the user. These dimer searches
are initiated near the local minimum by displacing the system
away from the minimum in a random direction. The algorithm
for displacement used here is general - each atom is displaced
by a small amount up to a maximum of± 0.4Å.

The kinetic Monte Carlo algorithm has been documented
elsewhere37,38 and Figure 1 gives a brief overview of the par-
allelisation within the program used. Once all of the transi-
tions have been identified, the rateνi for each eventi is then
obtained from Eq. 2:

νi = ν0exp

(

−∆E
kBT

)

(2)

whereν0 is the pre-exponential factor, here set equal to a
typical vibrational frequency (1013 s−1) as is usual in the ab-
sence of more detailed information12. ∆E is the activation
energy barrier for ion migration determined using the dimer
method,kB the Boltzmann constant andT the temperature.
One of the transitions is chosen at random with probability
proportional to the relative rate of the transition. The timestep
of the simulation is then advanced by∆t (Eq. 3):

∆t =
− lnω
∑
i

νi
(3)

whereω is a random number between zero and one. The
system structure is then updated to reflect the transition cho-
sen, and the saddle-point searching algorithm begins again.
This process continues until the maximum simulation or com-
putational time is reached.
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Fig. 1 Schematic of the parallelisation and simulation process
implemented in DLAKMC.

2.2 Ionic Conductivity

Key to the operation of an SOFC electrolyte or cathode is its
ionic conductivity. For efficient functioning of the fuel cell
both electrolytes and cathodes should possess a high such con-
ductivity. This is related to the oxygen self diffusion coeffi-
cient by the Nernst-Einstein relation (Eq. 4):

σi =
(zie)2ciDi

kBT
(4)

whereσi is the ionic contribution to the conductivity from
speciesi, zie the charge of speciesi, ci the concentration of
ionic defects (in this paper, oxide-ion vacancies) andDi the
diffusion coefficient of speciesi. This approach is only strictly
valid for dilute systems, and not our doped systems which are
almost always concentrated solid solutions.

Gropeet al.39 and Pornprasertsuket al.11 have simulated
such systems circumventing this issue by direct inclusion of
an applied field. In their approach, the electrolyte is splitinto
a series of ‘slices’ that are infinite in two dimensions (y- and z-
) perpendicular to the direction of the applied field (see Figure
2. The applied field alters the activation energy barrier forion
migration (Eq. 5):

∆Ecorr = ∆E0+αzieVshi f t (5)

Fig. 2 Generalised illustration of the supercell used in this work,
where the ‘slices’ are infinite in y- and z- dimensions and the
electric field is applied along the x- direction.

where∆Ecorr is the new, corrected activation energy barrier
for ion migration,∆E0 the activation energy barrier obtained
from the saddle-point searches,Vshi f t is the total potential dif-
ference between the destination slice and the initial slicein
which the vacancy is located.α is termed the ‘symmetry fac-
tor’ and has a value between zero and one which is dependent
on the profile of the migration barrier under the applied poten-
tial but in this work is set to 0.5. For any oxide-ion vacancy
movement that occurswithin a slice,Vshi f t is zero. The total
potential,V i

total, at each slice,i, is split into two terms - the
electrode potential (V i

elec) and the space charge potential (V i
sc):

V i
total =V i

elec+V i
sc (6)

V i
elec is the potential on slicei due to charge accumulation at

the electrodes. Electrons are assumed to have a much higher
mobility than oxide ions and soV i

elec is equal to the difference
betweenV i

total andV i
sc. In our simulations,Velec is assumed to

vary linearly across the electrolyte:

V i
elec=V0

elec+
i
N
(VN

elec−V0
elec) 1≤ i ≤ N (7)

V0
elec, the electrode potential in the initial slice, labelled 0, is

set to zero for convenience.VN
elec is the electrode potential on

sliceN, the final slice in our configuration. The space charge
potential per slice,i is given by:

V i
sc=V0

sc+
i−1

∑
k=0

−a
2

(

k

∑
g=0

Eg−
N

∑
h=k+1

Eh

)

1≤ i ≤ N (8)

V0
sc, the space charge potential in the initial slice, 0, set to

zero. The slice spacing of all the cubic unit cells of the crystal
structures considered in this work is half the lattice parameter,
a . In using Eq. 8 during the simulation, ionic movement is
assumed not to change the geometry of the simulation cell.Ei
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Table 1 Parameters used in the aKMC simulations.

Vacuum permittivity,ε0 / (F m−1): 8.854 x 10−12

Relative permittivity,εr : 40
Vibrational frequency,ν0 / Hz: 1 x 1013

V0 (Eq. 10 / V: 0.5
Frequency of applied field,f / Hz: 1 x 107

is the electric field associated with each infinite slice,i given
by:

Ei =

∣

∣

∣

∣

ρi

2ε0εr

∣

∣

∣

∣

(9)

whereε0 is the vacuum permittivity andεr the relative per-
mittivity of the material which is set at 40 in our simulations,
and is equal to the experimental value for 8 mol% YSZ40.
Small variations in the permittivity that occur when simulat-
ing different materials do not greatly influence the simulation.
The charge density per slice (ρi) is the total defect charge in
the slice divided by the surface area of the periodic slice. To
simulate an impedance measurement an alternating potential,
Vappl, is applied:

Vappl(t) =V0cos(2π f t) (10)

wheret is the time, f the frequency andV0 the amplitude
of the applied potential.VN

total (Eq. 6) is set to−Vappl. Un-
der the applied field the activation energies and subsequently
the rates (∆E andνi respectively in Eq. 2) for migration of
charged species in the field direction will be altered, and the
resulting displacement can be used to calculate the contribu-
tion to conductivity from speciesi, σi (Eq. 11):

σi =
〈X〉ziecX

Ef ieldt
(11)

where〈X〉 is the mean displacement of speciesi in the ap-
plied field, Ef ield, cX the concentration ofi andt is the sim-
ulation time. We assume no change in charge as the charged
species migrate.

For the aKMC calculations the materials were simulated for
a minimum of 1 ms, and a summary of the parameters required
is given in Table 1.

2.3 Application to oxides

We have investigated four solid oxide fuel cell (SOFC) elec-
trolyte materials with the fluorite structure: yttria- and calcia-
stabilised zirconica (YSZ and CSZ respectively, with dopant
concentrations varying from 2-18 mol%) and gadolinium-
and samarium doped ceria (GDC and SDC respectively, with
dopant concentrations varying from 5-25 mol %), and one

Fig. 3 The (a) fluorite and (b) perovskite crystal structures. Cation
(left) and anion (right) sublattices are separated for clarity. The
perovskite structure contains A-site cations (large, grey, central atom
in figure), and B-site cations (smaller, blue atoms in figure).

cathode material with the perovskite structure, strontium-
doped LaCoO3 (LSCO, with dopant concentrations varying
from 5-80 mol %.). Pictures of the two structures are shown
in Figure 3. YSZ, CSZ, SDC and GDC are all stable at in-
termediate temperature SOFC operating temperatures (up to
900 ◦C), and YSZ, SDC and GDC all possesses high ionic
conductivities (∼10−2 S cm−1 at 700◦C)41,42. Doping of zir-
conia involves substitution of some some Zr4+ ions with Y3+

or Ca2+ and of ceria replacement of some Ce4+ with Gd3+

or Sm3+. To maintain charge neutrality, one oxygen vacancy
is created for every two Zr or Ce ions replaced with Y, Gd or
Sm ions. When Zr ions are replaced with Ca ions, one oxy-
gen vacancy is created per ion replaced. This gives rise to a
considerable number of oxide ion vacancies which greatly in-
crease the ionic conductivity of these materials relative to the
undoped systems.

2.4 Potential model

For the adaptive kinetic Monte Carlo simulations a rigid-ion
model with Buckingham potentials and with no shell is used
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(Eq. 12) to model the atomic interactions. The potential pa-
rameter set is listed in Table 2. A non-Coulombic potential
cutoff of 12Å was used throughout. Each ion is also assigned
an integer charge, i.e. +2 for Ca and Sr, +3 for Gd, Sm, La and
Co, +4 for Zr and Ce and -2 for O.

Vi j = Aexp

(

−
r i j

ρ

)

−
C

r6
i j

+
zizj e2

r i j
(12)

A, ρ andC are constants,r i j is the distance between ions of
type i and j, andzie andzje are the charges of speciesi and j
respectively.

Since our potential set uses a number of potentials from dif-
ferent sources, we have validated the set by checking good
agreement between simulated and experimental values for
bulk properties (lattice parameter, elastic constants andbulk
modulus) of a number of binary oxides using GULP50. The
results are shown in the supplementary information, section 3.

Cubic supercells containing 4×4×4 cubic unit cells (for
SDC, GDC, YSZ and CSZ) and 6×6×6 cubic unit cells (for
LSCO) were constructed and both the dopant cations and re-
quired oxygen vacancies were placed randomly in the lattice,
subject to the rule that each slice (0 toN, see Figure 2) has
zero net charge. It has been suggested that the oxygen vacan-
cies in YSZ preferentially occupy sites near to yttrium ions
(second nearest neighbour positions51), which is not reflected
in our choice of initial structure (randomly distributed stabilis-
ers and vacancies). We have performed studies investigating
the influence of the starting structure on the ionic conductivi-
ties at the end of the adaptive kinetic Monte Carlo simulations.
Both structures with anion vacancies and dopant cations as
nearest neighbours, and structures with anion vacancies and
dopant cations separated by a minimum of 4.5Å result in
ionic conductivities similar to those seen with the random ar-
rangement used here. The initial arrangment of the dopant
atoms and vacancies appears to bear little influence on the
ionic conductivity of the material at the end of the adaptive
kinetic Monte Carlo simulations, and more detail on this is
given in the supplementary information, section 1. The ini-
tial random structures used in this work were equilibrated for
20 ps (NPT ensemble) using DLPOLY52 at the temperature
used in the subsequent DLAKMC simulation (typically 300
K, with the exception of those used to create the Arrhenius plot
in Figure 9 later). After equilibration each slice was checked
to ensure charge neutrality was maintained, with the resulting
arrangements used as input structures for DLAKMC.

To check further the quality of the potentials employed, the
lattice parameters of the simulation cells (after equilibration)
are compared with experimental lattice parameters as a func-
tion of the dopant concentration (Figures 4 and 5).

Figure 4 shows that the calculated lattice parameters for the
doped zirconias and cerias agree with the experimental values
with a match of<1%. Similarly, the lattice parameters for

Fig. 4 Calculated (solid lines) and experimental (dashed lines)
lattice parameters for YSZ53 (circles, black), CSZ (squares, red),
GDC42 (triangles, green) and SDC42 (diamonds, blue) as a function
of dopant concentration. Lines are intended as a guide for the eye.

Fig. 5 Calculated (circles, black solid line) and experimental54

(squares, red dashed line) lattice parameters for LSCO as a function
of strontium content. Lines are intended as a guide for the eye.
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Table 2 Buckingham potential parameters used in the adaptive KMC calculations. ParametersA, ρ, C are defined in Eq. 12

Interaction A/eV ρ /Å C/(eVÅ6) Reference
Ca2+-O2− 1090.40 0.3440 0.00 Ref43

Sr2+-O2− 959.10 0.3721 0.00 Ref44

Y3+-O2− 1325.60 0.3461 0.00 Ref45

Gd3+-O2− 1962.74 0.3250 0.00 Ref46

Sm3+-O2− 1944.44 0.3414 21.49 Ref47

La3+-O2− 1545.21 0.3590 0.00 Ref48

Co3+-O2− 1329.82 0.3087 0.00 Ref48

Zr4+-O2− 1024.60 0.3760 0.00 Ref45

Ce4+-O2− 1809.68 0.3547 20.40 Ref49

O2−-O2− 17428.92 0.1490 27.89 Ref46

LSCO are in good agreement, with the calculated lattice pa-
rameter slightly larger then experiment (by 0.6-1.6 %). Both
experiment and theory agree as to the increase of the latticepa-
rameter of the doped system with increasing dopant content.
Our potentials thus describe these systems adequately and are
suitable for use with adaptive kinetic Monte Carlo.

3 Results and discussion

Conductivities were calculated (Eq. 11) for all the materials
and the results are shown in Figures 6 and 7 for the electrolyte
materials and Figure 8 for LSCO, along with some represen-
tative experimental values. It can be seen that there is good
agreement between the simulations and experiment for all of
the materials modelled. In particular the calculated values of
the ionic conductivities in the doped cerias (Figure 7) match
very closely with the experimental magnitude of the conduc-
tivity, the experimental fit of the data and also the location
of the conductivity maxima. The calculated maximum for
SDC (approximately 16 mol%) is greater than the experimen-
tal maximum by∼ 2%. The electrolytes have been chosen
due to their high ionic conductivity and low electronic con-
ductivity and so we would expect that our simulations, which
solely determine the ionic conductivity, should agree withthe
experimental values which are the sum of ionic and electronic
contributions. The good agreement found between the cal-
culated and experimental conductivities is empahsised by our
use oflinear y-axes, in contrast to thelogarithmicscale typi-
cally deployed for such figures.

The form of the ionic conductivity versus dopant concen-
tration figures has been discussed by others55,56. With YSZ in
particular, the decrease in conductivity at larger dopant con-
centrations has been attributed (at least in part) to the forma-
tion of strongly-bound Y

′

Zr-V
..

O-Y
′

Zr complexes reducing the
availability of free V

..

O available for diffusion57. CSZ ex-
hibits a more unusual curve, withtwomaxima appearing in the

dopant range simulated. While the location and magnitude of
the second maximum at 14 mol% matches well with the exper-
imental data available58, the general paucity of experimental
ionic conductivity measurements on CSZ is such that there is
no data for comparison at 6 mol%, and so the first maximum
remains an interesting prediction for future verification.It is
possible that this first maxima may be simply an artifact of
the simulation, and a discussion on the reproducibility of re-
sults and influence of the starting configuration is given in the
supplementary information, sections 1 and 2.

For a mixed electronic and ionic conductor such as LSCO
the electronic conductivityσel ∼102 - 103 S cm−1, domi-
nates59. The simulated values of the ionic conductivity (σion)
shown in Figure 8 cannot be compared directly with exper-
iment. However values ofσion have been calculated from
experimentaloxygen diffusion coefficients and the Nernst-
Einstein equation. These values are in the range 10−3 - 10−1

S cm−1 at 900 ◦C depending on composition59. These
experimentally-derived values, relate to different temperatures
(1048 K to 1173 K), but do highlight the broad margin of error
inherent in these measurements. Our theoretically determined
values fall within the experimental range of ionic conductiv-
ities, and exhibit a coherent trend across the entire dopant
range. A maximum in the ionic conductivity is found at∼48
mol% Sr. Combined with the good agreement between the-
ory and experiment for the electrolytes, we are confident that
our values for the ionic conductivity of the LSCO cathode are
accurate. Materials such as LSCO, where experimental val-
ues are difficult to obtain, emphasise the importance of these
simulations for extracting important physical propertiesthat
would otherwise be difficult or impossible to measure experi-
mentally.

For each material, one experimentally common dopant con-
centration was chosen (10 mol% for YSZ and CSZ, 20 mol %
for SDC and GDC and 50 mol % for LSCO) and simulated
over a temperature range of 600-1100 K. The conductivities
were determined over these temperature ranges and the resul-
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Fig. 6 Ionic conductivities for YSZ (calculated: black solid line,
circles; experimental60: black dashed line, squares) and CSZ
(calculated: red solid line, diamonds; experimental58: red dashed
line). Lines are intended as a guide for the eye.

Fig. 7 Ionic conductivities for SDC (calculated: black solid line,
circles; experimental42: black dashed line, triangles) and GDC
(calculated: red solid line, squares; experimental42: red dashed line,
diamonds). Lines are intended as a guide for the eye.

Fig. 8 Calculated (solid black line, circles) and experimental (red
squares59, diamonds61 and triangles62) ionic conductivities for
LSCO. The line is intended as a guide for the eye.

tant Arrhenius plot is shown in Figure 9. The average activa-
tion energy of the migration processes occuring in each mate-
rial can be determined from the gradient of a linear fit to the
data. For the stabilised zirconias this average activationen-
ergy is 0.46±0.03 eV for YSZ and 0.44±0.03 eV for CSZ.
The YSZ activation energy, while lower than the experimen-
tally determined values63,64 of 0.8-1.0 eV, is in keeping with
other simulated values65,66 which range from 0.2 - 0.9 eV.
The doped cerias exhibit a lower average activation energy for
diffusion, with calculated values of 0.23±0.04 eV for SDC
and 0.28± 0.03 eV for GDC, lower than the experimentally
determined values of around 0.9 eV for 20 mol% SDC and
GDC67. LSCO has an average activation energy similar to that
of the doped cerias, 0.32±0.02 eV. Experimentally for LSCO,
the average activation energy of the migration processes59,68

varies greatly from 0.6 - 2.2 eV for 20 mol% Sr. De Souza
et al.59 also found that the activation energy dropped substan-
tially on increasing the strontium content, with the activation
energy dropping to 1.4 eV for 50 mol% Sr, from 2.2 eV with
20 mol%. In general we are finding that the activation energies
for the migration processes in these materials are lower than
those found experimentally. This can possibly be attributed
to the use of a fixed charge, rigid-ion model where the ionic
charge does not change throughout the simulation; in reality
the charges on the ions are likely to change depending on the
local environment.

4 Conclusion

The reliability of the adaptive kinetic Monte Carlo program
DL AKMC has been verified with the accurate simulation of
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Fig. 9 Arrhenius plots for ionic conductivities of 10 mol% YSZ
(black, circles), 10 mol% CSZ (red,squares), 20 mol% GDC
(green,diamonds), 20 mol%SDC (blue, triangles) and 50 mol%
LSCO (orange, crosses).

ionic conductivities of the solid electrolytes yttria- andcalcia-
stabilised zirconica (YSZ and CSZ respectively), gadolinium-
and samarium doped ceria (GDC and SDC respectively),
and of one cathode material with the perovskite structure,
strontium-doped LaCoO3 (LSCO). The calculated ionic con-
ductivities of all the materials are of the same order of magni-
tude as that found experimentally. It was also found that the
simulated variation of ionic conductivity with dopant concen-
tration followed the same form as experiment. The simula-
tions have also indicated the presence of a possible peak in the
conductivity of CSZ at∼6 mol%, which would be of interest
to investigate experimentally.

Average activation energies of all migration processes are
between 0.4-0.5 eV for the stabilised zirconias, between 0.2
and 0.3 eV for the doped cerias and 0.3 eV for LSCO. This
work has showcased the ability of the program to simulate ex-
perimentally measurable and important properties, while re-
taining the flexibility of using common potential types and the
ability to determine transition states on-the-fly in a massively
parallel fashion. Measuring solely the ionic conductivityin
mixed ionic-electronic conductors is difficult, and there is a
large variation in the experimental ionic conductivity, particu-
larly with LSCO. The ability for a simulation to reliably model
the ionic conductivity of such mixed conductors with high pre-
cision and accuracy is of critical importance, and such predic-
tions are achievable and efficient. Given the flexibility and
general applicability of the DLAKMC program, it will likely
prove to be a vital tool in a wide range of scientific fields.
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