
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

Journal of
 Materials Chemistry A

www.rsc.org/materialsA

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Journal of  
Materials Chemistry A 

Cite this: J. Mater. Chem. A, 2014, x, xxxxx 

www.rsc.org/MaterialsA 

Dynamic Article Links ►

COMMUNICATION

 

This journal is © The Royal Society of Chemistry [year] J. Mater. Chem. A, 2014, [vol], 00–00  |  1 

Highly Efficient and Stable Organic Sensitizers with Duplex Starburst 
Triphenylamine and Carbazole Donors for Liquid and Quasi-solid-state 
Dye-sensitized Solar Cells 

Li-Lin Tan,a Jian-Feng Huang,a Yong Shen,a Li-Min Xiao,b Jun-Min Liu,*a Dai-Bin Kuang,a and Cheng-
Yong Su*ac 5 

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX 
DOI: 10.1039/c0xx00000x 

Two new D-D-π-π-A type stable organic sensitizers DT3 and 
DW3 were successfully synthesized for dye-sensitized solar 
cells. DT3 displayed η values of 10.03% and 8.05% in liquid 10 

and quasi-solid-state DSSCs, respectively, under standard 
global 1.5 solar conditions, offering an example achieving the 
highest efficiency to date in quasi-solid-state DSSCs based on 
pure organic dye. 

Dye-sensitized solar cells (DSSCs) as green energy have been 15 

intensively studied to improve the sensitizer which plays crucial 
role to determine the power conversion efficiency (η) as well as 
cell stability.1 To date, overall conversion efficiencies of up to 
12%,2 11%3 and 10%4 were achieved from liquid DSSCs by 
employing zinc, ruthenium complex and pure organic dyes, 20 

respectively, but the devices are subject to long-term instability. 
Quasi-solid-state (QSS) DSSCs have been supposed as potential 
candidates to overcome this problem and improve commercial 
development.  

Compared to metal complex dyes which are usually 25 

expensive and hard to purify, the pure organic dyes, commonly 
constructed into a donor-π bridge-acceptor (D-π-A) configuration, 
feature in high extinction coefficient and low cost. However, up 
to now, their open circuit voltage (Voc) and long-term stability 
still fall behind metal complex dyes.5 One main reason for lower 30 

Voc of the organic dyes is due to the strong interaction between 
iodine and organic dye and, leading to the fast recombinaton of 
electrons. In order to solve the problem, one strategy is to 
introduce more donor units to the primary donor, thereby forming 
cone-shaped D-D-π-A structures. In contrast to normal rod-35 

shaped analogues,6 cone-shaped dyes are beneficial for better 
thermostability and lower  aggregation tendency. Besides, their 
absorption regions can be broadened and molar extinction 
coefficients be increased. Several groups have accomplished such 
strategy by transforming the rod-shaped dye into a starburst type, 40 

usually employing triarylamine units as the donor, to improve the 
Voc value. This enhancement should be attributed to their 
aggregation-resistant nonplanar configuration and multiphenyl 
segments on the starburst triarylamine, which can block the 
approach of triiodide in the electrolyte.5a,7 On the other hand, the 45 

poor stability of organic dyes in DSSCs is mainly ascribed to  the 
formation of excited triplet states and unstable radicals. An 
efficient approach to tackle this problem is to incorporate an 
oligothiophene moiety into the organic framework, where the 
radical center could be delocalized among the dye cation.8  50 

Along this line, we recently reported a starburst D-D-π-A 
organic sensitizers (D3) using triarylamine (TPA) and carbazole 
as duplex electron donors, 3,4-ethoxythiophene (EDOT) unit as 
π-spacer, and cyanoacetic acid as electron acceptor, yielding 6.15% 
power conversion efficiency under AM 1.5 G irradiation.9 Herein 55 

we improved the structural model and synthesized two new 
starburst sensitizers DT3 and DW3, which form D-D-π-π-A type 
organic dyes by incorporating 3,4'-dihexyl-2,2'-bithiophene 
besides EDOT moiety to act as the duplex -spacers (Scheme 1). 
The optical, electronic and photovoltaic studies unveiled 60 

outstanding η values for DT3 in both liquid DSSCs (10.03%) and 
quasi-solid-state (QSS) DSSCs (8.05%) under AM 1.5 G 
irradiation. To the best of our knowledge, the former is 
comparable with the hitherto world record of organic dye in 
liquid DSSCs while the latter represents the highest efficiency so 65 

far observed for QSS-DSSCs based on pure organic 
sensitizers.4,7a,10 
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Fig. 3 (a) Photocurrent action spectrum and (b) current-voltage 
characteristics of DT3- and DW3-sensitized solar cells with 
volatile and quasi-solid-state electrolyte (L: liquid DSSCs, QSS: 5 

quasi-solid-state DSSCs). 

 

Table 1 Performance parameters of DT3 and DW3-sensitized 
solar cells with volatile and QSS electrolyte 

dye electrolyte Jsc /mA cm-2 Voc /mV FF η(%) 

DT3 liquid 19.18 752 0.70 10.03 

DW3 liquid 18.42 745 0.67 9.15 

N719 liquid 16.40 765 0.69 8.70 

DT3 quasi-solid 16.08 716 0.70 8.05 

DW3 quasi-solid 13.75 691 0.71 6.75 

N719 quasi-solid 10.75 749 0.75 6.07 

 10 

Electrochemical impedance spectroscopy (EIS) analyses were 
also carried out to clarify the above photovoltaic findings.  A 
large semicircle in the Nyquist plot (Fig. 4) represents the charge 
recombination (Rr) at the interface of the TiO2/electrolyte. A 
smaller Rr value indicates faster electron recombination from 15 

TiO2 to electron acceptors in an electrolyte and thus resulting in 
lower Voc. Therefore, the shorter semicircle radius of DW3 
indicates that its electron recombination resistance is smaller than 
DT3. Electron lifetime () derived from curve fitting are 242.1 
and 301.2 ms for DW3 and DT3, respectively (Table S2), which 20 

agrees well with the trend of Voc values. The increase in electron 
lifetime in the TiO2 film is accompanied by a pronounced rise in 
the charge transfer resistance, which relies on the sensitizer 
structure as a result of different coverage of dyes on the TiO2 
surface. It is known that the sensitizer adsorption amount heavily 25 

affect the lifetime and Voc, and therefore, the shorter lifetime of 
starburst sensitizer DW3 was probably attributed to its lower dye 
packing density on TiO2 compared to DT3 (adsorbed amounts of 
DT3 and DW3 are 2.2 × 10-7 and 1.7 × 10-7 mol cm-2, 
respectively), which would result in higher I3

- concentration in 30 

the vicinity of TiO2 surface and smaller charge recombination 
resistance. 
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Fig. 4 EIS Nyquist plots (i.e. minus imaginary part of the 35 

impedance -Z＂ vs the real part of the impedance Z' when 
sweeping the frequency) for DT3- and DW3-sensitized solar cells. 

 
For QSS-DSSCs evaluation, silica nanoparticles were mixed 

with 0.5 M iodine and 0.45 M benzimidazole (BI) in pure 1-40 

butyl-3-methylimidazolium iodide (BMII) to prepare ionic liquid-
based QSS electrolyte. As seen in Fig. 3, the IPCE data exceed 70% 
for DT3 and 50% for DW3 in the spectral range of 435-630 nm, 
while the maxima of DT3 and DW3 reach 87% at 490 nm and 82% 
at 500 nm, respectively. The IPCE value of DT3 in the range of 45 

400 to 700 nm is higher than DW3, suggesting that DT3 is more 
attractive because more extended absorption spectra will enhance 
cell efficiency. Under standard global AM 1.5 solar conditions, 
the QSS-DSSCs using DT3 as sensitizer exhibit Jsc of 16.08 mA 
cm-2, Voc of 716 mV and ff of 0.70, while the overall η reaches 50 

8.05%. This high η value represents the highest efficiency ever 
reported for QSS-DSSCs based on metal-free sensitizers,7a,10 is 
also far superior than analogous QSS-DSSCs based on metal 
complex dye N719 (η = 6.07%). However, it should be noted that 
higher efficiencies have been observed for QSS-DSSCs based 55 

on ruthenium complex dye in polymer gel electrolytes,11 
implying that the present organic dye DT3 may achieve even 
higher efficiency by using polymer gel electrolytes in QSS-
DSSCs (investigation is under way in our group). Under the same 
conditions, QSS-DSSCs based on DW3 give a Jsc value of 13.75 60 

mA cm-2, a Voc of 691 mV, and an ff of 0.71, corresponding to the 
η value of 6.78%. DT3 shows higher η than DW3 in QSS-DSSCs, 
which might be attributed to its wider IPCE spectra, better dye 
adsorption on TiO2, and higher injection efficiency arising from 
the starburst bis-carbazole substituted triphenylamine group.  65 

The long-term stability of DSSCs is a critical requirement for 
their photovoltaic application, for which lifetime is a vital factor. 
A simple and efficient method has been developed to evaluate the 
stability of dyes by Katoh, which can accelerate the dye aging 
process by light irradiation on dye-loaded TiO2 film without 70 

redox electrolyte.8a-b Grätzel and Zhu et al have also assessed the 
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8.4 Hz, 2H), 7.55-7.40 (m, 8H), 7.37-7.27 (m, 8H), 7.14 (s, 1H), 
7.02 (s, 1H), 6.91 (d, J = 8.5 Hz, 2H), 4.40 (dd, J = 4.7 Hz, 4H), 
2.80 (m, 4H), 1.80-1.64 (m, 12H), 1.33 (s, 4H), 0.93-0.82 (m, 6H). 
13C-NMR (100 MHz, CDCl3) δ (ppm): 179.6, 147.0, 146.3, 141.2, 
141.1, 141.0, 132.6, 131.5, 129.4, 128.3, 128.2, 128.0, 128.0, 5 

126.8, 125.9, 125.9, 125.1, 124.9, 123.5, 123.3, 123.2, 120.4, 
120.3, 119.9, 119.8, 116.8, 109.8, 65.2, 64.7, 31.7, 31.7, 30.5, 
30.3, 30.1, 29.7, 29.3, 29.3, 22.7, 22.6, 14.1. MALDI-TOF: m/z 
1075.331 ([M+]). 
Synthesis of DT3.  10 

A mixture of DT3-CHO (614 mg, 0.57 mmol) and cyanoacetic 
acid (241 mg, 2.8 mmol) was added acetonitrile (20 mL) and 
toluene (40 mL) under nitrogen atmosphere, and then piperidine 
(485 mg, 5.7 mmol) was added. The reaction solution was heated 
at 90 °C for 5 h. Upon cooling to room temperature, the resulting 15 

mixture was neutralized to pH 2-3 with 0.5 M aqueous HCl and 
extracted with ethyl acetate. The extract was washed successively 
with water and dried over anhydrous Na2SO4, filtered and 
evaporated to afford a crude product which was further purified 
by silica-gel column chromatography using dichloromethane and 20 

acetic acid (80:1, v/v) as eluant to give 522 mg dark red solid. 
Yield: 80%. 1H-NMR (400 MHz, DMF-d7) δ (ppm): 8.34 (s, 1H), 
8.30 (d, J = 7.8 Hz, 3H), 7. 83 (d, J = 8.5 Hz, 2H), 7.72 (d, J = 
8.6 Hz, 4H), 7.62-7.46 (m, 15H), 7.42 (d, J = 8.5 Hz, 2H )，7.37-
7.26 (m, 4H), 4.61 (dd, J = 17.5, 4. 3 Hz, 4H), 2. 99-2.84 (m, 4H), 25 

1.86-1.64 (m, 4H), 1.54-1.19 (m, 12H), 0.89 (t, J = 6.7 Hz, 6H); 
13C-NMR (100 MHz, DMF-d7) δ (ppm): 166.0, 164.4, 149.0, 
147.2, 146.6, 144.0, 142.1, 142.0, 141.1, 140.3, 138.2, 137.6, 
132.7, 129.1, 128.9, 128.6, 127.1, 126.9, 126.4, 126.2, 125.7, 
124.9, 123.4, 120.9, 120.7, 120.2, 117.4, 110.1, 108.0, 94.5, 66.3, 30 

65.5, 31.73, 31.65, 30.7, 30.4, 24.4, 22.64, 22.63, 13.8. MALDI-
TOF: m/z 1142.328 ([M+]).  
Synthesis of DW3-CHO.  
3a (500 mg, 0.76 mmol), 2f (490 mg, 0.84 mmol), copper powder 
(30 mg, 0.5 mmol), K2CO3 (520 mg, 3.8 mmol), 18-crown-6 (10 35 

mg, 0.08mmol) was added to a flask under nitrogen atmosphere, 
and then 1,2-dichlorobenzene (20 mL) was added. The reaction 
mixture was refluxed for 18 h. The precipitate was filtered and 
the residue was washed with dichloromethane. The filtrate was 
collected and concentrated. After removal of solvent, raw product 40 

was obtained. The product was obtained by silica gel 
chromatography using petroleum ether and ethyl acetate (3:1, v/v) 
as eluant to obtain 530 mg yellow solid. Yield: 60%. 1H-NMR 
(400 MHz, CDCl3) δ (ppm): 9.98 (s, 1H), 8.64 (d, J = 9.0 Hz, 2H), 
8.58 (d, J = 4.0 Hz, 1H), 7.82-7.77 (m, 2H), 7.74-7.71 (m, 5H), 45 

7.65-7.61 (m, 4H), 7.55 (d, J = 8.8 Hz, 2H), 7.41 (s, 2H), 7.35-
7.31 (m, 8H), 7.23 (s, 2H), 7.11-7.06 (m, 16H), 4.47 (dd, J = 16.0, 
4.0 Hz, 4H), 2.86-2.77 (m, 4H), 1.66-1.61 (m, 4H), 1.36-1.17 (m, 
12H), 0.89-0.85 (m, 6H). 13C-NMR (100 MHz, CDCl3) δ (ppm): 
179.25, 147.24, 147.20, 146.35, 146.27, 142.90, 140.42, 140.27, 50 

134.88, 131.73, 131.58, 129.62, 128.71, 127.80, 123.96, 123.10, 
119.60, 117.17, 115.47, 112.27, 109.56, 108.13, 64.95, 64.65, 
30.03, 29.39, 29.04, 28.60, 21.80, 14.01. MALDI-TOF: m/z 
1168.500 ([M]+).  
Synthesis of DW3.  55 

A mixture of DW3-CHO (117 mg, 0.10 mmol) and cyanoacetic 
acid (42.5 mg, 0.50 mmol) was added acetonitrile (5 mL) and 
chloroform (5 mL) under nitrogen atmosphere, and then 

piperidine (170 mg, 2.0 mmol) was added. The reaction solution 
was heated at 90 °C for 5 h. Upon cooling to room temperature, 60 

the resulting mixture was neutralized to pH 2-3 with 0.5 M 
aqueous HCl and extracted with dichloromethane. The extract 
was washed successively with water and dried over anhydrous 
Na2SO4, filtered and evaporated to afford a crude product which 
was further purified by silica-gel column chromatography using 65 

dichloromethane and acetic acid (50:1, v/v) as eluant to give 111 
mg dark red solid. Yield: 91%. 1H NMR (400 MHz, DMF-d7) δ 
(ppm): 8.79 (s, 2H), 8.35 (s, 1H), 8.03 (s, 2H), 7.89 (d, J = 8.0 Hz, 
2H), 7.85 (d, J = 8.0 Hz, 2H), 7.75 (d, J = 8. 8 Hz, 2H), 7.53 (s, 
1H), 7.38 (t, J = 7.8 Hz, 8H), 7.20-7.09 (m, 16H), 4.62 (d, J = 70 

12.0 Hz, 4H), 3.02-2.95 (m, 8H), 1.83-1.75 (m, 4H), 1.48-1.35 (m, 
12H), 0.91-0.89 (m, 6H). 13C NMR (400 MHz, DMF-d7) δ (ppm): 
165.1, 164.5, 148.82, 147.82, 144.71, 141.97, 140.91, 139.15, 
137.58, 137.44, 136.57, 134.74, 130.67, 128.96, 128.64, 127.85, 
126.63, 125.61, 125.26, 124.19, 119.78, 111.93, 111.13, 67.20, 75 

65.94, 32.63, 32.54, 31.60, 23.45, 14.14. ESI-MS: 1220.399 ([M-
H]-).  
Characterizations.  
1H and 13C nuclear magnetic resonance (NMR) spectroscopies 
were performed on a BRUKER 400 MHz with tetramethylsilane 80 

(TMS) as internal standard. Elemental analyses were carried out 
with an Elementar Vario EL Cube instrument. Mass spectral data 
were obtained on an ultrafleX-treme MALDI-TOF/TOF mass 
spectrometer (Bruker Daltonics). The absorption spectra of the 
dyes (in solution and adsorbed on TiO2 films) were observed with 85 

a Shimadzu UV- 2450 spectrometer and fluorescence spectra 
were measured with a Hitachi F-4500 spectrometer. Cyclic 
voltammogram (CV) curves were obtained with a CHI 832 
electrochemical analyzer using a normal three-electrode cell with 
dye-sensitized photoanode as working electrode, a Pt wire 90 

counter electrode, and a regular Ag/AgCl reference electrode in 
saturated KCl solution which was calibrated with 
ferrocene/ferrocenium  as external reference. The supporting 
electrolyte was 0.1 M tetrabutylammonium hexafluorophosphate 
in CHCl3. 95 

Fabrication of Cells.  
The anatase TiO2 nanoparticles were synthesized according to our 
previous literature.12 First, the Ti(OBu)4 (10 mL) was added to 
the ethanol (20 mL) under stirring for 10 min. Then a mixture of 
deionized water (50 mL) and acetic acid (18 mL) was added to 100 

the solution with vigorous stirring for 1 h. The solution was 
moved to an autoclave and heated at 200 °C for 12 h. Finally, the 
precipitations were washed with deionized water and ethanol for 
several times, respectively. The white powder was obtained after 
drying in air. The as-prepared TiO2 nanoparticles were anatase 105 

crystals with diameters of about 20 nm, as confirmed by SEM, 
TEM, and XRD. The prepared TiO2 powder (1.0 g) was ground 
for 40 min in the mixture of acetic acid (0.2 mL), ethanol (8.0 
mL), ethyl cellulose (0.5 g), and terpineol (3.0 g) to form a  slurry, 
and then the slurry was sonicated for 5 min to obtained a viscous 110 

white TiO2 paste. The TiO2 paste was then screen-printed onto 
the surface of FTO coated glass forming photoanode film. The 
thickness of films can be easily controlled through repeating 
screen-printing times. Afterwards, a programmed heating process 
was carried out to remove the organic substances in the film. The 115 

as-prepared TiO2 films (~15 µm) were soaked in a 0.04 M 
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aqueous solution of TiCl4 for 30 min at 70 °C and then sintered at 
520 °C for 30 min. After cooling to 80 °C, the TiO2 electrodes 
were immersed into 0.3 mM optimal organic solution 
(CHCl3/ACN/tBuOH = 1/2/2) of the dyes and kept at room 
temperature for 6 h for cells with liquid electrolyte and for 12 h 5 

for cells with gel electrolyte, respectively. And then the prepared 
TiO2 working electrodes were sandwiched together with Pt-
counter electrode. The active area of the dye-coated TiO2 film 
was 0.16 cm2. The electrolyte was injected into the inter-
electrode space. The liquid electrolyte are composed of 0.6 M 1-10 

methyl-3-propylimidazolium iodide (PMII), 0.10 M guanidinium 
thiocyanate (GuNCS), 0.03 M I2, 0.5 M tert-butylpyridine (t-BP) 
in acetonitrile and valeronitrile (85:15, v/v). For the quasi-solid 
state electrolyte, 12 nm silica nanoparticles (5 wt%) was mixed 
with 1-butyl-3-methy limidazolium iodide (BMII) based liquid 15 

electrolyte containing 0.5 M iodine (I2) and 0.45 M 
benzimidazole (BI) in an agate mortar.7c,e The dye-adsorbed TiO2 
film as working electrode was placed on the top of a Pt coated 
FTO glass as counter electrode. The electrolyte was introduced 
into the space between two electrodes by capillary force. 20 

Characterization of Cells.  
The TiO2 film thickness and active area of the dye-coated TiO2 

film was measured by using a profilometer (Ambios, XP-1). The 
current-density voltage (J-V) curves of the DSSCs were recorded 
by using a Keithley 2400 source meter under the illumination of 25 

AM 1.5 G simulated solar light. IPCEs of DSSCs were measured 
on the basis of a Spectral Products DK240 monochromator. 
Electrochemical impedance spectroscopy (EIS) was measured 
using an electrochemical workstation (Zahner, Zennium) with a 
frequency response analyzer at a bias potential of -800 mV in the 30 

dark with a frequency ranging from 10 mHz to 1 MHz. The dye-
adsorbed amounts on the TiO2 film were measured using a 
Shimadzu UV-2450 spectrometer.  
The dye aging process.  
The dye aging process experiment was operated according to the 35 

reported literatures.7f,8a The photostability of dyes adsorbed on the 
nanocrystalline films was evaluated by visible-light (>400 nm) 
irradiation from a solar simulator (Newport company) operating 
at AM 1.5 (100 mW cm-2) with an ultraviolet (UV) cutoff filter. 
Irradiation was carried out under ambient conditions. In order to 40 

evaluate the degradation of the dyes, absorption measurements 
were carried out with a spectrometer (Shimadzu, UV-2450) 
equipped with an integrating sphere at 0, 30 and 60 min 
irradiation times.  
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