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Synthesis of LiMn0.75Fe0.25PO4/C microspheres using a 
microwave-assisted process with a complexing agent 
for high-rate lithium ion batteries 

Myeong-Seong Kima, Jong-Pil Jegala, Kwang Chul Roh*b and Kwang-Bum Kim*a 

LiMn0.75Fe0.25PO4/C microspheres were synthesized using a microwave-assisted process with a 

complexing agent. In this process, it was found that the various states of the complexing agent for 

different pH of the precursor solution have significant effects on the obtained micro spherical 

morphology. Furthermore, the concentration of antisite defects in the samples was also found to be 

affected by the pH of the precursor. The prepared secondary spheres have a high tap density of 1.3 g 

cm-3 and deliver a reversible capacity of 163 mAh g-1 at a 0.05 C-rate. Furthermore, remarkable rate 

capability is obtained, with 57% capacity retention at a 60 C-rate, as well as excellent cyclability, with 

99.3% capacity retention after 100 cycles at 1 C-rate. 

Introduction 

Olivine-structured LiFePO4 has been considered a promising 
cathode material for lithium ion batteries (LIBs) because of its 
low cost, high theoretical capacity, environmental friendliness, 
and thermal stability.1, 2 However, LiFePO4 has a lower energy 
density than conventional cathode materials because of its low 
operation voltage (3.5 V vs. Li/Li+). Therefore, LiMnPO4, 
which has a higher operation voltage (4.1 V vs. Li/Li+), is 
currently considered a more appropriate cathode material than 
LiFePO4.

3-6 Up to now, the use of LiMnPO4 in electrochemical 
applications has been limited by its extremely poor electronic 
conductivity (<10-12 S cm-1), low lithium diffusion rate (<10-16-
10-14 cm2 s-1), Jahn-Teller distortion during the charge-
discharge process, and unstable delithiated phase.7-12 Among 
these problems, a key factor preventing more widespread 
utilization of LiMnPO4 is its very low Li+ diffusion rate at the 
mismatched MnPO4-LiMnPO4 interface.8 

In order to resolve these problems with LiMnPO4, the Fe-
doped LiMn1-xFexPO4 solid solution system has been 
suggested.6, 7, 13-16 Previous research on LiMn1-xFexPO4 has 
focused on the synthesis of nanoparticles to improve the Li+ 
diffusion in the LiMn1-xFexPO4 solid solution system. This 
approach has led to good cell performance, including high 
specific capacities and rate capabilities.6, 17-19 However, the 
nanoparticles have a low tap density, which limits the 
volumetric energy density.20, 21 For example, nanoparticles have 
tap densities of 0.3–0.8 g cm-3, whereas the conventional oxide 
electrode material LiCoO2 has a tap density of 2.6 g cm-3. In 
addition, the extended contact area between the nanoparticles 

and the electrolyte leads to undesirable side reactions, poor 
thermal stability, and poor cycling stability.21  

In contrast with nanoparticles, LiMn1-xFexPO4 microspheres 
composed of nanosized primary particles can provide a high tap 
density, high volumetric energy density, and good cyclability. 
A few studies have focused on the synthesis of microspheres to 
improve the tap density and electrochemical properties of the 
material.22-27 Sun et al. used a co-precipitation technique to 
fabricate LiMn0.85Fe0.15PO4/C microspheres with a high 
volumetric capacity.24 Liu et al. used a spray-drying technique 
to fabricate LiMn0.4Fe0.6PO4/C microspheres with a high 
specific capacity and good rate capability.26 However, the 
previously reported methods have been time-consuming, 
complex two-step or multistep processes involving the use of a 
microsized spherical MPO4•H2O (M=Fe, Mn) precursor or 
spray-drying of presynthesized nanoparticles. In addition, 
microsized LiMn1-xFexPO4 particles have limited specific 
capacitance and rate capability, since their Li+ diffusion path is 
longer than that of the nanoparticles, which leads to 
electrochemical isolation of the inner parts of the particles.23 
Therefore, a simple and facile synthesis of micro spherical 
LiMn1-xFexPO4 particles with a high tap density and superior 
rate capability is highly desirable.  
   Herein, we report a microwave-assisted synthesis of LiMn1-

xFexPO4/C (x = 0.25) microspheres with a complexing agent to 
achieve both a high tap density and superior rate capability. In 
particular, we control the pH of the precursor solution to 
fabricate LiMn1-xFexPO4 microspheres with a low concentration 
of antisite defects. Spherical LiMn1-xFexPO4 secondary particles 
were finally obtained under weak acidic conditions. The 
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morphology and structure of obtained microspheres were 
characterized by means of field emission scanning electron 
microscopy (FE-SEM), transmission electron microscopy 
(TEM), and X-ray diffraction (XRD) analysis. The antisite 
defect concentration was analyzed by performing Fourier 
transform infrared spectroscopy (FTIR) measurements. Finally, 
it is found that the LiMn1-xFexPO4 microspheres prepared in 
this study exhibit a high tap density, high specific capacity, 
excellent rate performance, and superior cycling stability as 
cathode materials for LIBs.  

Experimental 

Materials synthesis 

The LiMn0.75Fe0.25PO4 microspheres were synthesized with a 
complexing agent using a simple and facile microwave-assisted 
process. To fabricate LiMn1-xFexPO4 microspheres with low 
concentrations of antisite defects, the pH of the precursor was 
controlled by using a mixed P source consisting of H3PO4 
(Aldrich) and (NH4)H2PO4 (Aldrich). The LiOH · H2O (Aldrich) 
aqueous solution (1.5 M) and xH3PO4 + (1-x)(NH4)H2PO4 (0 ≤ 
x ≤  1) aqueous solution (0.5 M) were mixed by strong 
magnetic stirring at room temperature for a few minutes. Then, 
MnSO4 · H2O (Aldrich) aqueous solution (0.5 M), FeSO4 · 
7H2O (Aldrich) aqueous solution (0.5 M), and citric acid 
(Junsei Chemical) aqueous solution (1 M) were added into the 
above mixture. The citric acid used as the complexing agent 
prohibits the oxidation of Mn+2 and Fe2+ to Mn3+ and Fe3+. The 
Li:(Mn+Fe):P molar ratio in the precursor was set to 3:1:1. The 
detailed compositions of the different precursor solutions used 
are listed in Table S1. The mixed solution was then loaded into 
a 100 ml Teflon vessel, which was then sealed and placed in the 
microwave reaction system (MARS-5, CEM Corporation). The 
mixture was rapidly heated to 200 °C at a power of 200 W. 
During the synthesis, the solution temperature was maintained 
at 200 °C for 15 min with rotation and magnetic stirring. After 
the reaction, the vessel was cooled down to room temperature, 
and the final product was repeatedly washed with distilled 
water and acetone by centrifugation and then dried at 60 °C for 
6 h in a convection oven. To provide a uniform carbon coating 
on the surfaces of the LiMn0.75Fe0.25PO4 microspheres, they 
were mixed with sucrose in a weight ratio of 9:1. The mixture 
was then sintered at 650 °C for 3 hours under an Ar/H2 (95/5 
vol%) atmosphere with a heating rate of 5 °C min-1.  

Materials characterization 

The crystalline phase of the samples was characterized by 
performing powder XRD (Dmax 2200, Rigaku) measurements 
with Cu-Kα radiation (λ = 1.5406 Å). The morphologies of the 
samples were observed by performing FE-SEM (JSM-7001F, 
JEOL Ltd.), TEM (CM 200, Philips), and high resolution TEM 
(HRTEM, JEM 2100F, JEOL Ltd.). The cross-sectional TEM 
specimens were prepared by slicing microspherical 
LiMn0.75Fe0.25PO4/C particles embedded in an epoxy resin with 
an ultramicrotome (UMT, MTX ultramicrotome, Tucson). The 

nitrogen adsorption-desorption isotherms (Autosorb-iQ 
2ST/MP, Quantachrome) were measured at 77 K, and the 
surface area was calculated using the Brunauer-Emmett-Teller 
(BET) method. The pH values of the precursor and of the 
solution remaining after the end of reaction were recorded 
using a pH meter (Orion 3-star Benchtop Meter, Thermo 
Scientific). FTIR spectra (Vertex 70, Bruker) were obtained 
using KBr pellets. Inductively coupled plasma optical emission 
spectroscopy (ICP-OES) analysis (OPTIMA 7300DV, Perkin 
Elmer) was carried out to investigate the chemical composition 
of the LiMn0.75Fe0.25PO4 powders. An elemental analyzer (2400 
Series II CHNS/O, Perkin Elmer) was employed to determine 
the amount of carbon in the final products.  

Electrochemical measurements 

The working electrode was prepared by mixing 70 wt.% 
LiMn0.75Fe0.25PO4/C microspheres, 20 wt.% acetylene black, 
and 10 wt.% polyvinylidene fluoride (PVDF; Aldrich) 
dissolved in N-methylpyrrolidone (NMP; Aldrich) as a binder. 
The slurry was coated on aluminum foil and dried in a vacuum 
oven at 100 °C for 24 h. The electrode was pressed with a roll-
press machine. Each working electrode had an area of 1.13 cm2 
and the amount of active material in the electrode was 2 ~ 3 
mg/cm2. The electrochemical properties were investigated 
using CR2032 coin cells with lithium metal as the counter 
electrode. The electrolyte was 1 M LiPF6 dissolved in a mixture 
of ethylene carbonate (EC)-ethyl methyl carbonate (EMC)-
diethyl carbonate (DEC) at a volume ratio of 3:5:2. Cyclic 
voltammetry and galvanostatic charge/discharge tests were 
carried out between 2.0 and 4.5 V (vs. Li/Li+) using a 
potentiostat/galvanostat (MPG2, Bio-Logic).  

Results and discussion 

Fig. 1a shows the XRD pattern of the LiMn0.75Fe0.25PO4/C 
microspheres. All diffraction peaks of the LiMn0.75Fe0.25PO4/C 
microspheres prepared at pH 6.35 correspond to those of 
orthorhombic olivine-structured materials with the Pnma space 
group (JCPDS card No. 74-0375).1-3 Possible impurities such as 
lithium phosphate or metal phosphate were not detected in the 
XRD pattern, reflecting the high purity of the prepared sample. 
All diffraction peaks of LiMn0.75Fe0.25PO4/C are significantly 
shifted to the right relative to those of LiMnPO4, because the 
ionic radius of Fe2+ is smaller than that of Mn2+.3, 6 From the 
XRD data, the lattice constants of LiMn0.75Fe0.25PO4/C 
microspheres were calculated to be a = 10.42 Å, b = 6.08 Å, c = 
4.73 Å, and V = 299.70 Å 3, which are in good agreement with 
the lattice constants reported for phase-pure LiMn0.75Fe0.25PO4.

6, 

18 This means that the obtained LiMn0.75Fe0.25PO4/C 
microspheres were a solid solution of LiMnPO4 and LiFePO4. 

Fig. 1b shows FE-SEM image of the LiMn0.75Fe0.25PO4/C 
microspheres. It can be seen that the LiMn0.75Fe0.25PO4/C 
microspheres are composed of smaller primary particles with 
sizes of about 100 nm. The sizes of microspheres were uniform 
at about 2–3 μm. It is well known that a microspherical   
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LiMn0.75Fe0.25PO4/C microspheres were synthesized using a microwave-assisted process with a 

complexing agent through the control of precursor pH. The prepared secondary spheres have a 

high tap density of 1.3 g cm-3 and deliver a reversible capacity of 163 mAh g-1 at a 0.05 C-rate. 

Furthermore, remarkable rate capability is obtained, with 57% capacity retention at a 60 C-

rate, as well as excellent cyclability, with 99.3% capacity retention after 100 cycles at 1 C-rate. 

These superior properties could be attributed to the porous spherical structure, uniform carbon 

coating layer, and the reduction of the antisite defect concentration.  
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