Journal of Materials Chemistry A

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsA

Cite this: DOI: 10.1039/coxx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Effects of La fluoride and La hydride on the reversible hydrogen sorption behaviors in NaBH₄: A comparison study

Lina Chong^a, Jianxin Zou^{a,b*}, Xiaoqin Zeng^{a,b}, Wenjiang Ding^{a,b}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

In the present work, two new reversible hydrogen storage composites, NaBH₄+LaF₃ and NaBH₄+LaH₂, were prepared through mechanical milling method with the aim of studying comparatively the effects of La fluoride and La hydride on the hydrogen sorption behaviors in NaBH₄. Experimental investigations have shown that both La fluoride and La hydride enable the reversible hydrogen sorption in NaBH₄. In particular, LaF₃ exhibits a superior promoting effect than LaH₂ which agrees well with the theoretical predictions. ¹⁰ Surprisingly, better hydrogen sorption properties can be achieved in both systems through undergoing de-/rehydriding cycles. The reversible hydrogen storage capacity reaches up to 3.0 wt% at 238 °C and 2.9 wt% at 326 °C in NaBH₄+LaF₃ and NaBH₄+LaH₂ systems after the 6th dehydrogenation, respectively. In both cases, the formation of La boride plays the major role for the reversible hydrogen sorption in NaBH₄ should be ascribed to the following factors: i) The formation of thermodynamically more stable compound NaF instead of NaH ¹⁵ reduces the overall enthalpy changes of re/de-hydriding reactions in NaBH₄+LaF₃ to -31.8 kJ mol⁻¹ H₂ and 72.5 kJ mol⁻¹ H₂, respectively; ii) The ion exchange of F⁻ for H⁻ leads to the reduction of the onset dehydrogenation temperature of NaBH₄ to 160 °C in the NaBH₄+LaF₃ composite; iii) F⁻ anion favors the formation of LaB₆ while H⁻ favors the formation of LaB₄. The role of the functional anions and cations, de-/rehydrogenation mechanisms and nucleation modes in the two reversible hydrogen storage composites have been proposed based on

experimental and theoretical analyses. The comparison study carried out in this work helps to design and search for new metal ²⁰ borohydrides based composites for reversible hydrogen storage.

1. Introduction

40

- ²⁵ Hydrogen is considered to be a promising fuel for future society due to its high energy density, inexhaustible resources and cleanness. However, the hydrogen storage has been recognized as one of the great challenges towards the commercialization of hydrogen-powered vehicles. To meet the requirements for on-
- ³⁰ board applications, hydrogen storage carriers should have high hydrogen storage capacity, high safety with good hydrogen sorption reversibility in particular.¹ Recently, light metal borohydrides have been attracting much attention as promising hydrogen storage materials, since they have very high gravimetric
- $_{35}$ capacities.^{2, 3} For example, NaBH₄, as a prospective hydrogen storage material, has a theoretical hydrogen capacity of 10.6 wt% upon dissociation into Na + B. However, the desorption of NaBH₄, proceeds at temperature as high as 500 °C, with NaH and Na₂B₁₂H₁₂ as possible intermediates.^{4, 5} In addition, due to the

inherent limitation to the slow diffusion of elements in the solid 50 state, the dehydrogenation kinetics is very slow, and almost no reversibility can be achieved. Several novel strategies have been recently employed to overcome hydrogen sorption kinetic and thermodynamic limitations for NaBH4, such as mechanical milling with appropriate reactants,⁶⁻⁸ nano-confinement in porous 55 scaffolds,⁴ catalyst addition,⁹ partial substitution of Na⁺ by other metal cations.¹⁰ All of these methods have been testified to improve the reversible hydrogen storage properties of NaBH₄. For example, NdF₃⁶ reduces the dehydrogenation enthalpy of NaBH₄ by 13.6 kJ mol⁻¹ H₂ compared with that of pure NaBH₄ $_{60}$ (100 kJ mol⁻¹ H₂),¹¹ which is superior to TiF₃ in the 3NaBH₄/TiF₃ composite.9 On the other hand, nano-confinement of NaBH₄ in porous carbon has also led to much faster hydrogen desorption kinetics.⁴ Recently, the strategy of producing multi cation borohydrides MM'(BH₄)_n,¹² in which M and M' have different 65 electronegativities, has been experimentally proved to be useful in tuning the thermodynamics of NaBH₄. For example, Dorthe RavnsbæK et al.¹³ prepared NaZn₂(BH₄)₅ and NaZn(BH₄)₃ by mechanical milling NaBH₄/ZnCl₂ mixtures in appropriate molar ratios. Radovan Cerny et al. 10 successfully prepared NaSc(BH₄)₄ 70 at ambient conditions in ball-milled mixtures of NaBH4 and ScCl₃. Furthermore, nano-confinement of NaZn(BH₄)₃ by infusing NaZn(BH₄)₃ into mesoporous SBA-15 has been experimentally investigated.¹⁴ Dehydrogenation tests show that

a Shanghai Engineering Research Center of Magnesium Materials and Application & National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai 200240, China

b State Key Laboratory of Metal Matrix composite & School of Materials 45 Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

^{*}Corresponding author : Jianxin Zou Tel : 86-21-54742381 ; Fax : 86-21-34203730; Email : <u>zoujx@sjtu.edu.cn</u>

This journal is © The Royal Society of Chemistry [year]

the decomposition temperatures of these dual-cation borohydrides, especially the nano-confined $NaZn(BH_4)_3$, are lower than that of $NaBH_4$.

- Recently, anion substitution has been suggested as a new ⁵ approach to improve the de-/rehydrogenation thermodynamic properties of complex hydrides due to possible changes in the formation enthalpy, chemical pressure and metal–hydrogen bond strength.¹⁵ F⁻ substitution for H⁻ was reported by Brinks et al. in Na-Al-F-H system (Na₃AlH_{6-x}F_x),¹⁶ and theoretically calculations
- ¹⁰ suggested a decreased enthalpy upon substitution, which was verified experimentally.^{17, 18} Additionally, Yin et al. reported that the decomposition enthalpy decreased with the number of F⁻ substituting for H⁻ in LiBH₄ lattice.¹⁹
- Another approach is to establish a compound known as ¹⁵ "reactive hydride composites" (HRC), for which a metal hydride is combined with a complex hydride. For instance, MgH₂ has been successfully used by Vajo et al.²⁰ and Garroni et al.²¹ to lower the dehydrogenation temperature of LiBH₄. The MgB₂ formed exothermically during an endothermic desorption is a
- 20 more stable reaction product than either Mg or B, resulting in the reduced reaction enthalpy of dehydrogenation and eventually decreases the dehydrogenation temperature. However, the dehydrogenation of $2\mathrm{LiBH_4}\text{+}\mathrm{MgH_2}^{20}$ and $2\mathrm{NaBH_4}\text{+}\mathrm{MgH_2}^{22}$ composites proceeds through a two-step reaction to produce
- $_{25}$ LiH/NaH and MgB₂. Therefore, it is unlikely that the dehydrogenation of these composites starts below the dehydrogenation temperature of MgH₂ (~ 288 °C at 1 bar of hydrogen). Currently, lanthanide hydrides showed remarkable effects on reversible dehydrogenation of LiBH₄, such as YH₂ and
- ³⁰ CeH₂,²³ LaH₂,²⁴ GdH₂,²⁵ especially mechanically milling 6LiBH₄ with CeH₂ could reduce the desorption enthalpy by 16 kJ mol⁻¹ compared with that of pure LiBH₄.²⁶

In our previous studies on the reversible hydrogen storage of 3NaBH₄/NdF₃ and 3NaBH₄/PrF₃ systems, corresponding ³⁵ lanthanide hydrides have formed in the dehydrogenated samples, and may act as catalysts during de-/rehydrogenation processes. However, lanthanide hydrides as reactants working on the dehydrogenation process of NaBH₄ has not been investigated yet. In addition, though fluorine anion (F⁻, 1.36Å)²⁷ and hydrogen

- ⁴⁰ anion (H⁻, 1.37Å)²⁸ have the similar ion radii and the same valence of -1, metal fluorides usually show superior performance to the same metal hydrides as additive. For instance, TiF₃ exhibited superior catalytic effects over TiH₂ on the dehydrogenation of MgH₂²⁹ or NaBH₄.⁹ In an effort to understand
- ⁴⁵ the significant enhancement in additive activity arising upon variation of the anions, combined phase analyses, microstructure characterization and chemical state analyses were performed on the NaBH₄-based composites with REH₂ (RE = rare earth metal) and REF₃ as additives since RE metals could form stable
- ⁵⁰ borides,³⁰ which play an important role in the regeneration of NaBH₄. It has been established that the regeneration of borohydrides from metal borides is much easier than that from boron, as the activation energy needed to break the B-M bond is significantly lower than that needed for the B-B bond.³¹
- ⁵⁵ In the present study, a comparison study is carried out both experimentally and theoretically to elucidate the promoting effects of two Lanthanum compounds, LaH₂ and LaF₃, on the hydrogen sorption thermodynamic and kinetic properties of

NaBH₄. The de-/rehydrogenation mechanisms and nucleation ⁶⁰ mechanisms have been discussed in detail, as well as the function of F⁻ and La³⁺ in the de-/rehydrogenation processes of NaBH₄. In particular, the re-/dehydriding cyclic behaviors of the two NaBH₄ based composites were investigated with the purpose to study the effect of cycling on operating temperatures, de-/rehydrogenation ⁶⁵ kinetics, and hydrogen capacity. The coupled experimental and theoretical studies may provide a new promising approach for simultaneously improving the thermodynamic and kinetic properties of NaBH₄ by combining functional effects of anions and cations.

2. Experimental

Commercial pure La (99%) powders were purchased from ⁷⁵ Aladdin Reagent Database, Inc. NaBH₄ (98%) and LaF₃ (99.9%) were obtained from Strem Chemicals Inc. and Alfa Aesar, respectively. All of these materials were used as received states without any treatments. The sample storage and handling were performed in a Lab 2000 glove box (Etelux Intertgas system Co., ⁸⁰ Ltd.) filled with purified argon. The 3NaBH₄/LaF₃ mixture was prepared by mechanical ball milling under Ar atmosphere for 16 h using a QM-1SP2 planetary ball mill at 456 rpm in a stainless steel vessel. For the sake of comparison, two grams of NaBH₄ and La powders also in a 3:1 molar ratio were milled under the ⁸⁵ same conditions. The stainless steel vessel for ball milling was 100 ml, and the weight ratio of the sample to the ball was 1:30.

The hydriding/dehydriding properties were measured in a Sievert type pressure-composition-temperature (PCT) apparatus manufactured by Shanghai Institute of Microsystem and 90 Information Technology. The PCT measurements were performed at different temperatures in the hydrogen pressure range of 0.0019 ~ 4.6 MPa. Pressure of the samples were automatically monitored and recorded. For the isothermal dehydrogenation kinetic measurement, the sample chamber was 95 firstly filled with 5 MPa hydrogen, then after the temperature being quickly raised to and kept at the desired one, the sample chamber was quickly evacuated. For hydrogen absorption measurement, an initial H₂ pressure of 3.2 MPa was applied to the dehydrogenated sample for 8 h at 420 °C. After 6 ¹⁰⁰ dehydrogenation cycles, the 6th hydrogen absorption conditions for NaBH₄+LaF₃ and NaBH₄+LaH₂ samples were set at 238 °C in 6 h and 326 °C in 4.3 h under 4.1 MPa hydrogen pressure, respectively. Temperature-programmed-dehydrogenation (TPD) measurements were carried out starting from vacuum with the ¹⁰⁵ temperature increased from 25 °C to about 480 °C \sim 500 °C at a heating rate of 2 °C min⁻¹. Approximately \sim 3.0g of sample was used for PCT measurements, 150 mg for isothermal de-/rehydrogenation kinetic measurements, and 100 mg for TPD

Thermogravimetry (TG) and differential scanning calorimetry (DSC) analyses for the two systems were carried out using synchronous thermal analyses (TG/DSC, Netzsch, STA 449 F3 Jupiter). The heating rate was set at 2, 5 and 10 K min⁻¹ under 1 bar flowing argon atmosphere with the temperature rising from 115 26 to 500 °C for NaBH₄+LaF₃ and 600 °C for NaBH₄+LaH₂,

measurements.

respectively. About 10 mg of sample was used each time.

The samples at different states were characterized by X-ray diffraction (XRD Rigaku D/MAX-2500, VL/PCX, Cu K α radiation) from 10° to 90°(2 θ) with a step width of 0.02°, X-ray photoelectron spectroscopy (XPS, A AXIS ULTRADLD, Al K α

- ⁵ radiation), Fourier transform infrared spectrometer (FTIR Spectrum 100 facility, Perkin Elmer, Inc., USA). To avoid oxidation during the XRD measurements, samples were flattened into a homemade container in the Ar filled glove box. For the XPS measurements, binding energy calibration of all samples
- ¹⁰ were done using the C 1s peak (284.5 eV), and the Ar⁺ ion gun was used for etching. The binding energy spectra were fitted by XPSPEAK software. Vibration spectra of the species in absorbance mode with wavenumbers ranging from 400 to 4000 cm⁻¹ were obtained using a KBr tablet method with the mass ratio ¹⁵ of the sample to KBr being 1:60 in FITR measurements.

3. Results and discussions

20 3.1 Thermodynamic calculations on the NaBH₄+LaF₃ and NaBH₄+LaH₂ systems.

Thermodynamic parameters, for instance, Gibbs free energies (as a function of temperature at 1 atm H₂ pressure) which are ²⁵ evaluated using the HSC Chemistry program,³² are used to design and predict the NaBH₄-based reversible hydrogen storage systems.

For pure $NaBH_4$, the decomposition reaction can be described as:

$$NaBH_4 = NaH + B + 1.5H_2(g)$$
 (1),

for which calculation gives the Gibbs free energy change $\Delta G = 0$ kJ mol⁻¹ at 666.5 °C.

For the NaBH₄+LaF₃ system, it is expected that the following ³⁵ reaction may occur according to our previous investigations:^{6, 7}

 $3NaBH_4 + LaF_3 = 3NaF + 0.5LaB_6 + 0.5LaH_2 + 5.5H_2(g)$ (2),

⁴⁰ The equilibrium reaction temperature is calculated to be 468.5 °C when $\Delta G = 0$ kJ mol⁻¹.

For the NaBH₄+LaH₂ system, the following reactions may take place:

⁴⁵
$$6NaBH_4 + LaH_2 = 6NaH + LaB_6 + 10H_2 (g) (3),$$

$$4NaBH_4 + LaH_2 = 4NaH + LaB_4 + 7H_2(g)$$
 (4)

and their equilibrium reaction temperatures are 649.8 °C and ⁵⁰ 649.4 °C, respectively, when $\Delta G = 0$ kJ mol⁻¹. Because of the lack of thermodynamic data for LaB₄ in the HSC Chemistry program, the standard formation enthalpy of LaB₄ was taken from lit.³⁰ At 25 °C, the Gibbs free energies of following reactions:

55 0.6NaBH₄ + La = 0.6NaH + 0.1LaB₆ + 0.9LaH₂ (5),

$$4/7 \text{ NaBH}_4 + \text{La} = 4/7 \text{ NaH} + 1/7 \text{ LaB}_4 + 6/7 \text{ LaH}_2$$
 (6),

are -98.7 and -99.0 kJ mol⁻¹, respectively. It means that LaH₂ can ⁶⁰ be obtained by mixing NaBH₄ with La at ambient temperature. Indeed, LaH₂ was detected by XRD analysis of the ball milled NaBH₄+La mixture, as seen in Fig. 7. The above theoretical analyses indicate that both LaH₂ and LaF₃ show positive effects on destabilization of NaBH₄, while LaF₃ displays superior effect ⁶⁵ over LaH₂.

3.2 Experimental investigations on thermodynamics of the NaBH₄+LaF₃ and NaBH₄+LaH₂ systems.

It is known that the dehydrogenation temperature is related to the thermal stability of the hydrogen storage material. NaBH₄+LaF₃ composite was subjected to PCT measurements for the characterization of thermodynamic properties. The de-/absorption enthalpy and entropy changes are calculated using 75 van't Hoff equation, and are expressed as follows: Ln (P_{ea}) = - $\Delta H/RT + \Delta S/R$, where P_{eq} is the equilibrium reaction pressure, T the absolute temperature, and R the gas constant. Fig. 1(a) and 1(b) show the PCT curves of the NaBH₄+LaF₃ composite at 385, 404, 415 and 425 °C and corresponding van't Hoff plots, ⁸⁰ respectively. The van't Hoff equations derived from Fig. 1 are expressed as Ln (P_{ea} / MPa) = - 8.72 / T + 12.45 for desorption and Ln (P_{eq} / MPa) = - 3.82 / T + 6.52 for absorption. The corresponding desorption enthalpy and entropy changes are therefore calculated to be 72.5 kJ mol⁻¹ H₂ and 103.5 J K⁻¹ mol⁻¹ 85 respectively; and the absorption enthalpy and entropy changes are -31.8 kJ mol⁻¹ H₂ and 54.2 J K⁻¹ mol⁻¹, respectively. The obtained

Fig. 1 PCT curves (a) of the NaBH₄+LaF₃ composite at various ¹¹⁵ temperatures and the corresponding van't Hoff plots (b).

 $_{15}$ Fig. 2 DSC/TG curves of NaBH_4+LaF_3 (A) and NaBH_4+LaH_2 (B) samples measured at a heating rate of 2 K min^-1 under 1 atm argon atmosphere.

desorption enthalpy is reduced by 28 % relative to that of the pure ²⁰ NaBH₄ (100 kJ mol⁻¹ H₂),¹¹ which accounts for the decreased dehydrogenation temperature in the NaBH₄+LaF₃ system. Because of the sluggish absorption kinetic in the NaBH₄+LaH₂ system, equilibrium absorption and desorption reactions are not achieved in PCT measurements of the NaBH₄+LaH₂ system, thus

- $_{25}$ the de-/absorption enthalpy and entropy changes cannot be obtained. Nevertheless, DSC analyses given in Fig. 2 will show that the de-/absorption enthalpies of NaBH_4+LaH_2 lie between those of NaBH_4+LaF_3 and pristine NaBH_4.
- As seen in Figs. 7 and 8, NaF, LaB₆ and LaH₂ were obtained in ³⁰ the dehydrogenated NaBH₄+LaF₃ sample, and NaH and LaB₄ were present in NaBH₄+LaH₂ sample. Therefore, it is anticipated that the dehydrogenation follows the stoichiometric reaction (2) in NaBH₄+LaF₃ system and (4) in NaBH₄+LaH₂ system. Therefore, calculated by HSC Chemistry program, the desorption
- ³⁵ enthalpy of NaBH₄+LaF₃ is 71 kJ mol⁻¹ H₂, which is slightly different from the value obtained by PCT measurements. The desorption enthalpy of NaBH₄+LaH₂ is calculated to be 92 kJ mol⁻¹ H₂, which is also lower than that of pure NaBH₄. The formation of LaB₆ or LaB₄ in dehydrogenation products of
- ⁴⁰ NaBH₄ based composite systems instead of B should contribute to the reduction in desorption enthalpy of NaBH₄. On the other hand, the different reactivity of LaF₃ and LaH₂ toward NaBH₄ could be understood from the thermochemical point of view.

45 3.3 A comparative study of dehydrogenation behaviors in NaBH₄+LaF₃ and NaBH₄+LaH₂ systems.

The effect of the LaF₃ and LaH₂ on lowering the hydrogen desorption temperature of NaBH₄ was evaluated by DSC/TG ⁵⁰ measurements on NaBH₄+LaF₃ and NaBH₄+LaH₂ systems, as shown in Fig. 2. The endothermic peaks on DSC curves together with mass loss on TG curves correspond to the hydrogen desorption of each composite, and position represents the temperature at which the maximum dehydrogenation rate of each ⁵⁵ reaction is achieved. There are differences between the two

systems and pure NaBH₄ at the onset dehydrogenation temperatures in the DSC profiles. For the ball-milled samples, the dehydrogenation starts at 396 °C for the NaBH₄+LaF₃ system and

4 | Journal Name, [year], [vol], 00-00

442 °C for the NaBH₄+LaH₂ system, respectively. Both of the $_{60}$ two temperatures are lower than that of pure NaBH₄ (517 °C) measured under the same condition.8 Indeed, for the NaBH₄+LaF₃ system, the DSC signal is composed of a strong endothermic peak at 407 °C, and a shoulder at around 441 °C. In contrast, one small sharp peak at 453 °C and a subsequent sharp 65 peak at 492 °C are recorded for the NaBH₄+LaH₂ system. Moreover, the dehydrogenation is complete at 517 °C in the NaBH₄+LaH₂ system. It has been shown that the melting temperature of NaBH₄ is 505 °C, which is higher than the values recorded for the endothermic peaks of the NaBH₄+LaF₃ system, $_{70}$ but lies in the temperature range (468 - 517 °C) of the second endothermic peak in the NaBH₄+LaH₂ system, indicating that all the dehydrogenation processes of NaBH₄ take place in solid state in the former system, while desorption in liquid NaBH₄ may occur in the later system.

For the NaBH₄+LaF₃ system, the two endothermic peaks appeared on the DSC curve indicate that two different reactions may take place during dehydrogenation. The dehydrogenation mechanisms of the two systems will be proposed in the following section. The hydrogen released from NaBH₄+LaF₃ system is 3.53 wt% in total which is close to its theoretical value (3.56 wt%), indicating a complete dehydrogenation. However, the hydrogen released from the NaBH₄+LaH₂ system is 3.03 wt% until temperature reaches 600 °C, which is about 88.6 % of its theoretical value (3.42 wt%). On the other hand, on the basis of

Fig. 3 TPD curves of NaBH₄+LaF₃ (a) and NaBH₄+LaH₂ (b) samples as a ¹¹⁵ function of temperature measured at a heating rate of 2 K min⁻¹ for all cases.

the DSC/TG results shown in NaBH₄+LaH₂ system, the enthalpy change of the dehydrogenation reaction, corresponding to the first endothermic desorption peak, is calculated to be 89.6 kJ mol⁻¹ H₂, agreeing reasonably with the value obtained by HSC Chemistry

- ⁵ program, and also shows a pronounced decreasing in dehydrogenation enthalpy value compared with pure NaBH₄. The results obtained from Fig. 2 further indicate that both LaF₃ and LaH₂ are effective in lowering the dehydrogenation temperature of NaBH₄, especially a better destabilization effect of LaF₃ with ¹⁰ respect to LaH₂.
- TPD measurements were used to provide an overall picture of the dehydrogenation process over a wide temperature range and study the reversibility upon cycling of the NaBH₄+LaF₃ and NaBH₄+LaH₂ systems, as shown in Fig. 3. In the case of the 1st dehydrogenation, the results show that the onset dehydrogenation temperatures are 160 °C and 330 °C for NaBH₄+LaF₃ and NaBH₄+LaH₂ systems, respectively. In addition, it is seen that the NaBH₄+LaF₃ and NaBH₄+LaH₂ systems release about 3.5 wt%
- and 1.2 wt% of hydrogen when temperature reaches 480 °C. After ²⁰ 12 min at 480°C, the dehydrogenation of NaBH₄+LaF₃ is complete, with a total hydrogen release of 3.54 wt%. Though the dehydrogenation kinetics of the NaBH₄+LaH₂ system is slow, the total amount of released hydrogen is about 3.41 wt% after 10 h. Compared with pure NaBH₄ of which the weight loss is only 0.68
- $_{25}$ wt% after heated at 482 °C for about 14 h, 6 those findings further clearly show that the addition of either LaF_3 or LaH_2 to NaBH_4 can enhance the hydrogen desorption rate and increase the weight of hydrogen released from the NaBH_4. LaF_3 shows better destabilization effect on the desorption of NaBH_4 when compared
- $_{30}$ to LaH₂. Interestingly, a two-step dehydrogenation is observed in case of the NaBH₄+LaF₃ system, agreeing well with the result shown in Fig. 2. The 1st step dehydrogenation is in the temperature range from 375 423 °C (Fig. 3(a)), while the 2nd step dehydrogenation starts at around 424 °C. Fig. 3(b) shows that
- $_{35}$ the NaBH₄+LaH₂ system releases about 0.5 wt% of hydrogen in the temperature range of 30 \sim 468 °C in the 1st dehydrogenation cycle, which is close to the data obtained from DSC/TG measurements, as shown in Fig. 2.

For the NaBH₄+LaF₃ system, Fig. 3(a) shows that the amount ⁴⁰ of hydrogen released from the rehydrogenated sample varies from 3.41 wt% for the 2^{nd} cycle to 3.02 wt% for the 6^{th} cycle. More interestingly, the significant kinetic improvement for desorption is achieved by cycling, that is, the desorption temperature is gradually lowered down by cycling. For example, the maximum

- ⁴⁵ desorption rate for the 1st, 2nd, 3rd, 4th, 5th and 6th dehydrogenation is achieved at 407, 333, 319, 306, 295, 282°C, respectively. It implies that some activation processes may occur during the first cycle and show stronger effects with increasing the number of cycles. In the NaBH₄+LaH₂ system, Fig. 3(b) displays that
- ⁵⁰ hydrogen releases of 3.31wt%, 3.27 wt%, 3.14 wt%, 3.09 wt% and 3.02 wt% are obtained for the 2nd, 3rd, 4th, 5th and 6th cycle, respectively. The decrease in dehydrogenation temperature along with cycling number is also observed. In addition, the slope of the 1st desorption curve is different from the following cycles of
- ⁵⁵ which curves are parallel to each other. This means that the cycling not only decreases the dehydrogenation temperature, but also remarkably improves the dehydrogenation rate. For example, when heated for 5 h, the NaBH₄+LaH₂ system releases about 1.75

wt% hydrogen in the 1st cycle, while in the 2nd, 3rd, 4th, 5th and 6th cycle, about 2.72, 2.50, 2.60, 2.25 and 2.3 wt% hydrogen can be released, respectively. These results display a good cycling performance in both NaBH₄+LaF₃ and NaBH₄+LaH₂ systems accompanied with a slight drop in hydrogen sorption capacity over 6 cycles. The similar phenomenon has been seen in the LiBH₄-base and NaBH₄-based hydrogen storage systems upon cycling.⁶, ³³⁻³⁸ Moreover, the TPD results indicate that NaBH₄+LaF₃ system shows superior dehydriding kinetic upon cycling, whereas NaBH₄+LaH₂ system shows a lower capacity drop over 6 cycles (0.51 wt% for NaBH₄+LaF₃ system; 0.38 wt% ⁷⁰ for NaBH₄+LaH₂ system).

In both cases, the observed decomposition temperature is lower than the theoretically predicted one as calculated by HSC

115 Fig. 4 Isothermal dehydrogenation curves (a) of NaBH₄+LaF₃ measured at 386-446 °C, the corresponding JMA plot (b) and Arrhenius plot (c).

Chemistry program, which may result from the different reaction pathways between theoretical depicted one and the real one. In particular, the applied recharging conditions (420 °C, 3.2 MPa hydrogen) in the present study is more favorable compared with ⁵ those applied for NaBH₄ with metal or metal hydride/halide/oxides additives (450-500 °C, 5.5-6MPa).^{9, 22}

3.4 A comparative study of de-/absorption kinetics in NaBH₄+LaF₃ and NaBH₄+LaH₂ systems.

10

The time dependent kinetic behaviors for isothermal solid-state reaction was usually described by Johanson-Mehl-Avrami (JMA) equation.^{39, 40} To elucidate the dehydrogenation kinetic modes, the NaBH₄+LaF₃ and NaBH₄+LaH₂ systems were subjected to

the isothermal dehydrogenation measurements at different 60 temperatures, and the behaviors were described in the framework of the JMA model presented below:⁴¹

$$\alpha(t) = 1 - \exp[-(kt)^n]$$
 (7),

where $\alpha(t)$ was the fraction given as function of time t, k the temperature-dependent kinetic constant, and n the Avrami 65 exponent related to the transformation mechanism. Fig. 4(a) and 5(a) show the isothermal dehydrogenation curves of the NaBH₄+LaF₃ and NaBH₄+LaH₂ systems at different temperatures. As expected, dehydrogenation is dramatically accelerated as the temperature increases, especially in the ⁷⁰ NaBH₄+LaF₃ system. For example, a dehydrogenation capacity of 2.8 wt% is achieved in 44 min at 386 °C, while the same amount can be reached within 4 min at 446 °C. Additionally, the total hydrogen desorption capacity is about 3.53 wt% in the temperature range 386 - 446 °C, which is close to the theoretical 75 value (3.56 wt%), demonstrating a complete dehydrogenation in NaBH₄+LaF₃ system. In contrast, about 1.19, 1.36, 1.47 and 1.78 wt% of hydrogen can be released from the NaBH₄+LaH₂ system at 413, 429, 453 and 466 °C in 60 min, and 1.59, 1.77, 1.85 and 2.12 wt% in 180 min, respectively. Furthermore, the system can ⁸⁰ desorb 2.37 wt% hydrogen after 400 min at 466 °C. According to lit.,⁶ only 0.212 wt% hydrogen is released from pure NaBH₄ after being heated at 400 °C for 1 h. Therefore, Fig. 4(a) and 5(a) show that both LaH₂ and LaF₃ could improve the dehydrogenation kinetics of NaBH₄ to different degrees. It is believed that the 85 dehydrogenation rate is correlated to the nucleation of the products in the dehydrogenation process.^{23, 42} A linear interpolation of the typical master plots, $\ln(-\ln(1-\alpha))$ vs $\ln(t)$ in the range $0.15 \le \alpha \le 0.85$, yields the values of *n* and *k* given in table 1, which could be used to shed light on the dehydrogenation 90 modes in NaBH₄+LaF₃ and NaBH₄+LaH₂ systems. The results were displayed in Fig. 4(b) and Fig. 5(b). For the NaBH₄+LaF₃ system, the Avrami exponent *n* obtained is in the range from 1.93 to 3.77, corresponding to a diffusion controlled reaction mechanism, and nucleation should be of early nucleation-site 95 saturation.⁴³ In addition, it is shown that the value of n is somewhat temperature dependent. Furthermore, the Avrami exponent *n* is around 3 - 4 in the temperature range 386 - 416 °C, indicating that the main nucleation occurs at the grain corners.43 At 429 - 446 °C, the value of n is in the range 1.93 - 2.22, 100 implying that the new phase nucleation belongs to the decreasing nucleation rate mode. In contrast, in the NaBH₄+LaH₂ system, the value of *n* is in the range from 0.45 to 0.70 within the experiment temperatures from 413 to 466 °C, suggesting a random nucleation mechanism with early nucleation at dislocations or highly 105 anisotropic of growth velocities.⁴⁴ It is known that random nucleation impedes ion transportation.44 Therefore, such a nucleation and growth mechanism might lead to the incubation period in NaBH₄+LaH₂ system shown in Fig. 2, for which desorption stops for a limited time (about 3 min) in the range 460 110 - 470 °C. As the temperature increases, especially close to the melting point of NaBH₄, since the rate of ion transportation is accelerated, the hydrogen desorption proceeds again until the decomposition was complete. The similar phenomenon has been observed in Ca(BH₄)₂ and LiBH₄-MgH₂ systems.^{45, 46}

¹¹⁵ For dehydrogenation, the NaBH₄+LaF₃ system shows faster dehydriding kinetics over the NaBH₄+LaH₂ system. The

difference may be ascribed to the substitution of F⁻ for H⁻, since F⁻ and H⁻ have the similar ionic radii. The similar phenomenon has also been reported in metal fluoride doped metal borohydride systems.^{6, 47} On the other hand, in the study of metal hydride-⁵ Alkali metal borohydride systems, desorption occurred after the melting of Alkali metal borohydrides.^{22, 48} As seen from DSC curves in Fig. 2, the highest dehydrogenation rate is achieved at 491 °C, which is also close to the melting point of NaBH₄, indicating that the rapid dehydrogenation takes place when

- ¹⁰ NaBH₄ is partially melted. In the isothermal dehydrogenation measurements, when the temperature is in the range from 413 to 466 °C (lower than the melting point of NaBH₄), the dehydrogenation in the NaBH₄+LaH₂ system suffers from a slow diffusion rate compared with that in the liquid state. The above
- ¹⁵ factors account for the change in the value of *n*, and as a consequence, result in the different dehydrogenation rates between NaBH₄+LaF₃ and NaBH₄+LaH₂ systems.
- Arrhenius equation is used to determine the apparent activation energy E_a of dehydrogenation reaction for the two systems by 20 executing the exponential fitting. The temperature-dependent reaction rate k reflects the nucleation rate and the growth rate of the dehydrogenation process and could be described by Arrhenius formulation: $k = k_o \exp(-\frac{Ea}{RT})$, where k_o is the pre-exponential factor. The plot of Lnk against 1000/*T*, which exhibits a good 25 linearity, is shown in Fig. 4(c) and Fig. 5(c). The values of E_a obtained from the slope of the plots for NaBH₄+LaF₃ and NaBH₄+LaH₂ systems are 220.1 and 247.0 kJ mol⁻¹, respectively. The results demonstrate that the energy barrier needed to be overcome in dehydrogenation process of the NaBH₄+LaF₃ system 30 is lower than that in the NaBH₄+LaH₂ system. Additionally, the reaction rate constants for NaBH4+LaF3 and NaBH4+LaH2 systems are calculated to be $k = 50 \times 10^{-4} \text{ s}^{-1}$ and $k = 1.5 \times 10^{-4} \text{ s}^{-1}$ at the given temperature of 430 °C, respectively, which agree well with the fact that the dehydrogenation kinetics in NaBH₄+LaF₃ is 35 much faster than that in the NaBH₄+LaH₂ system.

Table 1 Data for the dehydrogenation kinetics of $NaBH_4+LaF_3$ and $NaBH_4+LaH_2$ systems

sample	T/°C	п	-LnK	$K(\times 10^{-4} s^{-1})$
NaBH ₄ +LaF ₃	386	3.30	7.88	3.78
	400	2.98	7.05	8.67
	416	3.77	6.05	23.58
	429	2.22	5.49	41.28
	446	1.93	4.50	111.1
NaBH ₄ +LaH ₂	413	0.45	9.60	0.68
	429	0.50	8.60	1.84
	453	0.63	7.46	5.76
	466	0.70	6.57	14.02

The function of LaH_2 and LaF_3 on the rehydrogenation of $NaBH_4$ was further investigated by isothermal hydrogenation measurements as shown in Fig. 6. It is seen that hydrogenation performances of $NaBH_4$ are significantly improved by both LaH_2 ⁴⁵ and LaF_3 . Clearly, about 3.33 wt% and 3.46 wt% hydrogen were

40

absorbed at 420 °C under 3.2 MPa hydrogen pressure in $NaBH_4+LaH_2$ and $NaBH_4+LaF_3$ systems, respectively, while the regeneration of $NaBH_4$ from its decomposition products

Fig. 6 Isothermal rehydrogenation curves of (a) NaBH₄+LaF₃ for the 1st time (420 °C, 3.2MPa H₂) and the 6th time (238 °C, 4.1 MPa H₂); (b) NaBH₄+LaH₂ for the 1st time (420 °C, 3.2MPa H₂) and the 6th time (326 °C,4.1 MPa H₂). The insets show the XRD and FTIR patterns of the 6th rehydrogenation products of NaBH₄+LaF₃ and NaBH₄+LaH₂ systems.

(NaH+B) under 400 °C and 350 bar hydrogen pressure for 24 h ⁸⁵ was unsuccessful.⁴⁹ The results indicate that the activation energy needed for the reconstruction of [BH₄] ligand is much lower in the dehydrogenated products of the two composites than that in the dehydrogenated pure NaBH₄. In addition, La-B phases and LaH₂ appeared in the dehydrogenation products of both 90 NaBH₄+LaF₃ and NaBH₄+LaH₂ systems. Therefore, Fig. 6 shows similar isothermal hydrogenation curves for the two composites, though LaH₂ has different effects on the hydrogenation process in the two systems. On the other hand, there exists the difference, such as NaF and NaH in the dehydrogenation products of 95 NaBH₄+LaF₃ and NaBH₄+LaH₂ systems, respectively. NaF makes the hydrogen absorption kinetics to be faster in the former system over the later one. The reason could be raised from the appearance of thermodynamically more stable compound in the rehydrogenated sample of NaBH4+LaF3 system (eg. LaF3, of ¹⁰⁰ which $\Delta_f H$ is -1699.541 kJ mol⁻¹) than in that of NaBH₄+LaH₂ system (eg. LaH₂, of which Δ_{f} H is -201.25 kJ mol⁻¹). The differences in hydrogenation kinetic effect caused by Fcontaining phase have been observed in the study of hydrogenation in LiF-MgB₂⁴⁷ and LiH-MgB₂⁵⁰ composites.

¹⁰⁵ For the 6th dehydrogenation, temperatures at which the maximum dehydrogenation rates were achieved were lowered

down to 286 and 328 °C for NaBH₄+LaF₃ and NaBH₄+LaH₂ systems, respectively. Therefore, the 6th dehydrogenation products were subjected to rehydrogenation at 238 and 326 °C under 4.1 MPa hydrogen pressure, as shown in Fig. 6. The results ⁵ demonstrate that after 6 dehydrogenation cycles, both of the two

- systems exhibit excellent hydrogenation cycles, both of the two systems exhibit excellent hydrogenation performance at relatively low temperatures. Hydrogen storage capacities of 3.0 wt% and 2.9 wt% are obtained under 4.1 MPa H₂ in NaBH₄+LaF₃ system at 238 °C in 6 h and NaBH₄+LaH₂ system at 326 °C in 4.3 h,
- ¹⁰ respectively. Apart from a slight capacity drop, Fig. 6 shows a remarkable improvement in hydrogenation kinetics of NaBH₄ and a significant reduction in hydrogenation temperatures for both of the two systems.
- XRD and FTIR patterns of the NaBH₄+LaF₃ and NaBH₄+LaH₂ ¹⁵ samples after the 6th rehydrogenation are shown in the inset of Fig. 6. Clearly, NaBH₄ and LaF₃ are found in the XRD pattern shown in the inset-up of Fig. 6(a), implying that NaBH₄ is
- regenerated in the NaBH₄+LaF₃ sample after the 6th hydrogenation at 238 °C. Moreover, the typical B-H vibration ²⁰ band located at 1126, 2225, 2292, and 2358 cm⁻¹ are present in the inset-down of Fig. 6(a), further demonstrating the restoration of NaBH, at relatively low temperatures. In case of the
- of NaBH₄ at relatively low temperatures. In case of the NaBH₄+LaH₂ system, XRD and FTIR patterns shown in the inset of Fig. 6(b) also evidence the regeneration of NaBH₄ in the ²⁵ NaBH₄+LaH₂ system after the 6th hydrogenation process at 328
- ^oC. These results clearly demonstrate that a significant improvement in absorption kinetics is achieved by cycling. In addition, partially unconverted NaF in the NaBH₄+LaF₃ system (seen in Fig. 6(a)) and LaB₄ in the NaBH₄+LaH₂ system (seen in
- ³⁰ Fig. 6(b)), which are resulted from the kinetic delay, might be responsible for the capacity drop during cycling in the two systems. It is known that size reduction of particle can decrease

Table 2 Data for hydrogen uptake in MBH_4 (M=Li, Na)-M'H₂ ³⁵ (M'= metal) without or with catalysts

Composite	Rehyd				
	Temp / °C	Pressure / MPa	Time / h	Obs Rehyd H ₂ / %	Ref.
${\rm LiBH_4} ext{-}{\rm TiH_2}$	400	15	50	Unsuccessful	[53]
LiBH ₄ -ScH ₂	400	15	50	Unsuccessful	[53]
LiBH ₄ -CaH ₂	400	35	24	Unsuccessful	[49]
LiBH ₄ -					
CaH ₂ /TiCl ₃	450	10	15	90	[54]
LiBH ₄ -MgH ₂	400	35	24	95	[49]
NaBH ₄ -MgH ₂	400	35	24	89	[49]
NaBH ₄ -					
MgH ₂ /TiF ₃	600	4	12	75	[55]
NaBH ₄ -CaH ₂	400	5.5	10	Unsuccessful	[56]
LiBH ₄ -					
CaH ₂ /TiCl ₃	400	10	20	93	[48]
LiBH ₄ -LaH ₂	400	6	4	80	[24]
LiBH ₄ -CeH ₂	400	6	4	67	[24]
					This
NaBH ₄ -LaH ₂	420(326 ^a)	3.2(4.1 ^a)	$4.2(4.2^{a})$	94(85 ^a)	work

^a Data obtained from the 6th rehydrogenation measurement.

hydrogen diffusion lengths and increase surface interaction areas with H_2 . Therefore, the size reduction of nanoparticle can tailor

- ⁴⁰ thermodynamic and kinetic properties of hydrogen desorption/absorption in complex metal hydrides.^{51, 52} Based on the Scherrer equation, the particle sizes of NaBH₄ after ball milling are approximately 45.79 nm and 52.89 nm in NaBH₄+LaF₃ and NaBH₄+LaH₂ systems, respectively. In ⁴⁵ contrast, after the 6th rehydrogenation, they reduce to 20.43 nm and 26.70 nm, respectively. The size reduction of NaBH₄ particles achieved by cycling accounts for the significant improvement in desorption and absorption kinetics during the 6 cycles in both NaBH₄+LaF₃ and NaBH₄+LaH₂ systems.
- ⁵⁰ It is reported that the decomposition of NaBH₄ in 2NaBH₄-MgH₂ system is 509 °C, and rehydrogenation takes place at 450 °C under 6 MPa hydrogen pressure with catalyst doping.²² In NaBH₄-0.05TiH₂ composite, the dehydrogenation of NaBH₄ is about 450 °C, and rehydrogenation is performed at 500 °C under ⁵⁵ 5.5 MPa hydrogen pressure.⁹ It is worth noting that the dehydrogenation temperature, the hydrogenation temperature, and hydrogenation pressure are all lower in the NaBH₄+LaH₂ system than those in 2NaBH₄-MgH₂ and NaBH₄-0.05TiH₂ some sorption in NaBH₄. Table 2 summarizes temperatures, hydrogen pressures and time needed for rehydrogenation in some RHC systems. More importantly, as
- rehydrogenation in some RHC systems. More importantly, as lanthanide elements have similar chemical properties, the finding in this work, that is, LaH₂ can promote the regeneration of ⁶⁵ NaBH₄, may extend to other lanthanide hydrides.

3.5 Understanding of the de-/absorption mechanisms and the function of F anion and La cation.

In order to understand the mechanisms of LaH₂ and LaF₃ on the de-/rehydrogenation of NaBH₄, the phase and chemical state analyses of NaBH₄+LaH₂ and NaBH₄+LaF₃ samples were conducted by XRD, FTIR and XPS measurements at various states. In the NaBH₄+LaH₂ system, Fig. 7 shows that the strong 75 diffraction peaks of LaH₂ clearly appear in the ball-milled sample, which is in good agreement with the prediction obtained by HSC Chemistry program, proving that the reaction between NaBH₄ and La should take place as reaction (6) during ball milling. G. Renaudin reported that the cubic LaH₂ phase was a ⁸⁰ nonstoichiometric compound having a general formula of LaH_{2+x} , where x varied from $0 \sim 1.57$ This LaH_{2+x} phase is slightly leftshifted after being heated to 230 °C, as shown in Fig. 7(a)(A). Until 400 °C, the peaks of LaH₂ and NaBH₄ turn to be weak, indicating that NaBH₄ has reacted with LaH₂ to release hydrogen, 85 as seen in Fig. 7(a)(B). At 450 °C for 1.5 h, LaB₄ and NaH are present, but weak peaks from NaBH₄ still exist, as well as peaks from LaH₂, indicating that the dehydrogenation is incomplete. When the temperature reaches 480 °C, the dehydrogenated sample is composed mostly of LaB₄ and NaH, leaving LaH₂ as 90 surplus due to the unbalanced ratio of NaBH₄ to LaH₂. Therefore, the dehydrogenation reaction could be described as reaction (4).

After being rehydrogenated at 420 °C under 3.2 MPa hydrogen for 8 h, diffraction peaks from restored NaBH₄, LaH₂ and residual LaB₄ can be detected, as shown in Fig. 7(a)(E). The presence of $_{95}$ residual LaB₄ results in the partial reversibility of NaBH₄ under the applied conditions. The hydrogenation reaction can be described as the inverse of the dehydrogenation reaction. The dehydrogenated NaBH₄+LaH₂ composite can absorb 3.32 wt% hydrogen in 8 h (97 % of the theoretical value), as shown in Fig.

- $_{\rm 5}$ 6(b). The good reversibility without any catalytic additives is remarkably interesting, since most LiBH₄ or NaBH₄-based reactive hydride composites show the reversibility only with catalytic additives, except in the case of MgH₂ added LiBH₄, NaBH₄ or Ca(BH₄)₂ based composites, for which
- ¹⁰ dehydrogenation products could be rehydrogenated at 20 35 MPa hydrogen pressure for 24 h. In addition, x in LaH_{2+x} in the ball-milled and rehydrogenated samples is around 1, and is around 0.05 in the dehydrogenated samples. Neutron diffraction study on the hydrides of LaH_{2+x} has shown that the lattice
- ¹⁵ parameter decreases monotonically as x increases, ⁵⁷ which could explain the fact that the peaks of LaH_{2+x} in the dehydrogenated samples is slightly left-shifted compared to the corresponding peaks of the hydrogenated and ball-milled ones. Fig. 7(b) shows that 4 peaks from $[BH_4]^-$ ligand appear in the FTIR spectrum of
- ²⁰ the ball milled sample, 1126 cm⁻¹ corresponding to the bending band of B-H, while 2225, 2292 and 2366 cm⁻¹ corresponding to the stretching band, which are located in the B-H vibration range of NaBH₄, according to lit.⁶ Moreover, peaks belonging to NaBH₄ turn to be weaker until they disappear as temperature ²⁵ increases in the dehydrogenation process. Meanwhile, the peak
- corresponding to NaH located at 886 cm⁻¹ ⁹ appears and its intensity increases gradually, which is in good agreement with the

⁵⁵ Fig. 7 XRD patterns (a) and FTIR patterns (b) of the NaBH₄+LaH₂ composite after ball-milling (BM), the first dehydrogenation at 230 °C (A), 400 °C (B), 450 °C (C), 480 °C (D) and after rehydrogenation (E).

result shown in Fig. 7(a). After hydrogenation, the peak intensity of NaBH₄ becomes stronger, which further demonstrates the ⁶⁰ restoration of NaBH₄. In addition, a new weak peak around 2500 cm⁻¹ is also observed in de-/rehydrogenation products, which may come from trace amount of Na₂B₁₂H₁₂, since it is a very stable by-product.⁶ Besides the random nucleation mechanism respects to the appearance of incubation period in NaBH₄+LaH₂ system ⁶⁵ before temperature reaches the melting point of NaBH₄, another possibility resulting in incubation period in NaBH₄+LaH₂ system is the formation of Na₂B₁₂H₁₂, which occurs at the surface of the metal hydride,⁵⁸ blocking the direct contact between NaBH₄ and LaH₂.

Fig. 8(a) shows that after ball milling, no new phases can be detected in NaBH₄+LaF₃ system except NaBH₄ and LaF₃, indicating a simple physical mixing of NaBH₄ and LaF₃. LaF₃ reacts with NaBH₄ at elevate temperatures. The slightly weakened diffraction peaks of NaBH₄ and LaF₃ are identified at 75 220 °C as shown in Fig. 8(a)(A), and the diffraction peaks of NaBH₄ disappear when the temperature reaches 430 °C (Fig. 8(a)(B)). Meanwhile, the peaks of NaF, LaB₆, residual LaF₃, as well as La-hydride phases are present. After dehydrogenated at 460 °C, the peak intensity of LaB₆ increases with the appearance so of LaB₄. According to reaction (4), the appearance of LaB₄ may

Fig. 8 XRD patterns (a) and FTIR patterns (b) of the NaBH₄+LaF₃ composite after ball-milling (BM), the first dehydrogenation at 220 $^{\circ}$ C (A), 430 $^{\circ}$ C (B), 460 $^{\circ}$ C(C) and after rehydrogenation (D). The partial enlarged XRD patterns together with the diffraction pattern of NaF are 115 given inset of Fig. a.

result from the reaction between LaH_2 and $NaBH_4$. Therefore, it can be deduced that there are two reactions at the elevated $_{60}$ (a)

temperatures during the dehydrogenation process in NaBH₄+LaF₃ composite, and can be described as: reaction (2) takes place ⁵ during dehydrogenation process, if the temperature exceeds 424 °C, reaction (4) will occur following reaction (2). On the other hand, reaction (4) taking place in NaBH₄+LaF₃ system consumes a portion of NaBH₄, which results in residual LaF₃ in the complete dehydrogenated NaBH₄+LaF₃ sample, as seen in Fig.

¹⁰ 8(a)(C).
The corresponding FTIR results obtained from Fig. 8(b) are consistent with XRD results shown in Fig. 8(a). After dehydrogenation at 430 °C, small amount of residual NaBH₄ can be detected by FTIR but is absent in the XRD pattern due to its
¹⁵ low content. If LaH₂ is formed at the interface between NaBH₄ and LaF₃, it might disturb the destabilization reaction by blocking direct contact between NaBH₄ and LaF₃, thus, as temperature increases, the reaction between LaH₂ and the residual NaBH₄ may occur. After heated to 460 °C, the peaks corresponding to

²⁰ NaBH₄ disappear completely.

The hydrogenated NaBH₄+LaF₃ sample in Fig. 8(a)(D) shows the peaks corresponding to NaBH₄ and LaF₃ together with those of residual NaF and La-hydride. Additionally, NaLaF₄ also appears due to the radii ratio of Na⁺/La³⁺ being 0.93.⁵⁹ The phase ²⁵ of NaREF₄ presented in the hydrogenated products has been observed when the radii ratio of M⁺/R³⁺ (M = alkali, R = rare earth metals) lies between 0.77 and 1.40.^{6, 7, 59} The FTIR spectrum of the hydrogenated sample shows four peaks

- corresponding to the vibration of B-H coming from NaBH₄. This ³⁰ further demonstrates the regeneration of NaBH₄. The unconspicuous peak of Na₂B₁₂H₁₂ indicates that only very small portion of NaBH₄ decomposes alone. On the other hand, this result also demonstrates a rapid dehydrogenation reaction between NaBH₄ and LaF₃. Based on the XRD and FTIR results,
- ³⁵ the hydrogenation reactions could be the reverse reaction of (2) accompanied with :

$NaF+LaF_3=NaLaF_4$ (8).

- ⁴⁰ If the dehydrogenation temperature exceeds 424 °C, the hydrogenation reaction also includes the reverse reaction of (4). These reactions may take place simultaneously during the rehydrogenation process. It should be noted that the peak located at around 1630 cm⁻¹ can be assigned to the bending band of H-O-
- ⁴⁵ H, while the peak at 3450 cm⁻¹ is the O-H stretching band, as shown in both of the two FTIR spectra (Figs. 7 and 8). It is related to the unavoidable moisture absorption of the samples during the FTIR measurements.
- It is worth noting that the dehydrogenation in NaBH₄+LaF₃ ⁵⁰ composite undergoes two reactions when temperature rises above 424 °C, which is different from that in 3NaBH₄-NdF₃ or 3NaBH₄-PrF₃ composites reported in our previous works.^{6, 7} However, the reversibility of NaBH₄ can be also achieved under moderate conditions in NaBH₄+LaF₃ and NaBH₄+LaH₂ composites. In both
- ss cases, the formation of La-B phases after dehydrogenation is believed to play the major role for the regeneration of NaBH₄, as observed in other NaBH₄ based composites.^{6, 21}

Fig. 9 XPS spectra of F 1s (a) and La 3d (b) in the NaBH₄+LaF₃ sample at ball milled and de-/rehydrogenated states, as well as F 1s in pure NaF ⁹⁰ reference sample for comparison.

LaH₂ and LaF₃ show positive effects on improving de-/rehydrogenation kinetics of NaBH₄. The factors contributing to those property improvements of NaBH₄ are apparently associated ⁹⁵ with the F anion and La cation. XPS measurements are used to understand the state and function of the F anion and La cation to further support this speculation in the de-/rehydrogenation of NaBH₄+LaF₃ sample.

The state of F anion in the ball milled, dehydrogenated and 100 rehydrogenated samples were examined by XPS measurements, as shown in Fig. 9(a)(BM, DE, RE). Fig. 9(a)(BM) shows that ball milled sample contains F anion having only one chemical state, indicating that only LaF₃ exists in the ball milled sample. According to the XPS result of the NaF reference sample 105 (684.1eV), in the dehydrogenated sample (Fig. 9(a)(DE)), the peak with higher binding energy (684.5eV) should be assigned to the $NaF_{1-x}H_x$ phase, and the peak with binding energy of 681.5 eV comes from the residual LaF₃, coinciding exactly with the XRD result shown in Fig. 8(a)(C). Notably, XPS analysis of the ¹¹⁰ rehydrogenation sample identifies three chemical states of F anion. The first signal appearing at 684.3 eV is assigned to NaF₁. $_{\rm x}$ H_x phase, as observed in the dehydrogenated sample. The second one appearing at 685.1 eV is assigned to LaF₃ phase, which demonstrates the recombination of LaF₃ and agrees well with the 115 XRD result of the rehydrogenation sample. The third one with a higher binding energy of 687.6 eV shows a subtle binding energy

shift toward NaBF₄ of which peak appears at 687.2 eV.⁶⁰ This unknown chemical state may be originated from the substitutional F in the NaBF_{4-x}H_x lattice.

- Careful examination of XRD patterns shows that those NaF ⁵ peaks in NaBH₄+LaF₃ samples dehydrogenated at 430 °C, 460 °C (Fig. 8(a)(B) and (C)) and the rehydrogenated sample (Fig. 8(a)(D)) are slightly left-shifted compared to peaks of pure NaF reference sample, as seen in the inset of Fig. 8(a). The peaks at 38.5° 39.2° and 55.9° 56.4° correspond to the (200) and (220)
- ¹⁰ peaks of NaF, respectively, which shift slightly toward higher angle side. Such a shift suggests the formation of NaF_{1-x}H_x via a substitution of F⁻ for H⁻, which agrees well with Fig. 9(a)(DE). This phenomenon is not surprising in view of the same crystal structure (cubic) as well as the same space groups (Fm-3m) of
- ¹⁵ NaF and NaH, and has been observed in the mechanically milled NaH-TiF₃ composite.⁶¹ In addition, the new peaks at 2θ of $30.9 - 31.6^{\circ}$ in the de-/rehydrogenation products shown in Fig. 8 (a)(B) and (D) correspond to NaBF₄, but show smaller lattice parameters, which hint the formation of NaBF_{4-x}H_x, also due to
- $_{20}$ the substitution of F^{-} for H^{-} in $NaBH_4$ lattice during the de-/rehydrogenation processes. A similar phenomenon has been reported in the previous work. 6 Moreover, the formation of $NaBF_{4-x}H_x$ phase in the rehydrogenated and incomplete dehydrogenated samples is consistent with Fig. 9(a), which could
- ²⁵ be another support to this assignment. According to the firstprinciples calculations, partial substitution of F⁻ for H⁻ in LiBH₄ could result in a favorable thermodynamic modification and thereby lower down the dehydrogenation temperature.¹⁹ To support this assignment, TPD measurements of the
- ³⁰ rehydrogenated NaBH₄+LaF₃ sample were conducted. As shown in Fig. 3, during the 2nd dehydrogenation, the onset dehydriding temperature is as low as 60 °C, which is 100 °C lower than that of the ball milled one. Therefore, the lower onset dehydrogenation temperature should likely be originated from the compositional
- $_{35}$ change arising upon F⁻ substitution for H⁻. The formation of partially F⁻ substituted complex hydrides, such as LiBH_{4-x}F_x and Na₃AlH_{6-x}F_x phases, has been confirmed in Li-Mg-B-H-F and Na-Al-H-F systems.^{16, 17, 47} On the other hand, in case of the reaction between LaH₂ and NaBH₄, the temperature needed in
- ⁴⁰ NaBH₄+LaF₃ system is 12 °C lower than that needed in NaBH₄+LaH₂ system, which may also be due to the formation of NaBF_{4-x}H_x having more favorable thermodynamic property than pristine NaBH₄, as well as the early formation of LaB₆ which may act as catalyst.
- ⁴⁵ Fig. 9(b) shows the chemical state of La in the ball milled, dehydrogenated and rehydrogenated NaBH₄+LaF₃ samples also measured by XPS apparatus. For the ball-milled sample, peak fitting reveals that the La 3d spectrum can be resolved into two sets of 2p_{5/2}-2p_{3/2} spin-orbit doublets at 834.5 and 837.7eV, and
- $_{50}$ 851.3 and 854.3 eV. The lower binding energy contribution (834.5 eV) is the characteristic of La₂O₃, which is formed due to the oxidation occurred when the sample is taken out from the glove box and loaded to the XPS facility, whereas the second one (837.7 eV) can be attributed to LaF₃ according to lit. 60 After
- ss dehydrogenation, the banding energy of La 3d has changed. It is resolved into three sets of $2p_{5/2}$ - $2p_{3/2}$ spin-orbit doublets: 834.3-850.1 eV attributed to La₂O₃; 837.2-853.9 eV attributed to LaB₆; 839.5-856.3 eV attributed to LaH₂,⁶⁰ which further demonstrates

the formation of LaB_6 and LaH_2 in the dehydrogenated sample. In 60 the rehydrogenated sample, it is obvious to see the regenerated LaF3 as well as the residual LaH2, which agrees well with the result of Fig. 8(a). Additionally, the binding energy of LaH₂ shifts slightly toward higher value compared with that given in lit.⁶⁰ of which banding energy is in the range from 838.5 to 839.0 eV for 65 La 3d_{5/2}, and it might also result from the substitutional F in the LaH lattice. LaB₆ appeared in the dehydrogenated sample will act as the active center to allow the regeneration of NaBH4 during rehydrogenation process.³¹ It is therefore believed that both La³⁺ and F⁻ play important roles in the de-/rehydrogenation processes 70 of the NaBH₄+LaF₃ system. In both NaBH₄+LaH₂ and NaBH₄+LaF₃ systems, a series of experimental evidences demonstrate that the formation of La-B phases allows NaBH₄ to decompose and regenerate under moderate conditions. The participation of F in the NaBH₄+LaF₃ system results in a further 75 reduction of the desorption enthalpy change of NaBH₄, and thereby further decreases the onset dehydrogenation temperature and improves the dehydrogenation kinetics of NaBH₄.

80 4. Conclusions

In the present work, two NaBH₄ based reversible hydrogen storage composites, namely, NaBH₄+LaH₂ and NaBH₄+LaF₃ systems, were prepared via mechanical milling NaBH₄ with La ⁸⁵ and LaF₃ under argon atmosphere, respectively. The hydrogen de-/absorption thermodynamic and kinetic properties, the de-/rehydriding cyclic performance and reaction mechanisms as well as dehydrogenation nucleation modes of the two systems were systematically investigated. Based on the theoretical and ⁹⁰ experimental analyses, the following conclusions can be drawn:

 The desorption and absorption enthalpies (ΔH) of the NaBH₄+LaF₃ system obtained by PCT measurements are 72.5 and -31.8 kJ mol⁻¹ H₂, respectively. The desorption enthalpy of the NaBH₄+LaH₂ system is calculated to be 89.6 kJ mol⁻¹ H₂ by 95 DSC measurement. The difference in desorption enthalpy of NaBH₄+LaF₃ to NaBH₄+LaH₂ system could be ascribed to the appearance of thermodynamically more stable compound NaF compared to NaH. In case of the 1st dehydrogenation, the onset dehydrogenation temperature is decreased from 517 °C for 100 pristine NaBH₄ to 160 °C for NaBH₄+LaF₃ sample, and 330 °C for NaBH₄+LaH₂ sample.

The much faster dehydrogenation kinetics of the NaBH₄+LaF₃ sample than that of the NaBH₄+LaH₂ sample may be ascribed to the different nucleation modes. Analyses using JMA model ¹⁰⁵ indicate a nucleation-site saturation mode with nucleation occurred at the grain corners for the NaBH₄+LaF₃ system, while a random nucleation mode with early nucleation at dislocations or highly anisotropic of growth velocities is found for the NaBH₄+LaH₂ system. The apparent dehydrogenation activation ¹¹⁰ energies (*E_a*) are calculated to be 220.1 and 247.0 kJ mol⁻¹ for NaBH₄+LaF₃ and NaBH₄+LaH₂ systems, respectively.

3. Re-/dehydriding cyclic measurements reveal that the hydrogen storage capacities during six cycles are in the range of 3.02-3.53 wt% for the NaBH₄+LaF₃ system, and 3.02-3.41 wt% for the ¹¹⁵ NaBH₄+LaH₂ system. The temperatures at which the maximum dehydrogenation rates are achieved are lowered down in both

systems after de-/rehydrogenation cycles. After six re-/dehydrogenations, the desorption products of NaBH₄+LaF₃ and NaBH₄+LaH₂ samples could be rehydrogenated at 238 °C and 326 °C with hydrogen storage capacity of 3.0 wt% and 2.9 wt%,

- s respectively. The remarkable improvement in de-/absorption kinetics obtained through cycling could be attributed to the size reduction of $NaBH_4$ particles achieved by cycling in both systems and the formation of the $NaBF_{4-x}H_x$ complex phase in the $NaBH_4+LaF_3$ system.
- $_{10}$ 4. Phase examinations demonstrate that LaB₆ is one product of the reaction between NaBH₄ and LaF₃, while LaB₄ is the product of reaction between NaBH₄ and LaH₂. Both LaB₆ and LaB₄ enable the regeneration of NaBH₄ at moderate conditions. XPS analyses demonstrate that the function anion F^- acts as
- ¹⁵ substitutional anion for H⁻ to yield $NaBF_{4-x}H_x$ and $NaF_{1-x}H_x$ during de-/rehydrogenation processes in the $NaBH_4$ +LaF₃ system. According to a series of designed experiments and results of phase analyses, the observed better promotion effects of LaF₃ over LaH₂ on the hydrogen sorption reversibility of NaBH₄ can
- ²⁰ be ascribed to: i) F⁻ anion favors the formation of LaB₆ while H⁻ favors the formation of LaB₄; ii) The formation of NaF instead of NaH further reduces the enthalpy gap between reactants and products; iii) The F⁻ participates in the re-/dehydrogenation of NaBH₄ as a substitutional anion for H⁻, resulting in more
- ²⁵ favorable hydrogen sorption thermodynamics and kinetics.

Acknowledgements

- ³⁰ Prof. Zou would like to thank the support from the Science and Technology Committee of Shanghai under Nos. 10JC1407700 and 11ZR1417600, and 'Pujiang' project (No. 11PJ1406000). This work is partly supported by Research Fund for the Doctoral Program of Higher Education of China (No. 20100073120007)
- 35 and from the Shanghai Education Commission (No. 12ZZ017).

References

- 40 1. M. S. Dresselhaus and I. L. Thomas, Nature, 2001, 414, 332-337.
- S. Orimo, Y. Nakamori, J. R. Eliseo, A. Zuttel and C. M. Jensen, *Chem. Rev.*, 2007, 107, 4111-4132.
- F. Schuth, B. Bogdanovic and M. Felderhoff, *Chem. Commun.*, 2004, 2249-2258.
- ⁴⁵ 4. P. Ngene, R. van den Berg, M. H. W. Verkuijlen, K. P. de Jong and P. E. de Jongh, *Energy Environ. Sci.*, 2011, 4, 4108-4115.
 - S. Orimo, Y. Nakamori and A.Zuttel, *Mater. Sci. Eng. B*, 2004, 108, 51-53.
- L. N. Chong, J. X. Zou, X. Q. Zeng and W. J. Ding, *J. Mater. Chem. A*, 2013, 1, 3983-3991.
- L. N. Chong, J. X. Zou, X. Q. Zeng and W. J. Ding, *J. Mater. Chem. A*, 2013, 1, 13510-13523.
- J. X. Zou, L. J. Li, X. Q. Zeng and W. J. Ding, Int. J. Hydrogen Energy, 2012, 37, 17118-17125.
- 55 9. J. F. Mao, Z. P. Guo, I. P. Nevirkovets, H. K. Liu and S. X. Dou, J. Phys. Chem. C, 2012, 116, 1596-1604.

- R. Cerny, G. Severa, D. B. Ravnsbæk, Y. Filinchuk, V. D'Anna, H. Hagemann, D. Haase, C. M. Jensen and T. R. Jensen, *J. Phys. Chem. C*, 2010, **114**, 1357-1364.
- 60 11. J. Urgnani, F. J. Torres, M. Palumbo and M. Baricco, Int. J. Hydrogen Energy, 2008, 33, 3111-3115.
 - H.-W. Li, S. Orimo, Y. Nakamori, K. Miwa, N. Ohba, S. Towata and A. Züttel, *J. Alloys Compd.*, 2007, 446–447, 315-318.
- D. Ravnsbæk, Y. Filinchuk, Y. Cerenius, H. J. Jakobsen, F. Besenbacher, J. Skibsted and T. R. Jensen, *Angew. Chem. Int. Ed.*, 2009, 48, 6659-6663.
- 14. G. Xia, L. Li, Z. Guo, Q. Gu, Y. Guo, X. Yu, H. Liu and Z. Liu, J. Mater. Chem. A, 2013, 1, 250-257.
- 15. V. D'Anna, L. M. L. Daku, H. Hagemann and F. Kubel, *Phys. Rev. B:* 70 *Condens. Matter Mater. Phys.*, 2010, **82**, 024108.
 - H. W. Brinks, A. Fossdal and B. C. Hauback, J. Phys. Chem. C, 2008, 112, 5658-5661.
- N. Eigen, U. Bosenberg, J. B. von Colbe, T. R. Jensen, Y. Cerenius, M. Dornheim, T. Klassen and R. Bormann, *J. Alloys Compd.*, 2009, 477, 76-80.
 - L. C. Yin, P. Wang, X. D. Kang, C. H. Sun and H. M. Cheng, *Phys. Chem. Chem. Phys.*, 2007, 9, 1499-1502.
 - L. C. Yin, P. Wang, Z. Z. Fang and H. M.Cheng, *Chem. Phys. Lett.*, 2008, 450, 318-321.
- 80 20. J. J. Vajo, S. L. Skeith and F. Mertens, J. Phys. Chem. B, 2005, 109, 3719-3722.
 - S. Garroni, C. Pistidda, M. Brunelli, G. B. M. Vaughan, S. Surinach and M. D. Baro, *Scr. Mater.*, 2009, **60**, 1129-1132.
- C. Milanese, S. Garroni, A. Girella, G. Mulas, V. Berbenni, G. Bruni,
 S. Surinach, M. D. Baro and A. Marini, *J. Phys. Chem. C*, 2011, 115, 3151-3162.
- 23. J.-H. Shim, J.-H. Lim, S.-u. Rather, Y.-S. Lee, D. Reed, Y. Kim, D. Book and Y. W. Cho, *J. Phys. Chem. Lett.*, 2010, **1**, 59–63.
- 24. F. C. Gennari, Int. J. Hydrogen Energy, 2011, 36, 15231-15238.
- 90 25. F. C. Gennari, L. F. Albanesi, J. A. Puszkiel and P. A. Larochette, Int. J. Hydrogen Energy, 2011, 36, 563-570.
 - 26. P. Mauron, M. Bielmann, A. Remhof, A. Züttel, J.-H. Shim and Y. W. Cho, J. Phys. Chem. C, 2010, 114, 16801–16805.
- A. Kato, M. Katayama, A. Mizutani, N. Ito and T. Hattori, J. Appl. Phys., 1997, 81, 445-450.
- L. M. Kulikov, V. I. Lazorenko and G. V. Lashkarew, *Powder Metall. Met. Ceram.*, 2002, **41**, 107-111.
- L.-P. Ma, X.-D. Kang, H.-B. Dai, Y. Liang, Z.-Z. Fang, P.-J. Wang, P. Wang and H.-M. Cheng, *Acta Mater.*, 2009, **57**, 2250-2258.
- 100 30. S. V. Meschel and O. Kleppa, J. J. Alloys Compd., 2001, 321, 183-200.
 - S. A. Jin, J. H. Shim, Y. W. Cho, K. W. Yi, O. Zabara and M. Fichtner, *Scr. Mater.*, 2008, 58, 963-965.
- 32. A. Roine, Outokumpu HSC Chemistry for Windows: Chemical Reaction and Equilibrium Software with Extensive Thermodynamical Database and Flowsheet Simulation, Version 6.0. 06120-ORC-T, Outokumpu Research Oy, Finland, 2006.
 - M. Au, A. Jurgensen and K. Zeigler, J. Phys .Chem. B, 2006, 110, 26482-26487.
- ¹¹⁰ 34. Z. Z. Fang, X. D. Kang, P. Wang and H. M. Cheng, J. Phys. Chem. C, 2008, **112**, 17023-17029.
 - 35. M. Au, A. R. Jurgensen, W. A. Spencer, D. L. Anton, F. E. Pinkerton, S. J. Hwang, C. Kim and R. C. Bowman, *J. Phys. Chem. C*, 2008, 112, 18661-18671.

- 36. M. Au and A.Jurgensen, J. Phys. Chem. B, 2006, 110, 7062-7067.
- 37. J. Xu, X. B. Yu, J. Ni, Z. Q. Zou, Z. L. Li and H. Yang, *Dalton Trans.*, 2009, **39**, 8386-8391.
- 38. G. Xia, Q. Meng, Z. Guo, Q. Gu, H. Liu, Z. Liu and X. Yu, Acta Mater., 2013, 61, 6882-6893.
- 39. O. Kircher and M. Fichtner, J. Alloys Compd., 2005, 339, 404-406.
- 40. D. Blanchard, H. W. Brinks and B. C. Hauback, J. Alloys Compd., 2006, 416, 72-79.
- 41. M. Avrami, J. Chem. Phys., 1939, 7, 1103-1112.
- 10 42. Y. F. Liu, F. H. Wang, Y. H. Cao, M. X. Gao, H. G. Pan and Q. D. Wang, *Energy Environ. Sci.*, 2010, **3**, 645-653.
- 43. J. W. Christian, *The Theory of transformations in metals and Alloys,* 2nd ed., Pergamon: New York, 1975.
- 44. W. Z. Zhu, T. C. Lei and Y. Zhou, Ceram. Int., 1994, 20, 105-109.
- 15 45. C. Bonatto Minella, S. Garroni, C. Pistidda, R. Gosalawit-Utke, G. Barkhordarian, C. Rongeat, I. Lindemann, O. Gutfleisch, T. R. Jensen, Y. Cerenius, J. Christensen, M. D. Baró, R. Bormann, T. Klassen and M. Dornheim, *J. Phys. Chem. C*, 2011, **115**, 2497-2504.
- 46. E. Deprez, M. A. Munoz-Marquez, M. A. Roldan, C. Prestipino, F. J.
- Palomares, C. B. Minella, U. Bosenberg, M. Dornheim, R. Bormann and A. Fernandez, *J. Phys. Chem. C*, 2010, **114**, 3309-3317.
 - R. Gosalawit-Utke, J. M. Bellosta von Colbe, M. Dornheim, T. R. Jensen, Y. Cerenius, C. B. Minella, M. Peschke and R. Bormann, J. *Phys. Chem. C*, 2010, **114**, 10291-10296.
- 25 48. S.-A. Jin, Y.-S. Lee, J.-H. Shim and Y. W. Cho, J. Phys. Chem. C, 2008, 112, 9520-9524.
 - G. Barkhordarian, T. Klassen, M. Dornheim and R. Bormann, J. Alloys Compd., 2007, 440, L18-L21.
- 50. M. Dornheim, S. Doppiu, G. Barkhordarian, U. Bosenberg, T.
- 30 Klassen, O. Gutfleisch and R. Bormann, Scr. Mater., 2007, 56, 841-846.
 - C. P. Balde, B. P. C. Hereijgers, J. H. Bitter and K. P. de Jong, J. Am. Chem. Soc., 2008, 130, 6761-6765.
- 52. W. Lohstroh, A. Roth, H. Hahn and M. Fichtner, *Chem. Phys. Chem.*, 2010, **11**, 789-792.
 - 53. J. Yang, A. Sudik and C. Wolverton, J. Phys. Chem. C, 2007, 111, 19134-19140.
 - H. Yang, A. Ibikunle and A. J. Goudy, *Adv. Mater. Sci. Eng.*, 2010, doi:10.1155/2010/138642.
- ⁴⁰ 55. J. F. Mao, X. B. Yu, Z. P. Guo, H. K. Liu, Z. Wu and J. Ni, *J. Alloys Compd.*, 2009, **479**, 619-623.
 - 56. J. F. Mao, Z. P. Guo, X. B. Yu and H. K. Liu, *J. Phys. Chem. C*, 2011, **115**, 9283-9290.
- 57. G. Renaudin, K. Yvon, W. Wolf and P. Herzig, *J. Alloys Compd.*, 2005, **404-406**, 55-59.
 - 58. J. H. Shim, J. H. Lim, S. U. Rather, Y. S. Lee, D. Reed, Y. Kim, D. Book and Y. W. Cho, *J. Phy. Chem. Lett.*, 2010, 1, 59-63.
 - 59. R. E. Thoma, Inorg. Chem., 1962, 1, 220-226.
 - 60. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, In
- 50 Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corp., Eden Prairie, MN 1992.
 - E. H. Majzoub, J. L. Herberg, R. Stumpf, S. Spangler and R. S. Maxwell, J. Alloys Compd., 2005, 394, 265.

graphical abstract

Both LaF₃ and the in situ formed LaH₂ enable the reversible hydrogen sorption in NaBH4. Systematic studies show that the formation of La-B phases in dehydrogenation products of the two composites plays the major role for the reversible hydrogen sorption in NaBH₄. In particular, the regeneration of NaBH4 can be achieved at 238 °C for the NaBH₄+LaF₃ composite, and 326 °C for the NaBH₄+LaH₂ composite after 6 dehydrogenation cycles. Comparative studies demonstrate that the substitution of F^- for $H^$ yields $NaBH_{4-x}F_x$ and $NaF_{1-x}H_x$ phases during de-/rehydrogenation processes in the NaBH₄+LaF₃ composite, resulting in more favorable thermodynamics.

Lina Chong ^a, Jianxin Zou ^{a,b*}, Xiaoqin Zeng ^{a,b}, Wenjiang Ding ^{a,b} < Effects of La fluoride and La

hydride on the reversible hydrogen

sorption behaviors in NaBH₄: A

comparison study >