This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
ZnO Quantum Dots/Graphene Nanocomposites by Atomic Layer Deposition with High Lithium Storage Capacity

Xiang Sun,a Changgong Zhou,b Ming Xie,c,* Hongtao Sun,a Tao Hu,a Fengyuan Lu,a Spencer M. Scott,a Steven M. George,e Jie Lian*a

1 Introduction

The development of portable electronic devices and hybrid electric cars requires advanced LIBs with large energy densities, fast rate capabilities, prolonged lifetimes, and low costs. However, the current commercial graphite anode has a low gravimetric capacity of 372 mAh g⁻¹, which leads to a limited output energy density of LIBs.¹ Transition metal oxides with higher theoretical capacities (> 600 mAh g⁻¹), have been explored as alternative anode materials for high-performance LIBs, such as Fe₂O₃/Fe₃O₄,²⁴ CoO₂/CoO,²⁴ MnsO₃,⁹ NiO,¹⁰ MoO₃/MoO₂,¹¹, ¹² CuO,¹³ and SnO₂.¹⁴–¹⁶ However, the cost and abundance of those transition metal oxides have not been carefully examined for future practical large-scale production. The high cost of Co and Ni limits their potential application, and thus more attention should be focused on metal oxides, such as Fe, Mn, and Zn (see Table S1 in the supporting information).

Unlike Fe₂O₃/Fe₃O₄ and MnO₂, ZnO suffers from the poor cyclability though its high theoretical capacity of ZnO (978 mAh/g) is nearly three times higher than that of graphite.¹⁷, ¹⁸ ZnO will transform to Zn upon the conversion reaction with Li⁺, followed by the alloying reaction forming Li₂Zn.¹⁷, ¹⁹ Similar to all of the other transition metal oxides, ZnO experiences a large volume expansion/contraction (~228%)¹⁰ during discharge/charge processes. A recent in-situ TEM study of ZnO nanowires has revealed that the lithium embrittlement of ZnO is much more severe as a result of nano-cracking rather than dislocation plasticity as observed in SnO₂.²⁰ As a result, the long-term stability of ZnO is much worse than that of SnO₂. A well-accepted routine to minimize such mechanical strain-induced cracking is to employ small particles at the nanoscale level.²¹, ²² Different nanostructures have been explored to alleviate this detrimental volume change of ZnO, such as the hierarchical flower-like ZnO,²³ porous ZnO nanosheets,²⁰ ZnO nanorods,²⁴ and ZnO nanoparticles.²⁵ However, the particle sizes of these nanostructures are still too large, generally above 10 nm, leading to inferior capacity and cyclic performance. Therefore, synthesis of ZnO quantum dots (QDs) at a finer scale is crucial for the improvement of ZnO cycling performance, in which a critical size may exist to minimize the cracking issue. ZnO QDs have been widely studied for optoelectronics and solar cell,²⁶ however, have not yet been reported as battery anodes.

Most common synthesis techniques for ZnO include cathodic deposition,²⁴ hydrothermal synthesis,²⁵, ²⁶ and magnetron sputtering.²⁸, ²⁹ It is difficult to control the particle size down to the nanometer region with a uniform particle distribution.³⁰–³² ALD, utilizing self-limited reactions occurring on the surface of a substrate, makes it possible to deposit nanoparticles on high-aspect-ratio substrates³³, ³⁴ or nanoparticles,³⁵, ³⁶ while controlling the particle size at the angstrom scale.³⁷, ³⁸ Recently, ALD has been applied in depositing metal oxides on carbon substrates, showing great promise in lithium ion cathodes,³⁹ anodes,⁴⁰ and supercapacitors.⁴¹, ⁴²

Another issue with ZnO as the battery electrode is its relatively low electrical conductivity (despite being more conductive than many metal oxides (~1 S cm⁻¹ for ZnO3¹ vs. 10⁴ S cm⁻¹ for other metal oxides). ZnO has been coupled with a variety of carbon

This journal is © The Royal Society of Chemistry [year]
substrates.44, 45 Graphene,46, 47 a relatively new, but promising, carbon-based material, is an excellent electronic conductor48, 49 with a high theoretical specific surface area of 2630 m2/g.50 high chemical stability,46 and excellent mechanical properties.51 The two-dimensional sheet structure of graphene also provides an excellent building block and an ideal conductive platform for accommodating nano-sized electrochemically active materials. However, due to its complex surface chemistry, graphene will interact with electrolytes at a high current density (such as 500 mA g−1).52, 53 For example, graphene’s oxygen-containing surface functional groups are very reactive and can oxidize the electrolyte and consequently induce electrochemical instability in the electrode. Additionally, graphene has a relatively low volumetric density (density of graphene powder <0.05 g/cm3). Therefore, the synergy of combining metal oxides possessing much higher volumetric energy density and gravimetric capacity with graphene nanosheets is particularly attractive for developing advanced electrodes for LIBs. However, very limited results are reported for graphene-ZnO nanocomposites as anodes for lithium ion batteries. A previous study reported specific capacity as low as 42, 55 ZnO ALD was grown directly on graphene powders using a rotary ALD reactor.56, 57 An ALD schematic can be found in supporting information. Specifically, diethyl Zn (Zn(CH\textsubscript{2}CH\textsubscript{3})\textsubscript{2}) and high performance liquid chromatography (HPLC) grade H\textsubscript{2}O were obtained from Sigma-Aldrich. ZnO ALD was performed at 120 °C using alternating Zn(CH\textsubscript{2}CH\textsubscript{3})\textsubscript{2} and H\textsubscript{2}O exposures in an ABAB... sequence:

\[
\text{ZnO}^{+} + \text{Zn(CH}_2\text{CH}_3)_2 \rightarrow \text{ZnOZn(CH}_2\text{CH}_3)^+ + \text{CH}_3\text{CH}_3
\]

\[
\text{Zn(CH}_2\text{CH}_3)^+ + \text{H}_2\text{O} \rightarrow \text{ZnOH}^+ + \text{CH}_3\text{CH}_3
\]

where the asterisks represent the surface species. The typical growth rate for the ZnO ALD chemistry is ~2 Å per cycle,58, 59 and thus the particle of ZnO can be well controlled at the nanometer scale by ALD cycles. The ZnO ALD reaction sequence was: i) Zn(CH\textsubscript{2}CH\textsubscript{3})\textsubscript{2} dose to 1.0 Torr; ii) evacuation of reaction products and excess Zn(CH\textsubscript{2}CH\textsubscript{3})\textsubscript{2}; iii) H\textsubscript{2}O dose to 1.0 Torr; and iv) evacuation of reaction products and excess H\textsubscript{2}O. Similar to carbon nanotubes, graphene has a low surface reactivity for ALD deposition, as the graphene basal plane is very unreactive, and thus it is difficult to nucleate ZnO on graphene. It is expected that ZnO will nucleate and grow at defects and edge planes of the graphene surface, resulting in a distribution of ZnO nanoparticles.

The phase, crystallinity, and microstructure of the ALD ZnO were characterized by a combination of materials characterization approaches including XRD using a PAN analytical x-ray diffraction system, a scanning electron microscopy by a Carl Zeiss Ultra 1540 Dual Beam FIB/SEM system, and a transmission electron microscopy (TEM) using a JEOL JEM-2010 instrument, operated at 200 kV. The surface area and pore size distribution were measured using a Quantachrome AUTOSORB-1 instrument, with the samples heated at 150 °C under vacuum for 12 hours before testing. Thermogravimetric analysis (TGA) was performed in air from 30 °C to 700 °C at a heating rate of 10 °C/min in a TA Instrument TGA-Q50. The electrodes were made by mixing ZnO-G nanocomposites with polyvinylidene fluoride and carbon black at a weight ratio of 75:15:10 in 1-methyl-2-pyrrolidinone solvent. The slurry was coated on copper foil by blade and dried under vacuum at 80 °C overnight. All of the cells were assembled in an argon-filled dry
box with Li metal as the negative electrode. A Celgard separator 2340 and 1 M LiPF$_6$ electrolyte solution in 1:1 w/w ethylene carbonate and diethyl carbonate (Novolyte) were used to fabricate the coin cells. Cyclic voltammetry (CV) measurement was carried out using a potentiostat VersaSTAT 4 (Princeton Applied Research) at a scan rate of 0.5 mV s$^{-1}$. Galvanostatic charge/discharge cycles were performed at a voltage range of 2.5–0.05 V using an Arbin BT 2000 testing station.

Results and discussion

Graphene nanosheets were prepared by thermal exfoliation of graphite oxide (GO), and therefore, defects and residual oxygen functional groups inevitably exist in the structure of graphene. These defective sites serve as the initial nucleation sites for the controllable growth of ZnO QDs by ALD. The mesoporous structure developed upon thermal exfoliation allows the gas phase ALD precursors to diffuse into the internal structures of graphene, resulting in well-distributed ZnO QDs.

As observed from SEM analysis (Fig. 1), the ZnO QDs are uniformly anchored along the porous network of wrinkled graphene. No uncoated graphene surface can be seen after deposition at longer cycles. The high coverage of surface defects (carboxyl or hydroxyl groups) on graphene allows the uniform surface interaction with ALD precursors. The typical sizes of ZnO QDs after 15, 30, and 50 ALD cycles are ~2 nm, ~4 nm, and ~7 nm in diameter, respectively. The average diameter of ZnO increases nearly proportionally to the number of repeated ALD cycles. This result suggests that the time for diffusion of the ALD precursors into the porous structure of graphene is sufficient and therefore the growth rate is nearly linear, one of the distinctive advantages for ALD. After 50 ALD cycles, ZnO QDs begin to converge into a dense films, as evidenced by the significant increase in the thickness of the graphene sheet. High resolution TEM image shows a basal plane of 0.28 nm, matching well with...
Fig. 4 Electrochemical Performance of the ALD ZnO/G composites: (a) CV curves of 15 ALD cycle ZnO-G composite; galvanostatic charge/discharge curves at current density of 100 mA/g for (b) 15 ALD cycle ZnO-G and (c) 30 ALD cycle ZnO-G; (d) cycling performance at 100 mA g\(^{-1}\) of the ALD ZnO-G composites and comparison with commercial ZnO nanoparticles and a controlled electrode by mechanically-mixing graphene and ZnO nanoparticles; and (e) rate performance of ZnO-G composites at various current densities.

(100) inter-planar spacing of ZnO, confirming the crystalline nature of ZnO by ALD. From the structural analysis, crystallized ZnO nanoparticles are uniformly deposited by ALD throughout the three dimensional network of graphene.

The degree of crystallinity of ZnO on graphene was further examined by XRD. Fig. 2(a) shows the XRD patterns of the ZnO-G composites synthesized at different ALD cycles. The sharp peaks can be assigned to the hexagonal structure of ZnO (JCPDS01-076-0704) and a weak broadened peak at 23-27° can be ascribed to (002) plane of the disordered graphene sheets.\(^\text{42, 55}\) This is consistent with other ZnO ALD literatures that ZnO ALD intends to form a crystalline structure even at room temperature.\(^\text{60}\) In addition, it is well-studied that ZnO ALD process easily produces stoichiometric binary films without measurable amounts of impurities such as carbon or oxygen.\(^\text{61}\) As the number of the ALD cycles increased, the ZnO diffraction peaks become more obvious and sharper, indicating the crystal growth by repeated ALD cycles.

TGA measurements as shown in Fig. 2(b) indicate that the mass percentages of ZnO in the composites are 42.7%, 68.2%, and 87% for 15, 30, and 50 ALD cycles, respectively. The high mass loading of active material is critical to realize the feasibility of using ALD for large-scale nanocomposite powder production. Here we adapted static dosing ALD precursors instead of flow-type ALD,\(^\text{37, 38}\) since static dosing can reach a much higher reactant utilization efficiency and allow to coat high surface area substrates, such as graphene and CNT powders.\(^\text{56}\) Our results indicate that more than 80 wt% of active materials can be achieved with less than 50 ALD cycles. The greatly reduced ALD deposition time and cost, along with maximized precursor utilization efficiency make ALD suitable for large-scale production. At this time, we have the capability of synthesizing nanocomposites in a batch quantity of 10 g powder per ALD run at a lab scale.

The nitrogen adsorption/desorption isotherms of ZnO-G composites together with the pore size distribution, derived based on the Density Functional Theory (DFT) model, are shown in Fig. 3. All three samples display the typical type IV isotherm with a large hysteresis loop, demonstrating that significant amount of meso-pores initially existed in the graphene\(^\text{42}\) were preserved after ALD depositions. The broad pore distribution from 3-35 nm almost remains intact after deposition, resulting from the unique self-limiting reaction of ALD. Such open structure is expected to provide easy access of electrolytes and facilitate the fast Li-ion diffusion when used as a potential lithium-ion battery electrode. The specific surface areas are 314.5, 138.8, and 27.2 m\(^2\)/g for 15, 30, and 50 ALD cycles ZnO-G composites, respectively, as a result of the overall reduction in specific area with increased mass loadings of ZnO.
peaks are found at ~1.38 V and can be related to the formation of LiZn alloy, as well as the formation and growth of solid electrolyte interphase (SEI). These peaks overlap each other, and therefore only one strong peak can be seen. The high current response near 0 V indicates lithium intercalation into graphene backbone.5,8 In the subsequent cathodic scans, the major peak splits into two peaks concentrated at 0.7 and 0.1 V, corresponding to the reduction of ZnO to Zn and alloy formation of lithium and zinc,5,16 respectively. These peaks tend to be stabilized in the subsequent cycles. On the anodic side, a broad shoulder exists between 0.2–0.4 V, and two small peaks located at 0.52 and 0.66 V, can be attributed to the multi-step delithiation of LiZn through Li\textsubscript{2}Zn\textsubscript{3} \rightarrow Li\textsubscript{2}Zn\textsubscript{2} \rightarrow LiZn\rightarrow Zn.5,62 In addition, a broad peak is found at ~1.38 V and can be related to the formation of ZnO by the redox reaction between Zn and Li\textsubscript{2}O.63,64 The anodic curves also show good reproducibility in the subsequent cycles, suggesting a high reversibility of the lithium and ZnO reactions. From the CV analysis, the overall lithium storage reaction of ZnO can be described as ZnO + 2Li+ + 2e- \leftrightarrow Zn + Li\textsubscript{2}O and Zn + Li+ + e- \leftrightarrow ZnLi.

Figs. 4(b) and (c) present the voltage profiles of 15 and 30 ALD cycle ZnO-G composites in the 1st, 5th, 10th, 30th, and 50th cycles at a current density of 100 mA g-1. The initial discharge capacity is 2000 mAh g-1 for 15 ALD cycle ZnO-G which decreased to 728 mAh g-1 at the 5th cycle. In comparison, the 30 ALD cycle ZnO-G delivered a discharge capacity of 1400 and 615 mAh g-1 at the first and fifth cycle, respectively. The capacity degradation is reduced in subsequent cycles and a stable capacity is nearly preserved after 5 cycles. The large irreversible initial capacity loss can be attributed to the electrolyte decomposition and SEI formation. As revealed in a previous study, the SEI formation is linearly proportional to the BET specific surface area of carbon-based materials.65 Increasing the ZnO particle size by exposing graphene to larger number of ALD cycles decreases the specific surface area which in turn decreases the initial irreversible capacity loss. Similar lithium storage behaviors were observed for the two composites with different ALD cycles. A large plateau was observed at 0.8 V in the first discharge, which corresponds to the SEI formation and reduction of ZnO into Zn, followed by a sloping down to 0.05 V corresponding to the subsequent alloy formation23,27,44 and lithium intercalation into graphene.66 A voltage plateau at ~1.2 V was observed from the charging curves, indicating the oxidation reaction of Zn with Li\textsubscript{2}O,67 consistent with the CV analysis. The long term cyclic stability of the ALD ZnO/G composite electrode was evaluated at a current density of 100 mA g-1 for 100 cycles. For comparison, an electrode prepared from commercial ZnO nanoparticles with a size of 20 nm and a surface area of 50 m2 g-1 acquired from Nanostructured & Amorphous Materials, Inc. was also cycled at the same current density. In addition, a control experiment was designed with a reference electrode (denoted as ZnO-G composite) prepared by mechanically mixing commercial ZnO nanoparticles with graphene, and the weight percentage of the controlled electrode resembles that of the 30 ALD cycle ZnO-G composite electrode with 68% ZnO and 32% graphene. As shown in Fig. 4(d), the reversible capacity of commercial ZnO nanoparticles continuously decayed from 1st to the 50th cycle, and exhibited a capacitance less than 20 mAh g-1 after 20 cycles. The control sample has much higher capacity ~400 mAh g-1 due to the contribution from extra graphene. In comparison, the 15 and 30 ALD cycle ZnO-G nanocomposites exhibit stable discharge capacities of 560 mAh g-1 and 540 mAh g-1 even after 50 and 100 deep cycles, respectively. The Coulombic efficiency reaches 97.6% and 98.1% for 15 ALD cycle ZnO-G in the 50th cycle and 30 ALD cycle ZnO-G in the 100th cycle, respectively. It was reported that the defects and edge plane in the graphene structure significantly contributed to the lithium storage capacity.68 However, those sites preferably attracted ALD precursors as compared to the graphene basal plane which was very inert to ALD precursors. Therefore, the capacity contribution from those defects and edge planes of graphene was restricted since they were covered by ZnO QDs. To obtain the real capacitance contribution of graphene, 5 ALD cycles of Al\textsubscript{2}O\textsubscript{3} were deposited on graphene powders and the charge/discharge was carried out under the same conditions. Typical growth rate of ALD Al\textsubscript{2}O\textsubscript{3} is 0.1 nm/cycle69 and therefore ~0.5 nm Al\textsubscript{2}O\textsubscript{3} particles were formed on graphene. The Al\textsubscript{2}O\textsubscript{3} mimicked the ZnO deposited at the defects and edge planes of G, in that only intercalation between graphene layers can contribute to the capacitance of this composite. As shown in Fig. S1, the stable capacity of Al\textsubscript{2}O\textsubscript{3}-G after 50 deep cycles is only 258 mAh g-1. Therefore, the ZnO contribution in the composite can be extracted after considering the real contribution from graphene (see detailed calculations in the supporting information). As shown in Fig. 5, the specific
capacitances of ZnO in 15 and 30 ALD cycle ZnO-G nanocomposites after 50 cycles are 960 and 660 mAh g\(^{-1}\), respectively. The stable capacity of 960 mAh g\(^{-1}\) nearly approaches the theoretical value of ZnO (978 mAh g\(^{-1}\)) and to our best knowledge, is the highest reported value in the literature for ZnO-based anodes (Table 1).

Excellent rate performance has also been achieved using 15, 30, and 50 ALD cycle ZnO-G nanocomposites, as shown in Figure 4e at various current densities. The cell has been continuously cycled without any pause between different rates. Impressively, 15 and 30 ALD cycle ZnO-G nanocomposites both maintain ~400 mAh g\(^{-1}\) capacity even when the current density is increased to 1000 mA g\(^{-1}\), retaining ~66% and ~74% of their discharge capacity at 100 mA g\(^{-1}\), respectively. The reference electrode only reaches ~200 mAh g\(^{-1}\) capacity cycled at the same current density 1000 mA g\(^{-1}\). In addition, the initial decay for the reference electrode is much severer than any of the ALD ZnO-G nanocomposites. These results indicate that chemically-bonded nanocomposites by ALD have much better rate performance than the mechanically-mixed control sample. Although the control electrode has more capacity contributed from higher graphene loading, than the 50 ALD cycle ZnO-G nanocomposite, their rate performances are almost identical.

The excellent electrochemical performance of the ZnO-G nanocomposites can be attributed to several potential factors: 1) ALD allows for the deposition of ZnO QDs under the critical size below which the pulverization of large ZnO QDs (228 % volume expansion/contraction during discharge/charge processes) can be greatly mitigated; 2) ultra-small ZnO QDs shorten the Li\(^+\) diffusion path, resulting in a very impressive rate performance; 3) 3-D structure of ZnO-G nanocomposites will greatly enhance lithium diffusion and electron conduction; 4) excellent mechanical properties of graphene can accommodate the large volume change of ZnO; and 5) The chemical bonding between ZnO and graphene prevent the aggregation of nanoparticles during cycling.

To illustrate the advantages of controlling smaller-sized QDs to mitigate the mechanical degradation, and thus capacity fading, the microstructure of the ZnO QDs upon cycling was characterized in detail by TEM. Fig. 6 shows the TEM image of 50 ALD cycle ZnO-G before and after 50 deep cycles at 100 mA g\(^{-1}\). No obvious fracture or agglomeration of the nanoparticles were observed, suggesting that 7 nm ZnO on a graphene substrate is below the critical size for pulverization. The failure of the electrode made from commercial ZnO nanoparticles is most likely due to relatively large particle sizes. This phenomenon has been observed in SnO\(_2\) and Si by in-situ TEM with ionic liquid. This is the first time that a similar size effect has been observed for ZnO in a coin cell configuration with organic electrolyte. It should be noted that the integration of the graphene and metal oxides by ALD may further enhance the stability of metal oxide QDs, greatly improving the rate performance of the composite electrodes. Our study also suggests that precise thickness control of ALD allows us to explore critical sizes for other potential electrode materials, which suffer pulverization during cycling within a real battery device.

Conclusions

In this study, we have successfully synthesized ZnO quantum dots on graphene with well controlled particle sizes by controlling ALD cycles, and demonstrated that the smaller sized particles of the ZnO-G composite electrodes contribute towards better electrochemical performance. Electrochemical measurements indicated that 15 ALD cycle of ZnO-G with a particle size of 2 nm exhibits a stable capacity of 560 mAh g\(^{-1}\) at 100 mA g\(^{-1}\) and 400 mAh g\(^{-1}\) at 1000 mA g\(^{-1}\). By subtracting the graphene contribution from the composites, ZnO QDs display an unprecedented specific capacity of 960 mAh g\(^{-1}\), approaching the theoretical capacity of 978 mAh g\(^{-1}\). The excellent capacity and rate performance of the ZnO-G composite can be attributed to the small-sized QDs. In comparison, the pulverization of large particles typically occurs as a result of significant volume expansion can be minimized. These results highlight the importance of fine control and manipulation of microstructure and particle sizes to improve electrode electrochemical performance.
Acknowledgements

This work is supported by the National Science Foundation under an award of DMR 1151028. The work done at the University of Colorado was supported by the Defense Advanced Research Projects Agency (DARPA).

Notes and references
