Journal of Materials Chemistry A

Journal of Materials Chemistry A

Novel one-dimensional Bi2O3-Bi2WO6 p-n hierarchical heterojunction with enhanced photocatalytic activity

Journal:	Journal of Materials Chemistry A
Manuscript ID:	TA-ART-01-2014-000274.R1
Article Type:	Paper
Date Submitted by the Author:	14-Mar-2014
Complete List of Authors:	peng, yin; anhui normal university, College of Chemistry and Materials Science yan, mei; anhui normal university, College of Chemistry and Materials Science chen, qing; anhui normal university, College of Chemistry and Materials Science fan, cong; University of Science and Technology of China, Division of Nanomaterials and Chemistry zhou, hai; anhui normal university, College of Chemistry and Materials Science Xu, An-Wu; Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Division of Nanomaterials and Chemistry

SCHOLARONE[™] Manuscripts [JOURNAL NAME HERE] | www.rsc.org/[JOURNAL]

Novel one-dimensional Bi_2O_3 - Bi_2WO_6 p-n hierarchical heterojunction with enhanced photocatalytic activity

Yin Peng^a, Mei Yan^a, Qing-Guo Chen^a, Cong-Min Fan^b, Hai-Yan Zhou^a and An-Wu Xu^{*b}

Receipt/Acceptance Data [DO NOT ALTER/DELETE THIS TEXT] *Publication data* [DO NOT ALTER/DELETE THIS TEXT] DOI: 10.1039/b000000x [DO NOT ALTER/DELETE THIS TEXT]

A novel one-dimensional (1D) Bi_2O_3 nanorods- Bi_2WO_6 ¹⁰ nanosheets p-n junction photocatalyst was prepared by three steps synthetic route. The obtained products were characterized by Xray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron

- ¹⁵ spectroscopy (XPS), N₂-sorption/desorption and Brunauer-Emmett-Teller surface area (BET). Bi_2O_3 rods with the diameter of about 200 nm were obtained by calcining $Bi(OHC_2O_4) \cdot 2H_2O$ precursor. Bi_2WO_6 nanosheets vertically grow onto the Bi_2O_3 rods along the long axial direction. The photocatalytic activity to
- $_{20}$ degrade Rhodamine B (RhB) and phenol under solar/visible light by p-n junction Bi_2O_3 - Bi_2WO_6 nanorods was investigated. The result demonstrates that the novel Bi_2O_3 - Bi_2WO_6 p-n heterostructures display higher photocatalytic activity than single Bi_2O_3 nanorods or Bi_2WO_6 flowers. The enhancement of the
- ²⁵ photocatalytic activity of the Bi₂O₃-Bi₂WO₆ p-n junction structures can be ascribed to the strong visible light absorption and the effective separation of photogenerated electrons and holes by the internal electrostatic field in the junction region. More importantly, 1D p-n heterostructures made of ordered nanosheets
- ³⁰ is beneficial for transport of photogenerated carriers, and increasing the rate of photocatalytic reaction. This work would offer a new insight into the design and fabrication of advanced materials with heterojunction structures for photocatalytic applications and optoelectronic devices.
- 35

Introduction

With the environmental pollution increase, green chemistry has become a necessary requirement for the sustainable development ⁴⁰ of human society. Among the various green chemical techniques, semiconductor photocatalysis has been considered an costeffective, sustainable and the most promising green chemical technologie because it represents an easy way to complete degradation of organic pollutions by utilizing the solar energy.¹⁻³

⁴⁵ However, some traditional photocatalysts (such as TiO₂, ZnO, SnO₂) can absorb only ultraviolet light due to their wide band gap and have moderate photocatalytic activity due to the high

^bDivision of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R China.

Fax: (+86) 551-6360 2346; E-mail: <u>anwuxu@ustc.edu.cn</u>.

recombination rate of photogenerated carriers.⁴⁻⁶ So, the development of photocatalysts performance under visible light ⁵⁰ constitutes the key point. A significant number of new photocatalysts do perform adequately under visible light but typically display poor performance with respect to TiO₂ commercial references (e.g., Degussa P25) under sunlight because the enhanced visible light absorption and fast ⁵⁵ recombination of charge recombination occurs simultaneously.⁷ For that reason, instead of using a single semiconductor, combining two or more semiconductors with appropriate band positions to improve the photocatalytic performance is an established idea because it can lead to an enhanced charge ⁶⁰ separation and interfacial charge-transfer efficiency.⁸⁻¹⁰ Especially, it is noted that the fabrication of a p-n junction photocatalyst is believed to be the very effective because of the existence of an internal electric field.^{11,12}

As one of the simplest Aurivillius oxides with layered $_{65}$ structure, Bi₂WO₆ is special for its good photocatalytic performance under visible light irradiation.¹³⁻¹⁵ Bare Bi₂WO₆ presents photoabsorption properties from UV light to visible light with wavelength of shorter than ca. 450 nm, ^{16,17} which overlaps a small part of the solar spectrum. Moreover, the rapid 70 recombination of photoinduced electron-hole pairs seriously limits the energy-conversion efficiency. To broaden the range of visible-light photoresponse and promote the separation of photogenerated carriers of Bi2WO6, we intend to design a composite photocatalyst by coupling Bi₂WO₆ with a narrow 75 bandgap semiconductor Bi₂O₃ with matched band potentials. The well-established heterojunction structure could be employed to restrict the recombination of the charge carriers and enhance the quantum yield.¹⁸ The electrons excited by visible light can be transferred to Bi₂WO₆ from the narrow bandgap semiconductor, 80 which favors the charge separation and also improves the visiblelight photocatalytic activity of the heterostructure dramatically. Bi_2O_3 is a p-type semiconductor with a band gap of 2.8 eV and has proved to be a photocatalyst for water splitting and pollutant decomposition under visible-light irradiation. However, the 85 photocatalytic activity of pure Bi₂O₃ is also low because of the high recombination probability of photogenerated electrons and holes.¹⁹⁻²¹ It is expected that the formation of p-n junction structure between n-type Bi₂WO₆ and p-type Bi₂O₃ will greatly enhance the photoctalytic efficiency. Recently, Bi₂O₃-Bi₂WO₆ pjunction structures with microspheres,²² 90 n hollow microspheres,^{23,24} and flowers,^{25,26} have been synthesized and exhibit better photocatalytic activies than pure Bi₂O₃ or Bi₂WO₆ samples. However, Bi₂O₃-Bi₂WO₆ p-n heterojunction with highly ordered Bi₂WO₆ nanosheets grown on one-dimensional (1D) 95 Bi₂O₃ nanorods have not been reported. Compare with above mentioned heterostructures, 1D p-n heterojunction photocatalysts have aroused great concern because of their high surface areas,

^aThe Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China

[†] Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See http://dx.doi.org/10.1039/b000000x/

remarkable and directional transport characteristics of electrons and holes, and thus their enhanced photocatalytic activities.²⁷

¹⁰⁰ Here, we report for the first time the synthesis of a novel Bi_2O_3 nanords- Bi_2WO_6 ordered nanosheets p-n junction via a simple method. This 1D heterostructure displays superior photocatalytic activity for degradation of the phenol and RhB under solar/visible light irradiation.

Experimental Section

Photocatalyst preparation

All the reagents used in our experiment were analytical grade and used as received without further purification.

 $Bi(OHC_2O_4){\bullet}2H_2O$ nanorods were first synthesized via a hydrothermal method. $Bi(NO_3)_3{\bullet}5H_2O$ (2.911 g) and $Na_2C_2O_4$ (1.206 g) were dissolved separately in 20 mL distilled water.

¹¹⁵ Then the Na₂C₂O₄ solution was added into the Bi(NO₃)₃ suspension solution with vigorous magnetic stirring. The mixed suspension solution was poured into a stainless steel autoclave with a Teflon liner and heated at 120 °C for 40 h. The obtained solid sample was washed with deionized water and anhydrous ¹²⁰ ethanol, and then dried at 60 °C for 6 h.

Then, Bi_2WO_6 - $Bi(OHC_2O_4)$ •2H₂O samples were synthesized via a solvothermal process. 0.341 g of $Bi(OHC_2O_4)$ •2H₂O nanorods were added into the 15 ml of $Bi(NO_3)_3$ •5H₂O ethylene glycol (EG) solution under magnetic stirring, and then 15 mL of

- ¹²⁵ Na₂WO₄•2H₂O aqueous solution was added drop-wise and stirred for another 30 min. The mixture was sealed into a Teflon-lined stainless steel autoclave and treated at 160 °C for 20 h. After being cooled down to room temperature naturally, the products were collected and washed several times with deionized water
- 130 and absolute ethanol, and dried at 60 °C for 4 h. Bi₂WO₆ flowers were obtained in the absence of Bi(OHC₂O₄)•2H₂O nanorods in above reactive system.

Finally, the Bi_2O_3 - Bi_2WO_6 heterojunctions were obtained by calcining Bi_2WO_6 - $Bi(OHC_2O_4)$ + $2H_2O$ composites at 400 °C for 2

¹³⁵ h in air. The as-obtained samples with the molar ratio of Bi(OHC₂O₄)•2H₂O:Bi₂WO₆ 2:1.5, 2:3, 2:10, 2:2 and 2:4, were labelled WBP1, WBP2, WBP3, WBP4 and WBP5 respectively. And the corresponding calcined products Bi₂O₃-Bi₂WO₆ were labelled WB1, WB2, WB3, WB4 and WB5, respectively. Bi₂O₃
¹⁴⁰ rods were obtained by calcinations of Bi(OHC₂O₄)•2H₂O precursors at 400 °C for 2 h in air.

Photocatalytic activity measurements

- Photocatalytic activity of the prepared Bi₂O₃-Bi₂WO₆ samples was tested by decomposing phenol and RhB under solar/visible light irradiation. The light source was a 300 W Xe lamp (PLS-SXE300/300UV, Trusttech Co., Ltd. Beijing). In a typical experiment, the photocatalyst (100 mg) was added into 100 mL
- ¹⁵⁰ of phenol (or RhB) (10 mg/L) to produce a suspension for the degradation reaction at room temperature under air. Before the solar/visible light irradiation, the suspension was stirred in the dark for 30 min to ensure an adsorption/desorption equilibrium of phenol (or RhB) on the surface of the photocatalyst. Then, the
- ¹⁵⁵ suspension was illuminated by the Xe lamp combined with a UV cutoff filter ($\lambda \ge 400$ nm) under stirring. At given time intervals, above 4 mL suspension was withdrawn, and centrifuged to remove the precipitate. The degradation reaction process was monitored by measuring the concentration of phenol (or RhB) as
- ¹⁶⁰ a function of irradiation time in the solution with UV-Vis absorption spectra. Additionally, the recycling experiments were performed for six recycles to test the durability. After each cycle,

165

Photocatalytic water splitting

In a typical photocatalytic experiment, the prepared Bi_2O_3 -Bi_2WO₆ sample (50 mg) was dispersed in an aqueous solution (100 mL) of Fa (SO) (2.1 mML¹). The averaging use solution

www.rsc.org/[JOURNAL] | [JOURNAL NAME HERE]

¹⁷⁰ (100 mL) of Fe₂(SO₄)₃ (2.1 mM·L⁻¹). The suspension was sealed in a quartz flask and purged with argon for 1 h to drive away the residual air. The photocatalytic oxygen production was initiated by irradiating the suspension with a 300 W Xenon lamp (MAX-302, Asahi Spectra, USA) coupled with a UV cut-off filter ($\lambda >$ ¹⁷⁵ 420 nm). The gas product was analyzed periodically through a gas chromatograph (Agilent 7890A) with a thermal conductivity detector (TCD).

Characterization

180 Field emission scanning electron microscopy (FE-SEM) images were recorded on a Hitachi S-4800 microscope. Transmission electron microscopic (TEM) images, high-resolution transmission electron microscopic (HRTEM) images and the selected area electron diffraction (SAED) patterns were performed on a JEOL-2010 microscope with an accelerating voltage of 200 kV, and energy-dispersive X-ray spectroscopy (EDS) analysis was performed. X-Ray powder diffraction (XRD) was carried out on a Rigaku (Japan) D/max -yA X-ray diffractometer with Cu-Ka ¹⁹⁰ radiation ($\lambda = 0.154178$ nm). UV-vis diffuse-reflectance spectrum was recorded with a UV-2450 spectrophotometer in the wavelength range of 200-800 nm at room temperature. BaSO₄ was used as the reflectance standard material. The X-Ray photoelectron spectroscopy (XPS) was performed on a Perkin-¹⁹⁵ Elmer RBD upgraded PHI-5000C ESCA system. Nitrogen adsorption/desorption measurements were performed at 77 K using a Micromeritics Tristar II 3020 M analyzer after the samples were degassed at 180 °C for 6 h. The Brunauer-Emmett-Teller (BET) surface area was estimated by using adsorption data ²⁰⁰ in a relative pressure range from 0.05 to 0.3.

Results and discussion

In this study, Bi(OHC₂O₄)•2H₂O rods were first synthesized, 205 then Bi2WO6-Bi(OHC2O4)•2H2O nanosheet-rod heterostructures obtained by hydrothermal treatment were using Bi(OHC₂O₄)•2H₂O rods as support. Finally, Bi₂O₃-Bi₂WO₆ p-n junction nanostructures wit nanosheets standing on rods were prepared by calcinations of Bi₂WO₆-Bi(OHC₂O₄)•2H₂O. The 210 Bi(OHC₂O₄)•2H₂O-Bi₂WO₆ heterostructures with different Bi(OHC₂O₄)•2H₂O/Bi₂WO₆ molar ratio of 2:1.5, 2:3 and 2:10, were labelled as WBP1, WBP2 and WBP3, respectively. And the corresponding calcined products Bi2O3-Bi2WO6 was denoted as WB1, WB2 and WB3, respectively (see experimental section).

The X-ray powder diffraction (XRD) patterns of the obtained products are shown in Fig. S1. All of the diffraction peaks in the Fig. S1a could be indexed to bismuth oxalate (Bi(OHC₂O₄)•2H₂O) precursor reported by Monnereau et al.²⁸ With the loaded-Bi₂WO₆ content increasing, the new diffraction ²²⁰ peaks appear and their intensities increase gradually (Fig. S1 b-d) and these new peaks can be indexed to orthorhombic Bi₂WO₆ (Fig. S1e). These results show that the heterostructure between Bi(OHC₂O₄)•2H₂O and Bi₂WO₆ is formed.

Fig. 1 shows the XRD patterns of obtained Bi₂O₃ rods, Bi₂O₃-²²⁵ Bi₂WO₆ p-n heterojunctions and Bi₂WO₆. All of the diffraction peaks shown in Fig. 1b and f can be well-indexed to the monoclinic structure of Bi₂O₃ (JCPDS No. 76-1730) and

This journal © Royal Society of Chemistry

[JOURNAL NAME HERE] | www.rsc.org/[JOURNAL]

orthorhombic Bi₂WO₆ (JCPDS No. 39-0256), respectively. The sharp diffraction peaks of both Bi₂O₃ and Bi₂WO₆ indicate their ²³⁰ good crystallinity. No traces of other phases are detected,

- confirming the high purity of the samples. Fig. 1c–e obviously show two sets of XRD peaks of monoclinic Bi_2O_3 and orthorhombic Bi_2WO_6 , indicating that the as-synthesized products are composite materials. Moreover, it is noted that the
- 235 diffraction peaks of Bi_2O_3 are weakened with increasing Bi_2WO_6/Bi_2O_3 molar ratio (see red labels in Fig. 1b-e), while the peak intensities of Bi_2WO_6 increase gradually.

Fig. 1 The XRD patterns of (a) Standard Card of Bi_2O_3 , (b) Bi_2O_3 , (c) ²⁴⁰ WB1, (d) WB2, (e) WB3 and (f) Bi_2WO_6 .

Fig. 2 displayed the SEM images of these Bi_2O_3 - Bi_2WO_6 heterojunctions and their precursors. $Bi(OHC_2O_4)$ - $2H_2O$ is 1D rods with a mean diameter of 450 ± 50 nm and length of 5 ± 1 µm.

- ²⁴⁵ Each rod has smooth surface (Fig. 2a). After calcinations at 400 °C for 2 h, Bi(OHC₂O₄)•2H₂O transformed to Bi₂O₃ rods with rough surface and porosity due to gas removal (Fig. 2b). The obtained Bi₂WO₆-Bi(OHC₂O₄)•2H₂O precursors are also 1D rod-like structures, and the thin Bi₂WO₆ nanosheets grow vertically
- ²⁵⁰ onto the surface of Bi(OHC₂O₄)•2H₂O nanorod (Fig. 2c). Meanwhile, the more the loaded-Bi₂WO₆ content is used, the more Bi₂WO₆ nanosheets orderly grow onto the Bi(OHC₂O₄)•2H₂O rods along the long axial direction (Fig. 2e, g), and the gap between Bi₂WO₆ nanosheets becomes narrower
- ²⁵⁵ and narrower, finally each Bi(OHC₂O₄)•2H₂O rod is completely covered by Bi₂WO₆ nanosheets. During the formation of Bi(OHC₂O₄)•2H₂O-Bi₂WO₆ composite, the preferred outward diffusion of Bi ions from Bi(OHC₂O₄)•2H₂O precursor to Bi₂WO₆ leads to a net material flux across the composite 260 interface. Therefore, some hollow structures (see red arrows in 1000 model) and 1000 model.
- Fig. 2e, g) are formed based on the Kirkendall effect.²⁹ From Fig. 2d, f, h, it can be clearly seen that the morphologies of the obtained Bi₂WO₆-Bi₂O₃ heterostructures were kept unchanged after calcining Bi₂WO₆-Bi(OHC₂O₄)•2H₂O precursors at 400 °C ²⁶⁵ for 2 h.
 - To further obtain information about the structure of the sample, the WB2 p-n heterojunction was characterized by transmission electron microscopy (TEM). As shown in Fig. 3a, it can clearly seen the Bi_2WO_6 nanosheets vertically grow onto the surface of
- $_{270}$ the Bi₂O₃ nanorods, which is consistent with the result of the SEM measurements. Fig. 3b shows the high-resolution transmission electron microscopic (HRTEM) image taken from the tip of the Bi₂WO₆ nanosheet (red square highlighted in Fig. 3a). It is found that two sets of lattice fringes with interplanar
- ²⁷⁵ spacing of 0.82 nm and 0.27 nm, well correspond to (020) and (002) planes of orthorhombic Bi₂WO₆. The selected area electron diffraction (SAED) pattern (inset in Fig. 3b) taken from the

nanoparticles can be indexed as a Bi₂WO₆ single crystal recorded along the [100] zone axis. The energy dispersive spectroscopy ²⁸⁰ (EDS) analysis further confirms that nanosheets only contain O, Bi and W elements, and the atomic ratio of Bi/W is calculated to be about 1.85:1, close to 2:1 in Bi₂WO₆ (Fig. S2).

Fig. 2 The FE-SEM images of the Bi_2O_3 - Bi_2WO_6 and their precursors (a) $Bi(OHC_2O_4)$ - $2H_2O$, (b) pure Bi_2O_3 , (c) WBP1, (d) WB1, (e) WBP2, (f) WB2, (g) WBP3 and (h) WB3.

Fig. 3 (a) The TEM and (b) HRTEM images of the WB2 heterojunction.

²⁹⁵ Quantitative X-ray photoelectron spectroscopy (XPS) analysis was carried on the obtained WB2 heterostructures. The typical 360

full survey and high-resolution spectra for Bi 4f, W 4f, and O 1s region were showed in Fig. 4. It can be seen that only O, Bi and W elements exist in the sample (Fig. 4a, (i)). High resolution XPS

- ³⁰⁰ spectrum of W 4f region shows a binding energy at 35.5 eV for W $4f_{7/2}$ and at 37.6 eV for W $4f_{5/2}$, suggesting that W exists in the chemical state of W⁶⁺ (Fig. 5b, (i)).^{22,30} The binding energy for Bi $4f_{5/2}$ and Bi $4f_{7/2}$ are 164.5 and 159.2 eV (Fig. 5c, (i)) respectively, which prove all the Bi species in the WB2 sample
- $_{305}$ are in the form of Bi_{3}^{3+} . However, it is worth noting that these binding energy values are not exactly the same as those obtained from pure Bi_2O_3 or Bi_2WO_6 , 30,31 which reveal that interfacial structure is formed and the local environment and electron density of the elements is changed in some degree. The XPS
- ³¹⁰ spectrum for O1s can be deconvoluted to three peaks at 529.6, 530.5 and 531.9 eV, which can be assigned to Bi-O and W-O in Bi₂WO₆ (Fig. 4d (i)) and Bi-O in Bi₂O₃, respectively.^{23,25,31,32} On the other hand, according to the XPS result of sample WB2, the concentration of the surface Bi³⁺ is 20.66 atom%, whereas that of
- 315 W⁶⁺ is 5.82 atom%. The atomic ratio of Bi and W is about 3.55, which is larger than the stoichiometric ratio in Bi₂WO₆. This result reveals the co-existence of Bi₂O₃ and Bi₂WO₆ species in the WB2 sample, in good accordance with the XRD, TEM and SEM results.

Fig. 4 (a) Survey XPS spectrum of the WB2 sample, High-resolution XPS spectra of (b) W 4f, (c) Bi 4f and (d) O 1s for WB2 sample. (i) WB2 325 before use; (ii) WB2 after being used to degrade RhB dye for six times.

Adsorption and desorption experiments using N2 were carried out at 77 K. Fig. 5a displays the nitrogen sorption isotherms of the Bi₂O₃-Bi₂WO₆ heterostructures, pure Bi₂O₃ and Bi₂WO₆ 330 samples. The shape of the isotherm is a type IV isotherm with a type H3 hysteresis loop at high relative pressures according to the IUPAC classification, which indicates that these samples are mesoporous structures in the pore diameter range of 2-50 nm.^{33,34} This result can be further confirmed by the corresponding pore 335 size distribution, as shown in Fig. 5b. Considering the observed morphology of the samples, the smaller pores with a sharp peak at about 2.6 nm may be generated during the crystal growth process, whereas the larger pores (20-30 nm) could be generated during thermal treatment process. Table 1 gives the BET surface 340 area and porous volume of different samples. It can be found that the BET specific surface areas of the Bi₂O₃-Bi₂WO₆ p-n junction structures are all higher than that of pure Bi₂O₃ nanorods (1.9 $m^2 \cdot g^{-1}$), but lower than that of Bi_2WO_6 flowers (15.4 $m^2 \cdot g^{-1}$).

WB2 and Bi_2WO_6 have much larger pore volume than that of ³⁴⁵ other samples, and Bi_2O_3 nanorods have the smallest pore volume.

Previous studies show that a suitable conformation of pores allows light waves to penetrate deep inside the photocatalysts and leads to high mobility of charge.³⁵⁻³⁸ It is speculated that the pores in the WB2 heterostructures and Bi₂WO₆ flowers allow the ³⁵⁰ penetration of light waves and phenol or RhB molecules in solution deep into the photocatalysts, which may greatly promote

the photocatalytic activity.

www.rsc.org/[JOURNAL] | [JOURNAL NAME HERE]

355 Fig. 5 (a) Nitrogen adsorption-desorption isotherm and (b) the corresponding pore size distribution of the different samples.

Table 1 The surface area surface and pore volume of different samples.

Samples	BET surface area (m ² •g ⁻¹)	Pore volume (cm ³ •g ⁻¹)
WB1	14.247	0.076
WB2	13.696	0.105
WB3	10.828	0.061
Bi ₂ O ₃	1.891	0.005
Bi ₂ WO ₆	15.426	0.102

The optical property of Bi₂O₃-Bi₂WO₆ heterojunctions was examined using UV-vis diffuse-reflectance spectrum (DRS). As shown in Fig. 6. The absorption edge of the pure Bi₂O₃ and 365 Bi₂WO₆ is ~437 and 428 nm, which shows their visible light absorption. After combining the two semiconductors, Bi2O3-Bi₂WO₆ heterojunctions show more intensive absorption within the visible light range in comparison with pure Bi₂O₃ or Bi₂WO₆, and the visible light absorption ability of the composite is 370 gradually enhanced with loaded-Bi2WO6 increase. However, too much loaded-Bi₂WO₆ (such as sample WB3) will decrease the visible light absorption. For semiconductors, their optical band gap can be calculated from the absorption spectra using the equation $\alpha hv = A(hv - E_g)^{2/n}$, in which α , h, v, A, and E_g are the absorption coefficient, Planck constant, light frequency, a constant and band gap, respectively.³⁹ In the equation, n decides the characteristics of the transition in a semiconductor, here n = 2for $Bi_2WO_6^{40}$ and n = 4 for $Bi_2O_3^{41}$. The energy of the band gap is calculated by extrapolating the straight line to the abscissa axis. 380 The band gap of pure Bi₂WO₆ and Bi₂O₃ was estimated to be 2.89 and 2.71 eV, respectively.

470

[JOURNAL NAME HERE] | www.rsc.org/[JOURNAL]

Fig. 6 (a) UV-Vis diffuse reflectance spectra of Bi_2O_3 , Bi_2WO_6 and Bi_2O_3 -Bi_2WO_6 samples; (b) the plots of $(\alpha h\nu)^{2/n}$ vs. $h\nu$ (n = 4 for Bi_2O_3 and n = 2 for Bi_2WO_6).

The photocatalytic activity of the samples was evaluated by decomposing toxic organic compounds in aqueous solution, such as phenol. Fig. 7a depicts the correlation curves between the

- ³⁹⁰ concentration changes of phenol molecules and the irradiation durations in the presence of photocatalysts. It is observed that comparing with pure Bi₂O₃ and Bi₂WO₆, the photocatalytic activities of Bi₂O₃-Bi₂WO₆ p-n junction photocatalysts gradually increase with the loaded-Bi₂WO₆ content increasing and reach the
- ³⁹⁵ maximum value for WB2 sample. After that, the activity of Bi₂O₃-Bi₂WO₆ p-n junction photocatalyst (WB3) sequentially decreases. Obviously, the photocatalytic activity of the samples is significantly affected by the Bi₂WO₆ content in Bi₂O₃-Bi₂WO₆ junctions. According to the SEM images (Fig. 2) of Bi₂O₃-
- ⁴⁰⁰ Bi₂WO₆ p-n heterojunctions, for low Bi₂WO₆ content in WB1 sample, sparse Bi₂WO₆ nanosheets grown on Bi₂O₃ rods are observed, so only a small number of p-n junctions are generated, leading to a low photocatalytic activity. When the Bi₂WO₆ content is increased in the WB2 sample, a large number of p-n
- ⁴⁰⁵ junctions are formed, thus resulting in the highest photocatalytic activity for the optimal WB2 sample. With the Bi₂WO₆ content further increasing dense Bi₂WO₆ nanosheets almost cover the Bi₂O₃ rods, as observed in WB3 sample (Fig. 2h), which decreases the light irradiation on Bi₂O₃ rods and the p-n junction
- ⁴¹⁰ interfaces. This shielding effect of dense Bi_2WO_6 nanosheets coating on the Bi_2O_3 rods makes the photocatalytic activity of WB3 sample decrease. When WB2, Bi_2O_3 , Bi_2WO_6 and P25 are used as photocatalysts, the degradation efficiencies of phenol are 100%, 44%, 13% and 2% in 60 min under solar light irradiation,
- ⁴¹⁵ respectively. Moreover, when WB2 was used as photocatalyst, the absorption peaks at 270 nm and 208 nm disappeared completely in 120 min (Fig. 7b). The total organic carbon (TOC) was measured, and results show that the phenol molecules can be thoroughly mineralized. Above facts clearly show that the as-
- 420 obtained WB2 p-n junction structure owns outstanding photocatalytic capacity and can be used in environmental treatment and protection. The UV-vis absorbance spectra of phenol using different samples as photocatalysts are shown in Fig. S3.

Fig. 7 (a) Photocatalytic degradation curves of phenol (10 mg/L) using different photocatalysts, (b) UV-Vis absorption spectra of phenol using WB2 as phtocatalyst under solar light irradiation.

⁴³⁰ In order to further evaluate the photodegradation capacity of Bi₂O₃-Bi₂WO₆ p-n junction structures, the degradation of RhB aqueous solution under solar light irradiation was carried out. As shown in Fig. 8a, Bi₂O₃-Bi₂WO₆ p-n junction photocatalysts display better degradation efficiency for RhB than pure Bi₂O₃ and

- ⁴³⁵ Bi₂WO₆, and WB2 sample displays the best photocatalytical activity which can degrade 100% RhB in 60 min. Moreover, the absorption peaks of the RhB at 554 nm and 200 nm disappear completely after 60 min reaction, and no new peaks appear (Fig. 8b) using WB2 as photocatalyst. This lies in two facts: i) the
- 440 removal of the ethyl groups and cleavage of the whole

chromophore structure (cycloreversion) occur simultaneously for RhB molecules during the photocatalytic process; ii) all RhB molecules are completely degraded. The comparison of the degradation of RhB using Bi₂O₃-Bi₂WO₆ p-n heterojunctions ⁴⁴⁵ (WB1–WB5) as photocatalysts is given in Fig. S4. It can be found that with the Bi₂WO₆ content increase (WB1 < WB4 < WB2), more and more p-n junctions are formed, which results in the highest photocatalytic activity for the optimal WB2 sample. However, with further increasing the Bi₂WO₆ content (WB2 < ⁴⁵⁰ WB5 < WB3), dense Bi₂WO₆ nanosheets shield the light irradiation on Bi₂O₃ rods and the p-n junction interfaces and then

result in the lowest photocatalytic activity for WB3 sample. WB2 has also good photocatalytic performance for the degradation of RhB aqueous solution under visible light ⁴⁵⁵ irradiation ($\lambda > 400$ nm) (Fig. S5a), and displays higher photocatalytic activity than Bi₂O₃/Bi₂WO₆ heterostructures reported in ref 24 and 25. However, the degradation mechanism of RhB molecules is different from that under solar light irradiation. The UV-Vis absorbance spectra of RhB molecules ⁴⁶⁰ (Fig. S5b) after photocatalytic reaction indicate that the removal of the ethyl groups is the first stage and then cleavage of the whole chromophore structure (cycloreversion) occurs in RhB molecules by the visible light irradiation.

Fig. 8 (a) The degradation curves of RhB using different photocatalysts, (b) UV-Vis absorption spectra of RhB aqueous solutions using WB2 as photocatalyst under solar light irradiation. Inset in b is photographs of RhB solutions by different reaction time.

To investigate the stability of photocatalytic performance in solar light region, the WB2 sample was used to degrade RhB dye in six repeated cycles, and the results are shown in Fig. 9. It is noteworthy that WB2 photocatalyst exhibits good photostability ⁴⁷⁵ under solar light irradiation (Fig. 9a), and its photocatalytic efficiency only reduces 2% after six repeated cycles. From the SEM image, we also find that WB2 still retained the original structure (Fig. 9b) after six repeated cycles. The XPS spectrum of the WB2 after being reused for six times to degrade RhB dye is ⁴⁸⁰ also carried out to prove the photostability of WB2 sample under solar light irradiation. As shown in Fig. 4 (ii), Bi species are still in the form of Bi³⁺, and W exists in the form of W⁶⁺, demonstrating its high stability in the process of photocatalysis.

Fig. 9 (a) Cycling times of the photocatalytic degradation of RhB in the presence of WB2 under solar light irradiation, (b) the SME image of the WB2 after six repeated cycles.

490

500

To determine the relative positions of conduction band (CB) and VB edges, the total densities of states of VB for Bi_2O_3 , Bi_2WO_6 and WB2 were measured, as shown in Fig. 10. In contrast to Bi_2O_3 , the VB maximum of WB2 is down-lowered

⁴⁹⁵ from 1.30 to 1.71 eV. Compared to Bi₂WO₆, the VB maximum of WB2 is up-shifted from 2.24 to 1.71 eV. The shift of VB maximum position for WB2 can be attributed to the formation of heterojunction, as confirmed by XRD and TEM results.

Fig. 10 VB-XPS spectra of Bi₂O₃ and Bi₂WO₆ and WB2 samples.

According to the VB edges of Bi_2WO_6 and Bi_2O_3 , and combined with band gap derived from DRS, the CB edge ⁵⁰⁵ potentials of the two semiconductors can thus be obtained by using the equation of $E_{CB} = E_{VB} - E_g$. So, the energy band structures of Bi_2O_3 and Bi_2WO_6 is easy to be generated (Fig. 11a). For p-type Bi_2O_3 , its Fermi energy level is close to the valence band, while for n-type Bi_2WO_6 , its Fermi energy level is

- $_{510}$ close to the conduction band. When the two semiconductors are in contact to form p-n junction (Fig. 11b), there is diffusion of electrons from Bi₂WO₆ to Bi₂O₃ due to their different Fermi energy level, resulting in accumulation of negative charges in Bi₂O₃ close to the junction. At the same time, the holes transfer
- ⁵¹⁵ from Bi₂O₃ to Bi₂WO₆, leaving a positive section in Bi₂WO₆ near the junction. Meanwhile, the energy bands of Bi₂O₃ shift upward along the Fermi level and those of the Bi₂WO₆ shift downward along its Fermi level (Fig. 11b). With equilibration of Bi₂O₃ and Bi₂WO₆ Fermi levels, the diffusion of electrons from Bi₂WO₆ to
- ⁵²⁰ Bi₂O₃ stops. Therefore, an equilibrium state is formed and an inner electric field will also be generated at the interface. Under the solar/visible light irradiation, Bi₂O₃ with narrow band gap is excited and photoelectrons and holes are generated. The excited electrons on the conduction band of p-type Bi₂O₃ transfer to that
- ⁵²⁵ of n-type Bi₂WO₆, while the holes remain in the valence band of p-type Bi₂O₃. Furthermore, the migration rate of the photogenerated electrons and holes could be promoted by the internal electric field in the Bi₂O₃-Bi₂WO₆ p-n heterojunctions and the photocatalytic activity is largely enhanced.
- According to Fig. 10 and Fig. 11, it can be seen that the electronic structure of Bi_2O_3 - Bi_2WO_6 p-n junction structure matches well with the redox potential of water into hydrogen and oxygen molecules, namely, the bottom level of the conduct band has to be more negative than the reduction potential of H^+/H_2 (0)
- s35 eV vs normal hydrogen electrode (NHE)); the top level of the valence band has to be more positive than the oxidation potential of O_2/H_2O (1.23 eV). The experiments of photocatalytic water

www.rsc.org/[JOURNAL] | [JOURNAL NAME HERE]

splitting into O_2 were performed (Fig. S6) using Bi_2O_3 - Bi_2WO_6 as photocatalyst. It can be found O_2 production is about 70 mL•g⁻¹ in ⁵⁴⁰ 4 h under 300 W Xe light irradiation.

As well known, many factors influence the photocatalytic activity of a photocatayst, such as BET surface area, size of particles, etc. Prepared Bi₂WO₆ flower owns larger BET surface area than that of WB2, but its photocatlytic activity is much ⁵⁴⁵ poorer than that of WB2 (Fig. 7, 8). This is mainly attributed to the formation of p-n junction in the WB2 sample.

550 Fig. 11 Schematic diagram for (a) energy band of Bi₂WO₆ and Bi₂O₃ and (b) the formation of p-n junction and the possible charge separation.

Conclusions

In summary, the novel p-n junction photocatalysts of Bi₂O₃ 555 rods-Bi₂WO₆ nanosheets have been prepared for the first time. Bi₂WO₆ nanosheets vertically grow on the Bi₂O₃ nanorods along the axial direction. The obtained Bi₂O₃-Bi₂WO₆ p-n heterojunctions exhibit higher photocatalytic activity than pure Bi₂WO₆ and Bi₂O₃ for the degradation of phenol and RhB under 560 solar/visible light irradiation. Phenol and RhB can be completely degraded in 60 min under solar light irradiation using Bi₂O₃-Bi₂WO₆ p-n heterojunction as photocatalyst. This good photocatalytic activity is ascribed to the synergistic effects: (a) extended absorption in the visible light region; (b) formation of p-565 n junction enhancing the separation of photogenerated carriers; (c) 1D ordered nanostructure is favourable for high efficient and directional transport and separation of electrons and holes. This study provides a general and effective method to fabricate unique 1D Bi₂O₃-Bi₂WO₆ p-n junction photocatalyst on a large scale. 570 Moreover, this route would offer new insight into the design and fabrication of other advanced materials with heterojunction structures for photocatalytic applications.

Acknowledgements

575 This work is supported by the special funding support from the the National Basic Research Program of China (2011CB933700, 2010CB934700,) and the National Natural Science Foundation of China (21271165, 21101006).

Notes and references

580 ‡ Additional figures and table are given in supporting information.

- 1 H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri and J. Ye, *Adv. Mater.*, 2012, **24**, 229–251.
- 2 R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, *Science*, 2001, 585 **293**, 269–272.

CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.0) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS

[JOURNAL NAME HERE] | www.rsc.org/[JOURNAL]

- 3 Y. Peng, S. C. Qin, W. S. Wang and A. W. Xu, *Cryst, Eng, Comm.*, 2013, **15**, 6518–6525.
- 4 D. E. Skinner, D. P. Colombo, J. J. Cavaleri and R. M. Bowman, *J. Phys. Chem.*, 1995, **99**, 7853–7856.
- 590 5 C. Ye, Y. Bando, G. Shen and D. Golberg, J. Phys. Chem. B, 2006, 110, 15146–15151.
 - 6 D. Chu, J. Mo, Q. Peng, Y. Zhang, Y. Wei, Z. Zhuang and Y. Li, *ChemCatChem*, 2011, **3**, 371–377.
- 7 X. Zhang, K. Udawa, Z. Liu, S. Nishimoto, C. Xu, Y. Lu, H. Sakai, M.
 Ave, T. Marakoi and A. Kujishima, *J. Photoch. Photobio. A*, 2009, 202, 39–47.
- 8 X. Wang, Q. Xu, M. R. Li, S. Shen, X. L. Wang, Y. C. Wang, Z. C. Feng, J. Y. Shi, H. X. Han and C. Li, *Angew. Chem. Int. Ed.*, 2012, **51**, 13089–13092.
- 600 9 T. Kawahara, Y. Konishi, H. Tada, N. Tohge, J. Nishii and S. Ito, Angew. Chem. Int. Ed., 2002, 41, 2811–2813.
 - 10 X. Wang, S. Shen, S. Q. Jin, J. X. Yang, M. R. Li, X. L. Wang, H. X. Han and C. Li, *Phys. Chem. Chem. Phys.*, 2013, **15**, 19380–19386.
 - 11 H. G. Kim, P. H. Borse, W. Choi and J. S. Lee, Angew. Chem. Int. Ed., 2005, 44, 4585–4589.
 - 12 B. Nikoobakht, J. Bonevich and A. Herzing, J. Phys. Chem. C, 2011, 115, 9961-9969.
 - 13 C. Zhang and Y. F. Zhu, Chem. Mater., 2005, 17, 3537-3545
- 14 F. Amano, A. Yamakata, K. Nogami, M. Osawa and B. Ohtani, J. Am. Chem. Soc., 2008, **130**, 17650–17651.
 - 15 G. S. Li, D. Q. Zhang, J. C. Yu and M. K. H. Leung, *Environ. Sci. Technol.*, 2010, 44, 4276–4281.
 - 16 L. Wu, J. H. Bi, Z. H. Li, X. X. Wang and X. Z. Fu, *Catal. Today*, 2008, 131, 15–20.
- 615 17 Z. J. Zhang, W. Z. Wang, M. Shang and W. Z. Yin, J. Hazard Mater., 2010, 177, 1013–1018.
 - 18 M. K. Lee and T. H. Shih, J. Electrochem. Soc., 2007, 154, 49-51.
 - 19 Z. L. Xu, I. Tabata, K. Hirogaki, K Hisada, T. Wang, S. Wang and T. Hori, *RSC Adv.*, 2012, **2**, 103–106.
- 620 20 Y. Xu and M. A. A. Schoonen, Am. Mineral., 2000, 85, 543-556.
- 21 L. Zhou, W. Z. Wang, H. L. Xu, S. M. Sun and M. Shang, *Chem. Eur. J.*, 2009, **15**, 1776–1782.
- 22 M. Ge, Y. F. Li, L. Liu, Z. Zhou and W. Chen, J. Phys. Chem. C, 2011, 115, 5220-5225.
- 625 23 X. N. Li, R. K. Huang, Y. H. Hu, Y. J. Chen, W. J. Liu, R. S. Yuan and Z. H. Li, *Inorg. Chem.*, 2012, **51**, 6245–6250.
 - 24 M. S. Gui and W. D. Zhang, J. Phys. Chem. Solids, 2012, 73, 670 1342–1349.

- 25 M. S. Gui, W. D. Zhang, Q. X. Su and C. H. Chen, J. Solid State Chem., 2011, 184, 1977–1982.
- 26 Z. Q. Li, X. T. Chen and Z. L. Xue, J. Colloid Interface Sci., 2013, 394, 69–77.
- 27 Z. Dong, S. J. Kennedy and Y. Wu, J. Power Sources, 2011, 196, 4886–4904.
- 635 28 O. Monnereau, L. Torter, P. Llewellyn, F. Rouquerol and G. Vacquier, Solid State Ionics., 2003, 157, 163-169.
 - 29 W. S. Wang, M. Dahl and Y. D. Yin, Chem. Mater. 2013, 25, 1179–1189.
- 30 J. Wu, F. Duan, Y. Zheng and Y. Xie, J. Phys. Chem. C, 2007, 111, 12866–12871.
 - 31 Y. Schuhl, H. Baussart, R. Delobel, M. LeBras, J. Leroy, L. G. Gengembre and J. Rimblot, J. Chem. Soc., Faraday Trans., 1983, 79, 2055-2069.
- 32 Y. Wang, Y. Wang, Y. Meng, H. Ding, Y. Shan, X. Zhao and X. Tang, *J. Phys. Chem. C*, 2008, **112**, 6620–6626.
 - 33 H. G. Yu, R. Liu, X. F. Wang, P. Wang and J. G. Yu, *Appl. Catal. B*, 2012, **111–112**, 326–333.
- 650 34 G I. N. Waterhouse, G A. Bowmaker and J. B. Metson, *Phys. Chem. Chem. Phys.*, 2001, 3, 3838-3845.
 - 35 X. Wang, J. C. Yu, C. Ho, Y. Hou and X. Fu, *Langmuir*, 2005, **21**, 2552–2559.
- 655 36 L. Z. Zhang and J. C. Yu, Chem. Commun., 2003, 16, 2078-2079.
 - 37 C. S. Guo, M. Ge, L. Liu, G. D. Gao, Y. C. Feng and Y. Q. Wang, *Environ. Sci. Technol.*, 2010, 44, 419–425.
 - 38 Y. W. Mi, S. Y. Zeng, L. Li, Q. F. Zhang, S. N. Wang, C. H. Liu and D. Z. Sun, *Mater. Res. Bull.*, 2012, **47**, 2623–2630.
- 660 39 M. A. Butler, J. Appl. Phys., 1977, 48, 1914-1920.
 - 40 Y. Y Guo, G. K. Zhang, H. H. Gan and Y. L. Zhang, *Dalton Trans.*, 2012, **41**, 12697–12703.
 - 41 H. Y. Jiang, J. J. Liu, K. Cheng, W. B. Sun and J. Lin, J. Phys. Chem. C, 2013, 117, 20029–20036.
- 665 42 T. Watanabe, T. Takizawa and K. Honda, J. Phys. Chem., 1977, 81, 1845–1851.
 - 43 J. D. Zhuang, W. X. Dai and P. Liu, Langmuir, 2010, 26, 9686-9694.
 - 44 K. Yu, S. G. Yang, H. He, C. Sun, C. G. Gu and Y. M. Ju, J. Phys. Chem. A, 2009, 113, 10024–10032.

[JOURNAL NAME HERE] | www.rsc.org/[JOURNAL]

Paper

Graphic Abstract:

A novel one-dimensional Bi_2O_3 nanorods- Bi_2WO_6 nanosheets p-n junction photocatalyst was ⁵ prepared. This Bi_2O_3 - Bi_2WO_6 heterostructure exhibits high photocatalytic activity for the degradation of phenol and Rhodamine B (RhB) under solar/light light irradiation, which is ascribed to the extended absorption in the visible light region and the effective separation of photogenerated electrons and holes by the internal electrostatic field in the junction region.