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Determining a membrane’s shear modulus, independently of its area-dilatation

modulus, via capsule flow in a converging micro-capillary

P. Dimitrakopoulos∗ and S. Kuriakose
Department of Chemical and Biomolecular Engineering,

University of Maryland, College Park, Maryland 20742, USA

(Dated: February 2, 2015)

The determination of the elastic properties of the membrane of artificial capsules is essential for
the better design of the various devices that are utilized in their engineering and biomedical ap-
plications. However this task is complicated owing to the combined effects of the shear and area-
dilatation moduli on the capsule deformation. Based on computational investigation, we propose a
new methodology to determine a membrane’s shear modulus, independently of its area-dilatation
modulus, by flowing strain-hardening capsules in a converging micro-capillary of comparable size
under Stokes flow conditions, and comparing the experimental measurements of the capsule elon-
gation overshooting with computation data. The capsule prestress, if any, can also be determined
with the same methodology. The elongation overshooting is practically independent of the viscosity
ratio for low and moderate viscosity ratios, and thus a wide range of capsule fluids can be employed.
Our proposed experimental device can be readily produced via glass fabrication while owing to
the continuous flow in the micro-capillary, it is possible the characterization of a large number of
artificial capsules.

1. INTRODUCTION

The study of the interfacial dynamics of artificial or
physiological capsules (i.e. membrane-enclosed fluid vol-
umes) in viscous flows has seen an increased interest dur-
ing the last few decades owing to their numerous engi-
neering and biomedical applications [29, 41]. In the area
of interest of the present paper, the study of the mo-
tion and deformation of capsules and biological cells in
micro-channels is motivated by a wide range of applica-
tions including drug delivery, cell sorting and cell charac-
terization devices [1, 6], fabrication of microparticles and
microcapsules with desirable properties [7, 33], determi-
nation of membrane properties [22, 30], and of course its
similarity to blood flow in vascular capillaries [31, 39].

The determination of the elastic properties of the mem-
brane of artificial capsules (i.e. the shear modulus Gs and
area-dilatation modulus Ga) is essential for the better
design of the various devices that are utilized [21, 22].
For this, several techniques have been developed includ-
ing static compression and shear, extensional or centrifu-
gal flow fields for milli-capsules [3–5, 28] as well as mi-
cropipette and atomic force microscope measurements,
and flow in microfluidic channels and tubes for micro-
capsules, e.g. [9, 21–23, 26, 30]. We emphasize that the
mechanical determination of membranes is a challeng-
ing task (especially for micro-capsules), while two ex-
perimental techniques are commonly required to account
for the combined effects of the shear and area-dilatation
moduli on the membrane deformation [21, 28].

In our recent paper [10], we proposed a new method-
ology to identify the shear and area-dilatation moduli

∗ dimitrak@umd.edu

of individual milli- and micro-capsules, by comparing
our computation data with experimental measurements
of two capsule dimensions at moderate and strong pla-
nar extensional flows in classical or microfluidic “four-roll
mill” devices. This procedure has the advantage of not
depending on, or being influenced by, the fluids viscos-
ity ratio because, owing to the specific symmetry of the
planar extensional flow, at steady state there is no flow
inside the capsule, as also happens for steady-state cap-
sule motion in solid ducts [10, 19, 20, 23, 32].

Therefore, the membrane moduli determination relies
on capsule dynamics, including deformation and motion,
under transient or steady-state conditions, which is com-
plicated owing to the nonlinear coupling of the deforming
hydrodynamic forces with the restoring interfacial forces
of the capsule membrane. Thus, the capsule dynamics is
affected in general by several parameters, including the
capillary number (i.e. the ratio of the deforming viscous
stresses to restoring shearing stresses on the membrane),
the fluids viscosity ratio for transient dynamics, capsule
prestress (if any), the moduli ratio Ga/Gs, and the de-
gree of strain-hardening or strain-softening of the mem-
brane (i.e. the membrane nature) for non-linear capsule
dynamics. In transient conditions, the effects of the flu-
ids viscosity ratio can be eliminated by employing very
viscous surrounding fluids which makes the capsule dy-
namics independent of the (exact value of the) viscosity
of the capsule fluid [22, 27].

However, under any conditions, the local tensions and
deformation of a membrane result from the combined
effects of two basic types of deformations, i.e. shearing
in-plane without changing surface area (associated with
Gs) and extended in-plane such that the surface area
increases (associated with Ga). As a consequence, the
moduli determination of a capsule is a challenging task,
requiring the measurement of at least two independent
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2

capsule properties, commonly via two experimental tech-
niques or via one experimental technique involving mea-
surement of different capsule properties, to account for
the combined effects of both membrane moduli on the
capsule dynamics [10, 21, 28]. It is of interest to note
that even the determination of the shear modulus alone
still requires the measurement of at least two indepen-
dent capsule properties (or the a priori knowledge of,
or assumption on, the value of the moduli ratio Ga/Gs)
since, in general, both membrane moduli affect the cap-
sule dynamics [8, 18, 21, 24].

In addition, without the a priori knowledge of the
moduli ratio Ga/Gs (as it is the case for a new or un-
known membrane), the determination of a membrane’s
shear modulus Gs requires significant testing to verify
the correct value of the moduli ratio Ga/Gs, for all tech-
niques involving both linear or nonlinear capsule defor-
mations. This task is more complicated for experimen-
tal techniques involving three-dimensional capsule defor-
mation (e.g. flow in microfluidic channels) since the re-
quired for comparison three-dimensional computational
data may be difficult to obtain for a wide rage of Ga/Gs.
(For methodologies involving nonlinear capsule deforma-
tions, the strain-hardening (or strain-softening) nature
of the membrane also affects the capsule dynamics, and
thus additional testing may be necessary, e.g. by utiliz-
ing different constitutive laws to describe the membrane
tensions [18].) On the other hand, assumption of the
moduli ratio Ga/Gs may simplify the modulus determi-
nation [24], but there is no guarantee that the derived
modulus value represents the true shear modulus of the
membrane.

Based on computational investigation, in this paper we
develop a new methodology to determine a membrane’s
shear modulus Gs, independently of its area-dilatation
modulus Ga, by flowing strain-hardening capsules in
a converging micro-capillary of comparable size under
Stokes flow conditions, and comparing the experimen-
tal measurements of the capsule elongation overshooting
with computation data. The capsule prestress, if any,
can also be determined with the same methodology. The
elongation overshooting is practically independent of the
viscosity ratio for low and moderate viscosity ratios, and
thus a wide range of capsule fluids can be employed. Our
proposed experimental device can be readily produced
via glass fabrication while owing to the continuous flow
in the micro-capillary, it is possible the characterization
of a large number of artificial capsules. After the shear
modulus determination, the area-dilatation modulus Ga

of the membrane can easily be determined via any ex-
isting methodology, e.g. steady-state motion in a micro-
channel. To the best of our knowledge, this is the first
methodology which can determine a membrane’s shear
modulus independently of its area-dilatation modulus for
an array of capsules.

2. PROBLEM DESCRIPTION

We consider a three-dimensional capsule (i.e. a fluid
volume enclosed by a thin elastic membrane) with a
spherical undisturbed shape. The capsule is flowing along
the centerline of a straight micro-channel with a converg-
ing section in the middle connecting two square channels,
as shown in figure 1. We emphasize that the centerline
requirement is not a restriction for our study since this is
the steady-state location of spherical capsules in a square
channel [19]; thus our capsules are expected to have been
aligned with the micro-capillary centerline during their
motion in the area further upstream the constriction.

To facilitate our description, we imagine that the chan-
nel is horizontal as illustrated in figure 1(a). Thus, the
flow direction (i.e. the x-axis) corresponds to the chan-
nel’s or capsule’s length, the z-direction will be referred
as height while the y-direction will be referred as width.
The height of the square micro-channel at the left is 3ℓz

and that of the square micro-channel at the right 2ℓz.
The converging middle section, which connects the two
square micro-channels, has length ℓcon = ℓz. Each of the
two square micro-channels has length 12ℓz, and thus the
length of the entire microfluidic device is 25ℓz. The half-
height ℓz of the downstream square micro-channel serves
as the length scale for the present problem while the ori-
gin of the co-ordinate system is placed at the beginning
of this channel (just after the converging middle section)
as shown in figure 1(a).

The shape of the converging middle section in our
micro-geometry is defined by a “quarter-cosine” vari-
ation, which for the co-ordinate system shown in fig-
ure 1(a) is given by

f(x) = ℓz

{3

2
+

1

2
cos

[

(
x

ℓz

+ 2)
π

2

]}

(1)

where −1 ≤ x/ℓz ≤ 0 and f(x) defines the geometry’s
height z(x) or width y(x). It is of interest to mention
that, although the results presented in this paper were
derived utilizing this shape of the converging middle sec-
tion, we derived very similar (or practically identical)
results utilizing other converging shapes, including “half-
cosine” variation

f(x) = ℓz

{5

4
+

1

4
cos

[

(
x

ℓz

− 1)π
]}

(2)

and “straight-line” connection

f(x) = ℓz

(

1 −
1

2

x

ℓz

)

(3)

Similar devices involving converging micro-capillaries
with circular or square cross-sections have been produced
via glass fabrication to study soft particles, e.g. for the
generation of monodisperse double emulsions and the
elasticity determination of soft gels [14, 34, 35].

The capsule’s interior and exterior are Newtonian flu-
ids, with viscosities λµ and µ, and the same density. The
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3

capsule size a is specified by its volume V = 4πa3/3 and
is comparable to the micro-geometry’s half-height ℓz. In
addition, we consider that the capsule is slightly over-
inflated, made of a strain-hardening membrane following
the Skalak et al. constitutive law [36] (and thus called
Skalak capsule in this paper) with comparable shearing
and area-dilatation resistance. This capsule description
represents well bioartificial capsules such as the capsules
made of covalently linked human serum albumin (HSA)
and alginate used in the experimental study of Risso,
Collé-Pailot and Zagzoule [32].

Our membrane description is based on the well-
established continuum approach and the theory of thin
shells by considering the membrane as a two-dimensional
continuum with shearing and area-dilatation resistance
but negligible bending resistance. This modeling has
been proven to be an excellent description of a wide
range of thin elastic membranes (such as biocompatible
alginate, synthetic polysiloxane and aminomethacrylate
capsules) whose thickness is several orders of magnitude
smaller than the size of the capsules (up to a membrane
thickness of 5% the capsule size), and their bending resis-
tance is very small compared to their shearing resistance
[3, 11, 13, 23, 28].

The surface stress is determined by the in-plane
stresses

∆f = −∇s · τ = −(ταβ |α tβ + bαβ ταβ n) (4)

where the Greek indices range over 1 and 2, while Ein-
stein notation is employed for (every two) repeated in-
dices. In this equation, the ταβ |α notation denotes co-
variant differentiation, tβ = ∂x/∂θβ are the tangent vec-
tors on the capsule surface described with arbitrary curvi-
linear coordinates θβ , and bαβ is the surface curvature
tensor [12, 29]. The in-plane stress tensor τ is described
by the strain-hardening constitutive law of Skalak et al.

[36] which relates τ ’s eigenvalues (or principal elastic ten-
sions τP

β , β = 1, 2) with the principal stretch ratios λβ by

τP
1 =

Gsλ1

λ2

{λ2
1 − 1 + Cλ2

2[(λ1λ2)
2 − 1]} (5)

Note that the reference shape of the elastic tensions is
the spherical quiescent shape of the capsule while to cal-
culate τP

2 reverse the λβ subscripts. In Eq.(5), Gs is
the membrane’s shear modulus while the dimensionless
parameter C describes the membrane hardness (i.e. the
strength of its strain-hardening nature) and is associated
with the scaled area-dilatation modulus Ga of the mem-
brane, Ga/Gs = 1 + 2C [29, 36].

To quantify the capsule over-inflation, we define the
prestress parameter αp such that all lengths in the unde-
formed capsule would be scaled by (1 + αp) relatively to
the reference shape [19, 20, 27]. Since the capsule is ini-
tially spherical, its membrane is initially prestressed by
an isotropic elastic tension τ0 = τP

β (t = 0) which depends
on the employed constitutive law and its parameters but
not on the capsule size. For example, for a Skalak cap-
sule with C = 1 and αp = 0.05, the undisturbed capsule

radius a is 5% higher than that of the reference shape
and the initial membrane tension owing to prestress is
τ0/Gs ≈ 0.3401. In addition, incorporation of prestress
into our elastic membrane model removes the buckling
instability observed in axisymmetric-like flows. (See sec-
tion 2 in Ref.[19].)

At time t = 0 the capsule is located at −5ℓz on the
micro-channel centerline, the flow is turn on inside the
microfluidic device and we investigate the transient dy-
namics of the capsule as it enters and exits the constric-
tion which occupies the x-region [−ℓz, 0]. (The specific
choice for the capsule’s initial position does not affect the
capsule deformation and motion inside the constriction or
downstream of it, i.e. we obtained identical results even
for capsules placed further upstream the constriction.)

At the micro-capillary ends the flow approaches the
undisturbed flow u∞ in a square channel which serves
as the boundary condition assuming a fixed flow rate Q
inside the micro-device. (The exact form of the channel’s
velocity field u∞ and its average velocity U are given
in section 2 of our earlier paper on capsule motion in a
square micro-channel [19].) We assume that the Reynolds
number is small for both the surrounding and the inner
flows, and thus the capsule deformation occurs in the
Stokes regime.

The numerical solution of the interfacial problem is
achieved through our interfacial spectral boundary ele-
ment method for membranes [12] which has been em-
ployed for the study of the capsule dynamics in square
and rectangular microfluidic channels [19, 20, 27]. For
more details on our capsule modeling and the computa-
tional method, the interested reader is referred to sec-
tion 2 of our earlier papers [12, 19] as well as the elec-
tronic supplementary information of this paper. To ver-
ify the accuracy of our results, we performed convergence
runs covering the entire interfacial evolution with differ-
ent spacial grids for several capsules and flow rates. Our
convergence runs showed that our results for the interfa-
cial shape, the capsule velocity and the additional pres-
sure difference presented in this work were determined
with an accuracy of at least 3 significant digits.

In our work, we consider Skalak capsules with different
size a/ℓz, membrane hardness C and prestress αp. The
present problem depends on two additional dimensionless
parameters, the fluids viscosity ratio λ and the capillary
number Ca defined as

Ca =
µU

Gs

(6)

where U is the average undisturbed velocity at the down-
stream square micro-channel. It is of interest to note
that the capillary number, as defined by Eq.(6), does not
contain any length scale, and thus it may be considered
as a dimensionless flow rate. Note that we investigate
capsules with size a/ℓz = 0.6–1.3, hardness C = 0.1–5,
prestress αp = 0.01–0.1, and viscosity ratio λ = 0.01-10,
in flows with capillary number Ca = 0.02–0.3. This range
of dimensionless parameters can readily be used in exper-
imental microfluidic systems, e.g. see [18, 22, 23, 32]. In
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our study, the velocity is scaled with the average undis-
turbed velocity U and the pressure with the associated
pressure scale, Π = µU/(2ℓz), in the downstream square
channel.

3. CAPSULE DYNAMICS IN A CONVERGING

MICRO-CHANNEL

The transient deformation of a capsule moving though
the converging micro-channel is shown in figure 2. At the
upstream square channel, the capsule obtains a spherical-
like shape with a pointed downstream edge, as seen in fig-
ure 2(a), because the local surrounding flow is not strong
enough the cause a significant capsule deformation owing
to the larger cross-section of the upstream channel. The
capsule shape becomes more deformed and pointed as
the capsule enters the constriction, shown in figure 2(b),
owing to the strong hydrodynamic forces associated with
the local cross-sectional area decrease which gradually
increases the average fluid velocity inside the constric-
tion since the flow rate Q is fixed in our problem. To
balance the deforming hydrodynamic forces, the capsule
tries to increase its downstream curvature and decrease
its upstream curvature so that the total restoring ten-
sion force on the membrane is increased. In essence, this
capsule deformation results from the curvature term in
the membrane traction, Eq.(4), as we identified in our
earlier studies on capsule dynamics in square or rectan-
gular microfluidic channels [19, 20, 27]. As the capsule
moves out of the constriction and into the smaller square
channel at the right, the capsule elongates while its shape
becomes cylindrical-like, as seen in figure 2(c). Finally
at the downstream square channel, the capsule obtains
the typical axisymmetric-like bullet shape, shown in fig-
ure 2(d), owing to the stronger confinement and thus the
stronger local hydrodynamic forces [18, 19, 22, 32].

In essence, the specific micro-geometry employed in
this work, connects via the converging constriction, the
two capsule regimes identified in our earlier work on the
steady-state capsule motion in axisymmetric-like, square
or cylindrical, channels [19].

In particular, for small and moderate capsule sizes
(i.e. a/ℓz . 0.8), our earlier investigation [19] revealed
that the capsule velocity Ux and additional pressure drop
∆P+ are governed by the same scaling laws as for similar-
size spherical high-viscosity droplets or solid particles
[2, 16], i.e.

Umax − Ux

U
∼

( a

ℓz

)2

(7)

where Umax/U ≈ 2.096 is the maximum undisturbed ve-
locity at the centerline of a square channel with half-
height ℓz and average velocity U , and

∆P+

Π
∼

( a

ℓz

)5

(8)

Both equations represent well the capsule properties at
the upstream square channel studied in this work, as
shown in figure 3 for capsule centroid xc/ℓz < −2.5, if
we consider that for that channel its half-height is 1.5ℓz

and the average velocity is 4/9U .
In addition, our earlier investigation [19] revealed that

for thick capsules with size 0.8 . a/ℓz ≤ 1.3, the con-
fined bullet-like capsules also follow the dynamics of high-
viscosity droplets of similar shape, but now the veloc-
ity and additional pressure drop are affected by the film
thickness h between the capsule membrane and the solid
walls,

Ux − U

U
∼

h

ℓz

(9)

∆P+

Π
∼

( a

ℓz

)2 a

h
(10)

where the thickness h depends on both the capillary num-
ber and the (growing) membrane tensions. The mono-
tonic decrease of the capsule velocity Ux and the signif-
icant increase of the additional pressure drop ∆P+ with
the size a/ℓz for thick capsules (owing to the associated
decrease of the film thickness h) are clearly shown in fig-
ure 3 for xc/ℓz ≥ 1.

Our results presented in figure 3 reveal that the con-
verging constriction achieves a monotonic connection of
the small- and large-capsule regimes for the capsule ve-
locity and additional pressure difference. Therefore, our
interest is now focused on the non-trivial deformation
overshooting occurring as the capsule moves out of the
constriction and into the smaller square channel at the
right, shown earlier in figure 2(c). This transient capsule
elongation results in a maximum length Lx and a mini-
mum height Lz of the capsule as seen in figure 4. (These
lengths are determined as the maximum distance of the
capsule’s interface in the x and z directions.) We em-
phasize that the overshooting of the capsule length Lx is
significant for all capsule sizes studied while our larger
capsules with a/ℓz ≥ 1.2 need more time traveling in the
downstream square channel to obtain their steady-state
bullet-like shape.

4. SHEAR MODULUS DETERMINATION

In this section, we investigate in detail the transient
deformation overshooting occurring as the capsule moves
out of the constriction and into the smaller downstream
square channel. In particular, we identify its dependence
on all the problem parameters, including flow properties
(capillary number Ca and viscosity ratio λ) and mem-
brane properties (hardness C and prestress).

Figure 5 shows that the deformation overshooting is
more pronounced as the flow rate Ca increases for a
given capsule, owing to the stronger deforming hydrody-
namics forces. Clearly, the constriction’s cross-sectional
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5

area decrease over a relatively short length ℓcon results
in strong hydrodynamic forces which overcome locally
the weak restoring membrane tensions and produce a
transient maximum capsule elongation. As seen in fig-
ure 5(a), the overshooting in the capsule length Lx is
significant, and thus measurable, and can be used to de-
termine the membrane’s shear modulus Gs, as discussed
in this section.

Figure 6 reveals that the capsule’s elongation over-
shooting does not depend on the fluids viscosity ratio
for low and moderate values, λ ≤ 1. We emphasize that,
in general, the transient capsule deformation under ex-
ternal flow changes shows three viscosity-ratio regimes
owing to the combined effects of the surrounding and in-
ner fluids’ normal stresses on the capsule interface [27].
For low enough viscosity ratio, e.g. for λ ≤ 0.01, the inner
fluid does not practically participate in the transient dy-
namics, and thus all low-viscosity capsules show identical
evolution. For moderate viscosity ratios, λ = O(1), both
the inner and the surrounding fluids’ normal stresses af-
fect the capsule deformation. For very viscous capsules
(e.g. λ ≥ 5), it is the inner fluid which mostly affects the
capsule deformation. In this case, as the viscosity ratio
λ increases, the time necessary for the capsule to react
to the flow changes imposed by the constriction [27]

tm ∼ (1 + λ)Ca
a

ℓz

tf (11)

(where tf = ℓz/U is the flow time scale) is increased sig-
nificantly, and thus the capsule deformation rate is slower
resulting in a decrease of the capsule’s transient defor-
mation, as seen in figure 6 for λ = 10. The important
contribution of the converging constriction used in the
present study is that it makes the capsule’s elongation
overshooting practically independent of the viscosity ra-
tio λ for both low and moderate values, i.e. for λ ≤ 1, as
seen in figure 6. In particular, our results for both cap-
sule sizes studied (a/ℓz = 1, 1.2) show that the relative
difference in the maximum capsule length Lmax

x of the
transient overshooting is less than 0.5% for λ ≤ 1 and
becomes much smaller (i.e. less than 0.05%) for λ ≤ 0.1.

Figure 7 reveals a very important feature of the cap-
sule’s elongation overshooting, that for the parameter
space studied, it does not depend on the membrane hard-
ness C, and thus on the membrane’s area-dilatation mod-
ulus Ga. Therefore, this transient elongation overshoot-
ing is characterized by only shape-changing (i.e. elonga-
tion) of the characteristic membrane elements but under
constant local surface area. Observe that the capsule’s
steady-state bullet shape in the downstream square chan-
nel does depend weakly on the membrane hardness C, as
shown in figure 7 for capsule centroid xc/ℓz ≥ 2.

To investigate further this feature, we studied the
dynamics of capsules with sizes a/ℓz = 1, 1.2 at the
characteristic flow rate Ca = 0.05, for different mem-
brane harnesses C. In particular, we studied cap-
sules with membrane hardness C = 0.1, 0.3, 0.5, 1, 2, 5
and the same initial prestress tension τ0, namely

τ0/Gs ≈ 0.1597, 0.3401, 0.5432, 0.7716. (These val-
ues of τ0 correspond to the prestress parameter αp =
0.025, 0.05, 0.075, 0.1 for a capsule with C = 1.) Our
results for both capsule sizes studied (a/ℓz = 1, 1.2)
show that the relative difference in the maximum cap-
sule length Lmax

x of the transient overshooting for differ-
ent membrane harnesses C and the same prestress τ0 is
much less than 1% for the three largest prestress tensions
τ0, and becomes less than 2% for the smallest τ0 stud-
ied, i.e. for τ0/Gs ≈ 0.1597. In essence, for the param-
eter space studied in this work, the capsule’s elongation
overshooting is practically independent of the membrane
hardness C, and thus of the membrane’s area-dilatation
modulus Ga.

Figure 8 shows the effects of the capsule prestress on
the transient interfacial deformation. For a given flow
rate Ca (i.e. given deforming hydrodynamic forces), the
capsule deformation is decreased as the capsule prestress
increases, owing to the fact that the capsule’s prestress
τ0 contributes to the restoring membrane tensions.

The capsule’s elongation overshooting owing to the
converging constriction is shown in figure 9 as a function
of the capillary number Ca for different initial prestress
tensions τ0 and for a given capsule size (a/ℓz = 1). We
emphasize that our results shown in this figure, which
are formally valid for λ = 1 and C = 1, in reality repre-
sent low and moderate viscosity ratios, λ ≤ 1, and a wide
range of membrane hardness C (e.g. at least C = 0.1–5),
since for this parameter space, low or moderate viscosity
ratios λ and the membrane hardness do not practically
affect the capsule’s overshooting.

Our investigation of the capsule’s transient length over-
shooting has revealed a new method to identify a mem-
brane’s shear modulus Gs, independently of its area-
dilatation modulus Ga, by flowing the capsule in the
proposed converging constriction of comparable size, i.e.
a/ℓz = O(1), and compare the experimental measure-
ments of the capsule elongation overshooting Lmax

x with
computation data.

To explain in detail the new method for the shear mod-
ulus determination, we propose to flow strain-hardening
capsules of a given size a in the converging constriction
under Stokes flow conditions, utilize surrounding fluids
with known viscosities µ and known average undisturbed
velocities U , and measure the capsule maximum length
Lmax

x (e.g. via a high-speed camera). Figure 9 shows
that by utilizing relatively low flow rates, Ca = 0.02–
0.2, the effects of the capsule prestress τ0 on the length
overshooting are significant, and thus capsules with dif-
ferent prestress τ0 can easily be distinguished. Note that
low flow rates are easy to accomplished since they do not
result in membrane rupture [18, 22, 23].

Our proposed method involves the experimental mea-
surement of the elongation overshooting Lmax

x of a cap-
sule (or an array of similar capsules) with a given pre-
stress τ0 at several low flow rates. Matching of the ex-
perimental measurements with computational data, like
those shown in figure 9, should reveal both the capsule’s
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6

prestress τ0 and the capillary number Ca = µU/Gs, i.e.
the membrane’s shear modulus Gs. Since the length over-
shooting does not depend practically on the membrane
hardness C, our methodology determines the membrane’s
shear modulus Gs without the need to know the area-
dilatation modulus Ga or the moduli ratio Ga/Gs.

We emphasize that our results are independent of the
exact shape of the converging constriction since we de-
rived very similar (or practically identical) results utiliz-
ing other converging shapes, including “half-cosine” and
“straight-line” connections, given by Eqs.(2) and (3) in
section 2. As seen in figure 10, while the different con-
striction shapes produce a small shift in the deformation
evolution with respect to the capsule centroid xc, the
length overshooting Lmax

x is identical for all three con-
striction shapes.

5. DESIGN OF THE EXPERIMENTAL

APPARATUS

In this section, we discuss the requirements for the ac-
tual utilization of the proposed experimental device. Our
methodology involves flowing strain-hardening capsules
in a converging micro-capillary of comparable size, un-
der Stokes flow conditions with capillary number Ca =
O(0.1), and comparing the experimental measurements
of the capsule elongation overshooting with computation
data.

(i) The requirement of low Reynolds number in the
surrounding fluid is commonly achieved by employing
high-viscosity surrounding fluids such as concentrated
aqueous solutions of glycerin, Pale oils or silicon fluids
[4, 18, 22, 23]. (The Reynolds number of the capsule
fluid is irrelevant since, during both the steady-state mo-
tion in the square channels and the transient deformation
in the constriction, the capsule translates as a solid-like
particle with zero or very small inner circulation [19, 27].)

For example, we can utilize micro-channels with half-
size ℓz = 25 µm to study similar-size micro-capsules made
from a cross-linked ovalbumin membrane which have a
shear modulus Gs ≈ 0.04 N/m [18]. To achieve capillary
numbers Ca = O(0.1), viscous stresses µU = CaGs =
4 × 10−3 N/m need to be applied. Utilizing (nearly)
100% solutions of glycerin (with viscosity µ ≈ 1 Pa s and

density ρ ≈ 103 kg/m
3
), the average velocity should be

U = 4 mm/s and thus the external Reynolds number is
Re = ρU ℓz/µ = 10−4.

(ii) To measure the capsule’s maximum length Lmax
x ,

a high-speed camera (combined with a magnification mi-
croscope) should be utilized with a center at the begin-
ning of the constriction, i.e. at x/ℓz = −1. The camera
view should cover the entire capsule during the elonga-
tion overshooting but it is helpful to also cover the chan-
nel upstream of the constriction, i.e. the camera should
cover the channel length [−5ℓz, 3ℓz]. Our computational
results shown in figures 4–8 reveal that that capsule’s
maximum length practically occurs (i.e. with an error

of 1%) during a period corresponding to the constric-
tion’s half-length, ∆x = ℓcon/2 = ℓz/2. Combining this
with typical capsule velocities under Stokes flow condi-
tions and capillary number Ca = O(0.1), we can easily
determine the camera’s recording speed.

For example, for the ovalbumin micro-capsules dis-
cussed in (i) above, the capsule’s maximum length prac-
tically occurs during a time period ∆t = ∆x/U =
12.5 µm/(4 mm/s) ≈ 3 × 10−3 s, and thus a high-speed
camera of 1000 frames per second (FPS) is sufficient to
record the elongation overshooting. Higher FPS (such
as 2000 or 4000) can produce more images of the cap-
sule inside the constriction (and thus serve as verification
that the capsule has achieved its maximum length), but
it is not necessary. These recording speeds are avail-
able in cameras with resolution of at least 960 pixels
per direction (as the Phantom v9.1 camera). Therefore,
the channel view of [−5ℓz, 3ℓz] has a calibration scale
of 8 × 25 µm/(960 pixels) = 0.21 µm/pixel and thus the
capsule dimensions, Lx and Lz, can be measured with an
error much less than 1%.

We emphasize that the FPS requirement of the record-
ing camera is not as high as if one wants to record the
evolution of the capsule length as a function of time, since
here we are only interested in measuring the capsule’s
maximum length Lmax

x , which practically occurs during
a length ∆x = ℓz/2. In essence, our camera requirement
is very similar to that for steady-state capsule motion
in micro-ducts. For example, for the ovalbumin micro-
capsules discussed here, Hu et al.[18] utilized straight mi-
crofluidic channels of similar size as the one proposed in
this work, and employed a 1000 frames-per-second cam-
era to record the steady-steady capsule motion.

(iii) The size of the capsule a can be determined from
the same micro-device by measuring the capsule height
Lz in the upstream square channel. (Observe that, ow-
ing to the channel’s larger size, the capsule height Lz is
practically equal to its undisturbed diameter 2a as seen
in figures 4(b) and 5(b).) Thus, by utilizing the camera
view [−5ℓz, 3ℓz], the capsule size a can be determined
very accurately (with an error of less than 1%).

(iv) Owing to the continuous flow in the micro-
capillary, it is possible the characterization of a large
number of artificial capsules with similar properties. In
this case, utilizing dilute suspensions of capsules we can
easily guarantee that the distance between successive
capsules is sufficient large (i.e. more than 20–50 times
the capsule size a) to produce negligible interactions be-
tween neighboring capsules under Stokes flow conditions
[40]. In addition, since our methodology involves spheri-
cal capsules with comparable size with that of the micro-
capillary, the capsules are expected to have been aligned
with the micro-capillary centerline during their motion
in the area further upstream the constriction [19].

(v) Our methodology assumes homogeneity of the
membrane’s material and thickness, as most existing
techniques do. This homogeneity is an actual goal during
the capsule fabrication and can be achieved via efficient
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mixing of the cross-linking agent, e.g. via capsule motion
in a wavy micro-channel [8, 37]. In addition, our compu-
tational investigation considers the membrane as a two-
dimensional continuum with shearing and area-dilatation
resistance but negligible bending resistance. This mod-
eling has been proven to be an excellent description of a
wide range of thin elastic membranes (up to a membrane
thickness of 5% the capsule size) [3, 10, 11, 23, 28].

It is of interest to note that the shear modulus Gs

has been found to increase with the membrane thickness
[24]. Capsules with different membrane thickness can be
fabricated by using different concentrations of the cross-
link agents [24]. Thus, we can identify the effects of the
membrane thickness on the shear modulus by perform-
ing different experiments with the proposed device for
capsules fabricated with different concentrations of the
cross-link agents.

(vi) Our results included in this paper involve spherical
capsules which are commonly fabricated via interfacial
polymerization of liquid droplets [8, 14, 26]. Since this
process may also produce a (small) number of nearly-
spherical capsules, it is interesting to mention that the
properties of our proposed methodology are also valid for
such capsules, as our computational results for nearly-
spherical prolate and oblate capsules reveal.

(vii) Having considered the details of the experimental
apparatus, we discuss now how the measurement error in
the relevant variables (Lmax

x , a, µ, U) affect the determi-
nation of the membrane’s shear modulus Gs. Figure 9
shows that the scaled length overshooting Lmax

x /(2a)−1
is sub-linearly proportional to the capillary number Ca =
µU/Gs, and thus the greater contribution in the Gs er-
ror results from the measurement error in the capsule’s
maximum length Lmax

x . To find this contribution, in
figure 11 we replot the data shown earlier in figure 9,
but now the scaled length overshooting Lmax

x /(2a) − 1
is plotted as a function of the inverse capillary num-
ber Ca−1 = Gs/(µU). The bold curve shows the data
for a capsule with C = 1 and prestress αp = 0.05 but
with +1% error in the capsule length Lmax

x , i.e. we use
1.01 Lmax

x to plot the data in this case.

By measuring the differences caused by the +1% er-
ror in the capsule length shown in figure 11, we found
that for a typical length overshooting Lmax

x /(2a) − 1 of
0.2–0.3, 1% error in the capsule length Lmax

x creates 7%
error in the measured shear modulus Gs. The error in
Gs increases to 10% for a length overshooting of 0.1. In
addition, our results show that 2% error in the capsule
length Lmax

x doubles the aforementioned errors in the
measured shear modulus. On the other hand, the cap-
sule size a does not contribute any significant error in Gs

owing to its accurate determination as described in (iii)
above. In addition, a small error in the measurement of
the viscosity µ of the surrounding fluid or the average
velocity U creates only a comparable (i.e. small) error in
the measured shear modulus. Such small errors are con-
tain within the larger error caused by the measurement
of the capsule length Lmax

x . We emphasize that the er-

rors reported here are further reduced (via division with
the square root of the number of measurements at dif-
ferent flow rates) in determining the standard deviation
of the mean which is usually reported in experimental
measurements.

Thus, the error in determining a membrane’s shear
modulus Gs via our methodology is comparable to that
of existing modulus methodologies which reported a rela-
tive standard deviation of 15–30% in the mean Gs value
for an array of similar capsules. (See for example, the
variation in the shear modulus determination included
in tables 2 and 3 in Ref.[21], in figures 6 and 7 in Ref.[8],
and in figure 10 in Ref.[18].) Furthermore, for method-
ologies which assumed a value of the moduli ratio Ga/Gs,
there may exist an additional error in the Gs determina-
tion resulting from this assumption.

We conclude this section by emphasizing that for an
accurate determination of the shear modulus, it is impor-
tant that the capsule deformation is known precisely. To
achieve this goal, accurate modulus methodologies do not
rely on approximate relationships (e.g. approximate an-
alytical models or fitting laws for computational results)
to express the capsule deformation. Instead, they com-
pare the experimental measurements with actual compu-
tational results in the same device or exact analytical re-
lationships [8, 18, 24], as we also propose for our method-
ology. (Observe that an approximate relationship for the
capsule length, with an error of 5% or higher, creates a
really significant error in the Gs determination as can be
deduced from figure 11.)

6. CONCLUSIONS

The determination of the elastic properties of the mem-
brane of artificial capsules (i.e. the shear modulus Gs and
area-dilatation modulus Ga) is essential for the better
design of the various devices that are utilized in their
engineering and biomedical applications. However, such
determination is a challenging task, while two experimen-
tal techniques are commonly required to account for the
combined effects of the shear and area-dilatation mod-
uli on the membrane deformation, as well as significant
testing to verify the correct value of the moduli ratio
Ga/Gs. This task is more complicated for experimen-
tal techniques involving three-dimensional capsule defor-
mation (e.g. flow in microfluidic channels) since the re-
quired for comparison three-dimensional computational
data may be difficult to obtain for a wide rage of Ga/Gs.

Based on computational investigation, in this study
we have developed a new methodology to determine a
membrane’s shear modulus Gs, independently of its area-
dilatation modulus Ga, by flowing strain-hardening cap-
sules in a converging micro-capillary of comparable size
under Stokes flow conditions, and comparing the exper-
imental measurements of the capsule elongation over-
shooting with computation data. This methodology re-
lies on an important feature of the capsule motion from a

Page 8 of 14Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



8

larger axisymmetric-like channel to a smaller channel via
a converging connection. Namely, that, as the capsule
enters the smaller channel, the elongation overshooting
does not depend practically on the membrane’s modulus
ratio Ga/Gs and thus on the membrane’s area-dilatation
modulus Ga. Therefore, this transient elongation over-
shooting is characterized by only shape-changing (i.e.
elongation) of the characteristic membrane elements but
under constant local surface area. Furthermore, we found
that the effects of the capsule prestress on the length
overshooting are significant, and thus capsules with dif-
ferent prestress can easily be distinguished via the com-
parison of experimental and computational findings. Af-
ter the shear modulus determination, the area-dilatation
modulus Ga of the membrane can easily be determined
via any existing methodology, e.g. steady-state motion in
a micro-channel.

The elongation overshooting is practically independent
of the viscosity ratio for low and moderate viscosity ra-
tios, and thus a wide range of capsule fluids can be em-
ployed. In addition, our methodology involves low flow
rates (which are easy to accomplished since they do not
result in membrane rupture) while it does not depend on
the exact shape or length of the converging connection
between the two micro-channels. Our proposed experi-
mental device can be readily produced via glass fabrica-
tion while owing to the continuous flow in the micro-
capillary, it is possible the characterization of a large
number of artificial capsules of similar properties. The re-
quirements for the actual utilization of our experimental
device are very similar to those of existing experimen-
tal techniques for shear modulus determination employ-
ing micro-channels or micro-capillaries [18, 22, 23]. To
the best of our knowledge, this is the first methodology
which can determine a membrane’s shear modulus inde-

pendently of its area-dilatation modulus for an array of
capsules.

It is of interest to note that a wide range of method-
ologies have been developed for the determination of
the shear modulus Gs of the erythrocyte membrane,
utilizing micro-pipette aspirations, optical tweezers, ek-
tacytometry systems and flow in micro-channels, e.g.
[15, 17, 25, 38]. Although similar, the erythrocyte
methodologies also show important differences compared
to those for artificial capsules. In particular, erythro-
cyte methodologies usually treat the cell membrane as
locally area-incompressible, and thus they seek to find
the shear modulus Gs without considering area-dilatation
effects. Most important, owing to inherent differences
in a population of erythrocytes, the complexity of the
cell membrane, and the development of physically dif-
ferent erythrocyte modelings over several decades, very
large variations on the determination of the erythrocyte’s
shear modulus Gs (in the range of [1 − 10] µN/m) are
considered acceptable [9, 15, 17, 25]. (In essence, phys-
iological membranes introduce additional challenges for
their characterization.) In contrast, for artificial capsules
both moduli, Gs and Ga, affect (in general) the inter-
facial deformation and thus the moduli determination,
while a more accurate moduli determination is sought
and achieved, as we discuss at the end of section 5.
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FIG. 1. (a) Illustration of an elastic capsule flowing at the
centerline of a converging square micro-channel. (b) Spectral
boundary element discretization of the microfluidic geometry.

(a)

(b)

(c)

(d)

FIG. 2. The shape of a Skalak capsule with C = 1, αp = 0.05,
λ = 1, a/ℓz = 1 and Ca = 0.2 moving inside the microflu-
idic geometry. The capsule’s centroid xc/ℓz is (a) −3.06, (b)
−1.02, (c) 0.07, and (d) 2. The three-dimensional capsule
views were derived from the actual spectral grid using ortho-
graphic projection in plotting.
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FIG. 3. Evolution of (a) the capsule velocity Ux, and (b)
the additional pressure difference ∆P+, as a function of the
centroid xc, for a Skalak capsule with C = 1, αp = 0.05,
λ = 1, Ca = 0.05 and size a/ℓz = 0.6, 0.8, 0.9, 1, 1.1, 1.2, 1.3.
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FIG. 4. Evolution of the capsule lengths as a function of the
centroid xc, for a Skalak capsule with C = 1, αp = 0.05,
λ = 1, Ca = 0.05 and size a/ℓz = 0.6, 0.8, 0.9, 1, 1.1, 1.2, 1.3.
(a) Length Lx, and (b) height Lz (scaled with the length
2a of the undisturbed spherical shape). These lengths are
determined as the maximum distance of the interface in the
x and z directions.
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FIG. 5. Evolution of the capsule lengths as a function
of the centroid xc, for a Skalak capsule with C = 1,
αp = 0.05, λ = 1, a/ℓz = 1 and capillary number Ca =
0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3. (a) Length Lx, and (b)
height Lz (scaled with the length 2a of the undisturbed spher-
ical shape).
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FIG. 6. Evolution of the capsule length Lx as a function of
the centroid xc, for a Skalak capsule with C = 1, αp = 0.05,
Ca = 0.1 and viscosity ratio λ = 0.01, 0.1, 1, 10. Capsule size:
(a) a/ℓz = 1, and (b) a/ℓz = 1.2. In both cases, the results
for λ = 0.1 are identical to those for λ = 0.01.
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FIG. 7. Evolution of the capsule length Lx as a function of the
centroid xc, for a Skalak capsule with λ = 1 and Ca = 0.05.
Capsule size: (a) a/ℓz = 1, and (b) a/ℓz = 1.2. The mem-
brane hardness is C = 0.1, 0.3, 0.5, 1, 2, 5 and the prestress pa-
rameter αp = 0.1244, 0.0912, 0.0732, 0.05, 0.0311, 0.0147, re-
spectively, so that all capsules have the same initial prestress
tension τ0/Gs ≈ 0.3401.
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FIG. 8. Evolution of the capsule length Lx as a function of
the centroid xc, for a Skalak capsule with C = 1, λ = 1,
a/ℓz = 1 and Ca = 0.05. The capsule prestress parameter
is αp = 0.025, 0.05, 0.075, 0.1 and thus the initial prestress
tension is τ0/Gs ≈ 0.1597, 0.3401, 0.5433, 0.7716, respectively.
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FIG. 9. Scaled length overshooting Lmax

x /(2a) − 1 (where
Lmax

x is the maximum capsule length) as a function of
the capillary number Ca, for a Skalak capsule with C =
1, λ = 1, a/ℓz = 1 and capillary number Ca =
0.02, 0.05, 0.1, 0.15, 0.2. The initial prestress tension is
τ0/Gs ≈ 0, 0.1597, 0.3401, 0.5433 which corresponds to the
prestress parameter αp = 0, 0.025, 0.05, 0.075, respectively, for
a capsule with C = 1. The data for αp = 0 (which cannot be
computed via our capsule algorithm due to interfacial break-
ing) were derived via linear interpolation using the data for
αp = 0.025, 0.05.
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FIG. 10. Evolution of the capsule length Lx as a function
of the centroid xc, for a Skalak capsule with C = 1, αp =
0.05, λ = 1, a/ℓz = 1 and different constriction shapes: ——,
“quarter-cosine”; - - -, “half-cosine”; – · –, “straight-line”.
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FIG. 11. As in figure 9, but now the scaled length over-
shooting Lmax

x /(2a)− 1 is plotted as a function of the inverse
capillary number Ca−1 = Gs/(µU). The bold curve shows
the data for a capsule with C = 1 and prestress αp = 0.05
but with +1% error in the capsule length Lmax

x , i.e. we use
1.01 Lmax

x to plot the data.
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