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Abstract

We investigate the effect of quenched disorder on the melting mechanism of two-dimensional

hard disks using large-scale event-driven molecular dynamics simulations. The two-stage melting

scenario of a continuous solid-hexatic and a first-order hexatic-liquid transition for a 2D system

of hard disks does not persist in the case of quenched disorder, which arise by pinning less than

one percent of the particles on a triangular lattice. Based on the Halperin-Nelson-Young (HNY)

renormalization group equation, we observe that a first-order solid-liquid transition preempts the

Kosterlitz-Thouless-type solid-hexatic transition in a 2D system of hard disks with quenched dis-

order as the stiffness of the crystal is increased by the presence of pinned particles.
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I. INTRODUCTION

According to the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory, the melt-

ing mechanism of a 2D crystal proceeds via two consecutive continuous transitions, which

are induced by unbinding of topological defects [1–3]. A 2D crystal melts via dissociation

of dislocation pairs into an intermediate hexatic phase. The hexatic phase is character-

ized by short-ranged positional order, but quasi-long-ranged bond orientational order [4–6].

Subsequently, the hexatic phase transforms into a liquid with short-ranged positional and

orientational order via the unbinding of dislocations into free disclinations [1–3].

Many simulation and experimental studies have been carried out to investigate the melt-

ing mechanism for a 2D solid, thereby providing support for both a two-stage melting sce-

nario via an intermediate hexatic phase as well as a first-order melting transition [7–12].

These results seem to suggest that 2D melting depends sensitively on the particle inter-

actions, out-of-plane fluctuations, and finite-size effects. Even in the simple case of a 2D

system of hard disks conflicting results have been obtained [13–25]. However, recent simula-

tion studies showed, in contrast to predictions of the KTHNY theory, that systems of hard

disks melt via a first-order liquid-hexatic phase transition and a continuous hexatic-solid

transition [26, 27]. These results settled a long-standing debate on the 2D melting scenario

of hard disks.

From an experimental point of view, there is, however, still no consensus on the nature

of the 2D melting transition. Even for particle systems interacting via short-range repulsive

pair potentials conflicting results have been found experimentally [8, 10, 28]. It remains

therefore essential to investigate in more detail what the origin is of the conflict between the

various experimental observations. In most experiments on 2D melting, colloidal particles

were confined between two glass plates [8, 10, 28–31]. Two main factors in these experiments

may alter the melting scenario from that of a strictly 2D system, i.e., out-of-plane motion of

the particles and quenched disorder due to pinning of particles by confinement. Regarding

the out-of-plane fluctuations, a recent simulation study showed that the two-step melting

scenario as observed for 2D hard disks is not altered in the case of a quasi-2D monolayer

of hard spheres with out-of-plane motions as large as half the diameter of the spheres [32].

In the case of quenched disorder, a random fraction of particles can be pinned either to

random positions in the system or on lattice sites of an underlying crystal phase. With
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regard to pinned particles at random sites, it was shown theoretically that the KTHNY

melting scenario persists, and that the solid phase is destroyed entirely for high pinning

fractions resulting in a hexatic glass [33–37]. Experiments and simulations on 2D melting

of super-paramagnetic colloidal particles with quenched disorder confirmed the increased

stability range of the hexatic phase [38]. In this Letter, we investigate the melting of a 2D

system of hard disks with quenched disorder, which results by pinning random particles on

a crystal lattice. We find that the two-step melting mechanism of a 2D system of hard disks

changes by pinning particles on a lattice. More precisely, we show that the hexatic phase

is destabilized and that a first-order solid-liquid phase transition preempts the Kosterlitz-

Thouless-type solid-hexatic transition. Thus our results show that quenched disorder due

to pinning of particles on a lattice lead to a different melting scenario than in the case of

pinning at random positions.

II. MODEL AND SIMULATION METHODS

We investigate the melting mechanism of a 2D system of N = 10242 = 1, 048, 576 hard

disks of diameter σ in the presence of pinned particles using event-driven Molecular Dynam-

ics (EDMD) simulations in the NV T ensemble with V the volume and T the temperature.

In an EDMD simulation, the system evolves via elastic collision events, which are described

by Newton’s equations of motion. The collisions are perfectly elastic, i.e., energy and mo-

mentum are preserved. In addition, we employed an event calendar to maintain a list of

all particle collisions. In the simulations, we started from a perfect lattice and quenched

disorder is introduced by pinning randomly chosen particles with a fraction qd to the sites on

a triangular commensurable lattice. For sufficiently high pinning fractions, the solid phase

exhibits long-ranged positional order, whereas for low pinning fractions, the positional order

in the solid phase is quasi-long ranged. The simulation times of all our runs were 2000τ

corresponding to about 2× 1010 displacements, with τ =
√

mσ2/kBT and m = 1 the mass

of the particles. After such a long equilibration time, we find that the pressure reaches a

plateau as a function of time and that the statistical fluctuations in the pressure are very

small, thereby lending support that our simulations are equilibrated.

We compute the reduced pressure P ∗ = βPσ2 from the collision rate via the virial theorem
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FIG. 1. Reduced pressure P ∗ = βPσ2 as a function of area fraction η = πNσ2/4A for N = 10242

hard disks with diameter σ and area A = LxLy for varying pinning fractions qd. From top to

bottom the pinning fraction qd is 0 (pure hard disks), 0.003, 0.005, 0.008 and 0.01, respectively.

given by

P ∗ =
Nσ2

A

[

1−
βm

2t

1

N

∑

rij · vij

]

, (1)

where A = LxLy is the area, m is the mass of the particles, t is the time interval, rij and

vij are the distance and velocity vector, respectively, between particle i and j.

III. RESULTS

A. Equation of state

In Fig. 1, we plot the reduced pressure P ∗ as a function of the area fraction η = πNσ2/4A

for varying pinning fractions 0 ≤ qd ≤ 0.01. We checked our results for N = 10242 particles

with those obtained for N = 1282, but averaged over 16 different realizations of randomly

pinned particles. We find good agreement within our statistical accuracy. For all qd consid-
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FIG. 2. Phase diagram of a system of hard disks subject to quenched disorder due to pinned

particles on a crystal lattice in the area fraction η versus pinning fraction qd representation. The

blue and red dots denote the liquid and solid binodal, respectively. The green dots correspond to a

continuous solid-hexatic phase transition, which were calculated from a finite-size scaling analysis

of the positional order. All lines are guides to the eye. The dashed part of the green line indicates

that the hexatic phase is metastable with respect to a first-order liquid-solid phase transition.

ered, we observe a Mayer-Wood loop in the equation of state due to interfacial tension effects

in finite systems [39]. We determine the coexisting densities using a Maxwell construction

to the equation of state, and plot the phase boundaries in Fig. 2. The clear presence of a

Mayer-Wood loop in the equation of state lends strong support for a first-order phase transi-

tion [26]. We clearly observe from Fig. 2 that the first-order phase transition shifts to lower

area fractions η upon increasing the pinning fraction qd. We have calculated the latent heat

per particle L/N for the first-order phase transition using L/N = pcoex(1/ρf − 1/ρs) with

pcoex the bulk coexistence pressure, and ρf and ρs the bulk density of the coexisting fluid

and solid (hexatic) phase. The result is shown in Fig. 3. The latent heat L increases with

pinning fraction qd, and we find that the slope of the latent heat L changes at qd = 0.0035

where the fluid-hexatic phase coexistence becomes unstable with respect to the fluid-solid

phase coexistence.
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FIG. 3. The latent heat L/N for N = 10242 hard disks as a function of quenched disorder qd.

Dashed lines are linear fittings of the data for qd > 0.0035 and qd < 0.0035.

B. Subblock scaling anslysis

Subsequently, we turn our attention to the positional and bond orientational order of the

coexisting phase at high density. To this end, we perform a sub-block scaling analysis to the

2D positional order parameter in reciprocal space

ΨG =

∣

∣

∣

∣

∣

1

N

N
∑

i=1

exp (iG · ri)

∣

∣

∣

∣

∣

2

, (2)

where the sum runs over all particles i, ri is the position of particle i and G denotes the

wave vector that corresponds to a diffraction peak and equals 2π/a with a the averaged

interparticle distance as determined by taking the value of a that maximizes ΨG. In the solid

phase, the averaged particle distance equals the averaged lattice spacing, which is corrected

for the presence of vacancies and other defects [26]. In addition, we calculate ΨG for varying

sub-block sizes LB/L with L =
√

LxLy/4 and analyzed the scaling of ln(ΨG(Lb)/ΨG(L))

versus ln(Lb/L). The statistical averaging was performed by dividing the system into 64

6
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subsystems, which yielded satisfactory statistics. According to the KTHNY theory, the

positional order parameter is expected to decay algebraically, i.e., ΨG(L) ∝ L−α with an

exponent 0 ≤ α ≤ ηt in the solid phase, while in the liquid and hexatic phase the positional

order decays exponentially, and thus a plot of ln(ΨG(L)) versus ln(L) should show a slope

of −2 for sub-block sizes larger than the bulk correlation length in the liquid phase [40].

According to the KTHNY theory, ηt is 1/3, which should not be affected by quenched

disorder [33]. In the case of pure hard disks, i.e., without any pinning effects, a first-

order fluid-hexatic phase transition with coexisting densities ηL = 0.700 and ηH = 0.716

of the liquid and hexatic phase, respectively, and a continuous hexatic-solid transition at

ηHS ≃ 0.724 was observed [26, 27]. These results were confirmed by a sub-block scaling

analysis in Ref. [32]. In Fig. 4, we show the sub-block scaling analysis for a system of

hard disks with a pinning fraction qd = 0.005. Fig. 4 shows that the positional order

decays algebraically with a slope α < 1/3 for η ≥ 0.716. We thus find a continuous hexatic-

solid phase transition at an area fraction η ≃ 0.716, which lies well-inside the solid-liquid

coexistence region as determined from a Maxwell construction to the equation of state.

Hence, the hexatic phase is pre-empted by a first-order fluid-solid transition by the presence

of pinned particles.

Employing the same analysis as described above for other values of qd, we find that a

stable hexatic phase persists only in the range of pinning fractions 0 ≤ qd ≤ 0.003. For

qd > 0.003, we did not observe a stable hexatic phase. In Fig. 2, we show the resulting

phase diagram of hard disks subject to quenched disorder due to pinned particles on a lattice.

We find that the coexisting densities of the liquid and solid phase decrease upon increasing

the pinning fraction qd. Moreover, our results show that the hexatic phase is preempted

by a first-order fluid-solid transition for sufficiently high pinning fractions qd. Our findings

contrast the results for the case of quenched disorder due to particles pinned at random

sites, where the density regime of the hexatic phase enlarges upon increasing qd [35–37]. We

thus find that pinning particles at random positions destabilizes the solid and stabilizes the

hexatic phase, whereas pinning particles on random positions of a crystal lattice stabilizes

the solid phase and destroys the hexatic phase.
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FIG. 4. Sub-block scaling analysis of the 2D positional order parameter in reciprocal space ΨG(Lb)

versus Lb for hard disks with a pinning fraction qd = 0.005 for varying area fractions η as labeled.

The slope of the black dashed lines corresponds to −1/3, which indicates a continuous hexatic-solid

transition according to the KTHNY theory.

IV. RENORMALIZATION GROUP ANALYSIS

To corroborate our results, we also perform a renormalization group analysis based on

the KTHNY theory [1–3]. According to the KTHNY theory, a solid-hexatic phase transition

occurs when the Young’s modulus

K =
4µ(µ+ λ)

2µ+ λ

2
√
3ρkBT

= 16π, (3)

where λ and µ are the 2D shear and bulk Lamé elastic constants and ρ the density. This

melting criterion is not affected by quenched disorder [33]. However, due to the presence of

dislocations, which have a fluid-like response to the stress, the Young’s modulus K should

be renormalized as described by the KTHNY renormalization group recursion relations [2, 3]

dK−1(l)

dl
=

3

4
πy2(l)e

K(l)
8π

[

2I0

(

K(l)

8π

)

− I1

(

K(l)

8π

)]

,
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FIG. 5. Renormalized Young’s modulus KR as a function of area fraction η for pure hard

disks without quenched disorder qd = 0 (blue), and with pinning fraction qd = 0.003 (green) and

qd = 0.01 (red). Dashed lines denote the solid binodal as obtained from the Maxwell construction

to the equation of state.

dy

dl
=

(

2−
K(l)

8π

)

y(l) + 2πy2(l)e
K(l)
16π I0

(

K(l)

8π

)

.

where l is the renormalized flow variable, I0 and I1 are modified Bessel functions, y =

e−Ec/kBT is the fugacity of dislocation pairs, and Ec is the dislocation core energy. The bare

value of the Young’s modulus K(0) can be calculated from the strain fluctuations [41] in a

defect-free solid, but with a fixed fraction of pinned particles, and is employed as the initial

value for the renormalization recursion relation. The core energy Ec can be calculated by

measuring the probability density pd to observe a dislocation pair per unit area using the

expression [41]

pd =
16
√
3π2

K − 8π
I0

(

K

8π

)

exp

(

K

8π

)

exp

(

−2Ec

kBT

)

. (4)

The initial value of the fugacity y(0) is equal to e−Ec/kBT . Using the initial values y(0)

and K(0) in the renormalization recursion relations, we can determine the thermodynamic
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values of K and y by taking the limit l → ∞. Fig. 5 shows the renormalized Young’s

modulus KR = K(l → ∞) as a function of area fraction η for pure hard disks, and for

impurity fractions qd = 0.003 and 0.01. For hard disks without any pinned particles, we

find that the renormalized Young’s modulus KR changes from 16π to 0 at a area fraction

η = 0.724, which is indicative of a KT type solid-hexatic transition. In addition, we find

that the renormalized Young’s modulus KR increases with pinning fraction qd, which means

that the stiffness of the crystal increases by the presence of these pinned particles. We

also determine the area fractions at which the solid-hexatic phase transition occurs using

the melting criterion Eq. 3, and we find good agreement with the area fraction values as

obtained from the sub-block scaling analyis as shown in Fig. 4. Comparing the area fraction

at which the solid-hexatic transition occurs with the coexisting densities as determined from

the Maxwell constructions to the equations of state, we find that for qd > 0.003 the KT solid-

hexatic transition is preempted by a first-order liquid-solid phase transition. In addition, we

plot the probability density pd to find a dislocation pair per unit area as a function of area

fraction η in Fig. 6(a). We observe that pd decreases upon increasing the pinning fraction

qd. In addition, it was predicted by Chui that a first-order solid-liquid transition driven by

the spontaneous proliferation of grain boundaries may preempt the solid-hexatic transition

when the core energy Ec of a dislocation becomes less than 2.84 kBT [43]. In Fig. 6(b),

we show the dislocation core energy Ec as computed from pd (Eq. 4) as a function of area

fraction η, which shows that in the solid phase Ec always exceeds the critical value 2.84

kBT . This result indicates that the first-order solid-liquid transition might not be induced

by a spontaneous proliferation of grain boundaries. Fig. 7 shows a typical configuration of

the liquid-solid coexistence phase at η = 0.694 for qd = 0.01. We clearly see from the above

picture that most pinned particles are located at the crystalline region, whereas the five-

and seven-fold defects are clustered far away from the pinned particles. This may indicate

that the pinned particles act as a nucleation seed for crystallization.

V. CONCLUSIONS

In conclusion, we studied the effect of quenched disorder on the melting mechanism of

2D solids of hard disks by pinning randomly chosen particles on a triangular lattice. Using

large-scale EDMD simulations, we observed that the two-stage melting scenario with an
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FIG. 6. (a) Probability density pd of a dislocation pair per unit area as a function of area fraction η

and (b) Dislocation core energy Ec as a function of area fraction η for hard disks without quenched

disorder qd = 0 (blue), with pinning fraction qd = 0.003 (green) and qd = 0.01 (red). Lines are fits

to the data.

intermediate hexatic phase of a 2D system of hard disks [26, 27] does not persist in the

presence of pinned particles on a lattice. We showed that the hexatic phase is destabilized

and that a first-order solid-liquid phase transition preempts the Kosterlitz-Thouless-type

solid-hexatic transition. These findings are corroborated with a renormalization group anal-

ysis based on the KTHNY theory, which shows that the renormalized Young’s modulus of

the crystal is increased by the presence of pinned particles. With regard to pinned particles

at random sites, it was shown theoretically that the KTHNY melting scenario persists, and

that the solid phase is destroyed entirely for high pinning fractions resulting in a hexatic

glass [33–37]. Indeed, experiments and simulations on 2D melting of super-paramagnetic

colloidal particles with quenched disorder confirmed the increased stability range of the hex-

atic phase [38]. Thus our results show that quenched disorder due to pinning of particles on

a lattice lead to a different melting scenario than in the case of pinning at random positions.

In the case of quenched disorder due to pinning on a lattice, the solid phase is stabilised,

whereas pinning at random sites destabilizes the crystal. Although our results are obtained
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of particles pinned to a lattice both in simulations and experiments. The different pinning

scenarios may be investigated in experiments on colloidal particles by using optical tweezers.

We hope that our findings will stimulate research in this direction.
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