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there have been several studies of the electrical and transport

properties of suspensions of spheres and cubes,26–32 to our

knowledge there has not yet been any study for intermediate

values of s, which led us to investigate the dilute suspension

properties of these cube-like particles.

2 Properties of interest and an electrostatic-

hydrodynamic analogy

Three electrical properties are of central interest in connection

to material science applications and particle shape characteri-

zation, namely, the self-capacitance C, the intrinsic conductiv-

ity for a perfect conductor [σ ]∞, and the intrinsic conductivity

for a perfect insulator [σ ]0. Each property has an associated

variational principle as a function of shape. It has been rig-

orously shown that these shape functionals are minimized by

the sphere for all particles having fixed volume.33 While these

shape functionals are widely appreciated as fundamental met-

rics of shape, their utility has previously been limited by the

difficulty of calculating these quantities accurately.33,34

Of these three quantities, the latter two are of direct inter-

est for composites since they both represent the second virial

coefficients for the conductivity of the system, which can be

expressed as

σ/σ0 = 1+[σ ]φ +O(φ 2) (2)

where σ is the conductivity of the entire system with volume

fraction φ randomly oriented, solid particles of a given shape

embedded in the matrix with a conductivity of σ0. The in-

trinsic conductivity [σ ], in general, depends on the ratio of

the conductivity of the inclusions to the matrix and the par-

ticle shape. The two contrast limiting conditions are perfect

conducting particles and perfect insulating particles, which re-

duce [σ ] to [σ ]∞ and [σ ]0, respectively. Mathematically, all

three electrical properties can be computed by first solving

Laplace’s equation with either Dirchelet (C and [σ ]∞) or Neu-

mann ([σ ]0) boundary conditions on the particle and then solv-

ing functionals of the potential at the surface of the particle.35

Although absolutely perfect conductors (superconductors) and

perfect insulators do not exist, these limiting cases are often

useful idealizations in practice since the contrast, the ratio of

the conductivities of the inclusions to the matrix, is often large.

Note that due to the correspondence between electrostatics and

heat transfer,32 the intrinsic electrical conductivity is equiva-

lent to the intrinsic thermal conductivity, which has recently

been studied for various shapes experimentally, computation-

ally, and theoretically by Martin and coworkers.36,37

In addition to electrical properties, we were also interested

in hydrodynamic properties relevant to solutions, specifically,

the hydrodynamic radius Rh of a Brownian particle, the in-

trinsic viscosity [η ], and the intrinsic solvent diffusivity [Ds].
This is the standard set of properties, along the second osmotic

virial coefficient B22, normally considered in macromolecu-

lar characterization, and thus form a useful set to study par-

ticles.17,18 The three hydrodynamic properties satisfy the fol-

lowing equations.

D =
kBT

6πη0Rh

(3)

where D is the diffusion coefficient of the particle, kB is Boltz-

mann’s constant, T is the temperature and η0 is the viscosity

of the solvent.

η

η0
= 1+[η ]φ +O(φ 2) (4)

where η is the visocosity of the solution.

Ds

D0
= 1+[Ds]φ +O(φ 2) (5)

where Ds is the diffusion coefficient for the solvent when rel-

atively large, impenetrable particles are present, and D0 is

the diffusion coefficient for the solvent when particles are not

present.

In particle as well as polymer characterization measure-

ments, the second osmotic virial coefficient B22 is also funda-

mental as it quantifies the strength of the average interparticle

interaction strength in the dilute limit.38 This quantity is the

leading term in the virial expansion for the reduced osmotic

pressure Z,

Z = 1+
B22

V
φ +O(φ 2), (6)

where V is the particle volume. B22 can be expressed analyt-

ically for rigid, non-interacting convex particles39 and evalu-

ated numerically otherwise.

Due to the mathematical similarities between the equations

to solve the electrical properties and those to solve the hy-

drodynamic properties,32,40 the electrical properties can be,

depending on the property, exactly or approximately related

to the hydrodynamic properties relevant to rigid particle so-

lutions. Specifically, C ≈ Rh, [σ ]∞ ≈ qη [η ] and [σ ]0 = [Ds]
where qη is a proportionality constant weakly dependent on

shape.

In the calculation of Rh from C, the underlying assumptions

are that the Reynolds number is low, i.e., inertial effects are

not important, that the particles are rigid bodies with a hy-

drodynamic stick boundary condition, and that the Oseen ten-

sor can be angularly preaveraged. This angular preaveraging

assumption is valid if particles explore all orientations in an

unbiased way.41 Physically, the unbiased exploration of ori-

entations is achieved for low Peclet number where diffusion

dominates. For high Peclet number where advection domi-

nates, it is still possible to achieve an unbiased exploration of

orientations depending on the processing history. Comparison

to existing exact hydrodynamic results, high resolution bound-

ary element calculations and additional numerical calculations
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for diverse shapes indicate that the relation between Rh and C

holds to within an uncertainty on the order of 1 %40,42 and

is exact for triaxial ellipsoids.41 Thus, this approximation is

acceptable for numerical estimates of Rh from C.

The determination of [η ] from [σ ]∞ also involves an an-

gular averaging and the same hydrodynamic boundary condi-

tions. The proportionality constant qη is determined by first

mapping the particle shape to an ellipsoid using the electric

polarizabilty tensor, from which [σ ]∞ is determined, and then

requiring that qη is exact for that ellipsoid.43 Since both [η ]
and [σ ]∞ are known quantities for this shape, qη can be deter-

mined for any ellipsoid.32 This construction leads to [η ] esti-

mates that are in agreement with exact and numerical results

to within an uncertainty of 1.5 %,43 similar to the uncertainty

for Rh. In the case of cube-like particles, we take qη = 6/5.

[Ds] is exactly equal in magnitude to the average of the diag-

onal components of the hydrodynamic virtual mass tensor,32

as well as to [σ ]0,
35 if the size of the particle is significantly

larger than the size of the solvent so that the solvent to be

treated as a continuum. Exact values have been calculated for

triaxial ellipsoids30 and a few other shapes.32

In addition to these electrostatic-hydrodynamic analogies,

there is also a direct relation between C of a particle with

a specified shape and the Smoluchowski rate constant k for

diffusion-controlled reactions44 of small particles with diffu-

sion constant D diffusing towards an absorbing, larger particle

with the specified shape, specifically, k = 4πDC. This relation

is exact if the particle concentration is dilute, there are no long

range interactions, and under steady state conditions.45

3 Computational methods

The three electrical properties and, thus, their corresponding

hydrodynamic properties were calculated using standard defi-

nitions:32,35,46

C =−
1

4π

∫

Ω
dS n̂ ·∇Φ, (7)

[σ ]∞ = Tr(αe)/(3V ) = 1−
1

V

∫

Ω
dS z n̂ ·∇Φ, (8)

[σ ]0 = Tr(αm)/(3V ) =−1+
1

V

∫

Ω
dS k̂ · n̂Φ (9)

where αe is the electrostatic polarizability tensor, αm is the

magnetic polarizablility tensor, z is the value of the Carte-

sian coordinate at the surface, k̂ is a vector in the z direc-

tion, n̂ is the normal vector of the surface of the object Ω,

and the integrations are over the surface of the object. Φ sat-

isfies Laplace’s equation outside the object with Φ(r) = 0 as

r approaches infinity. However, the boundary conditions on

the surface Ω are different for each property. Specifically,

Φ = 1 for C, Φ = z+ c for [σ ]∞ where c is determined such

∫

Ω dS n̂ ·∇Φ = 0, and n̂ ·∇Φ = z for [σ ]0. In the above equa-

tions, we have made use of the symmetry of the object. Thus,

the results are unaffected by both object rotations and dis-

placements.

Three different methods were used to solve Eqs. 7-9. The

first computational method was ZENO,47 a numerical path-

integration method that can be used to solve for C and [σ ]∞
(Eqs. 7 and 8). This method involved placing the object, in

this case, a cube-like particle, inside an enclosing sphere and

then launching random walks from the surface of the sphere.

The fraction of walks that hit the object as opposed to going

to infinity can be directly related to C. If additionally, ran-

dom charges for the x, y, and z directions were assigned to

each walk, counters could be kept that allow one to compute

αe and thus [σ ]∞ via Eq. 8.40 For this method, the object was

represented exactly since the shape is known, and specific de-

tails of the modifications to the ZENO code available online

can be found in the ESI†. For each shape, a skin thickness of

10−4 was used, and the results of ten runs of one million walks

were averaged.

The second computational method was COMSOL Mul-

tiphysics,48 a commercial finite element package.49 This

method involved creating a finite element mesh of both the

object and the surroundings in which the object is embed-

ded. Then the Laplace equation was solved with the relevant

boundary conditions, and the desired quantities were com-

puted via Eqs. 8 and 9. Ideally, the surroundings would extend

to infinity but this would require an infinite mesh, a computa-

tionally infeasible requirement. Hence, the object to be simu-

lated in COMSOL was embedded in a sphere whose radius

R0 was increased until the calculated properties converged;

the polarizability values were found to converge when R0 was

larger than 25 times the radius of the object. However, the

capacitance was slow to converge and required R0 of at least

120 times larger than the radius of the object of interest. Sim-

ilar slow convergence, with respect to R0, has previously been

reported in a finite element calculation of the self-capacitance

of a cube.27 For all values of s simulated, COMSOL com-

puted the mesh with the requirement that the maximum finite

element size is 0.025 inside the cube-like particle with a = 1.

The mesh was allowed to progressively increase outside of the

object in the surrounding sphere of radius R0. Special care

has to be taken for calculations of [σ ]∞ for the cube due to

its sharp corners. Only in this case, the volumetric represen-

tation of Eq. 8, reported as Eq. 7 in Ref. 29, is employed,

which yielded more accurate results than Eq. 8 at a signifi-

cantly lower meshing resolution. Another alternative for high

accuracy would be to follow the approach of Martin et al. 50

The third computational method was SCUFF-EM,51 a

boundary element method that only requires meshing of the

surface of the object. The surface mesh was generated by

placing nodes on the surface of object uniformly in the po-
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Fig. 2 Self-capacitance C and hydrodynamic radius Rh for cube-like

particles. Values are normalized such that all particles have the same

volume as a sphere with radius one. Russell approximation53 is

equivalent to a spherical harmonic expansion to first order and is

discussed in Appendix B.

lar and azimuthal angles with additional nodes placed at the

top and bottom of the object. Using this scheme, the mesh

was generated by connecting the 6,962 nodes using triangles

as shown in the ESI†. The same number of nodes and mesh-

ing scheme was used for all values of s, and the results were

invariant when more nodes were added to the surface of the

object indicating that 6,962 nodes were sufficient for the ac-

curate calculation of the properties of the cube-like particles.

Additionally, B22 for cube-like particles with a purely re-

pulsive hard core excluded volume interaction was calculated

by the exact relation from integral geometry RS+V for con-

vex particles where R is the integral of mean curvature, S is

the surface area, and V is the volume of the object.39 Since

there is an analytic expression for the surface of the cube-like

particles, each of the three quantities could be written in in-

tegral form and then numerically integrated with Mathemat-

ica,52 commercial software,49 to solve the desired equation.

The expressions for these quantities can be found in Appendix

A.

4 Results and discussion

4.1 Predictions

The self-capacitance C and its near equivalent, the hydrody-

namic radius Rh, were calculated for cube-like particles us-

ing ZENO and SCUFF-EM as seen in Fig. 2. The results for

COMSOL are unlikely to be accurate due to challenges as-

sociated with convergence27 as discussed in Section 3. Rh is

a particularly important quantity since it is inversely propor-
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SCUFF-EM

Fig. 3 Five sixths of the intrinsic conductivity of a perfect

conductor [σ ]∞ and [η ] for cube-like particles.

tional to the self-diffusion coefficient via the Stokes-Einstein

relation (see Eq. 3). We found for cube-like particles with

identical volumes that Rh increases as s increases with only a

marginal (6 %) change in value for the limiting case of a cube

so that the self-diffusion coefficient is only minimally affected

by shape. This result is somewhat surprising since the radius

of a sphere that circumscribes a cube with a volume equal to

4π/3 is roughly 1.4.

Given the small change in Rh, we directly compared our

predictions to Russell’s approximation53 (see Appendix B),

which is a spherical harmonic expansion to first order and is

equivalent to Rh = [S/(4π)]1/2. Since we have the values for

the surface area as a function of s, Rh could easily be approx-

imated. However, we found that this approximation is only

useful when the particles were nearly spherical limiting its ap-

plicability.

We also computed the intrinsic conductivity of a perfect

conductor [σ ]∞ and the intrinsic viscosity [η ], as can be seen

in Fig. 3. For a sphere (s = 1), [η ] = 2.5, the well known

result of Einstein.31 For a cube, our predictions were in line

with previous numerical estimates28,29,54,55 and measured re-

sults.56 Both [σ ]∞ and [η ] were significantly more sensitive

to the particle shape than Rh. This change was equivalent

to a 20 % increase in the value as particles go from spheres

to cubes. Thus, the shape can be used to tune the proper-

ties. Conversely, if the value of s is unknown, these properties

could be measured to estimate s especially at large s where the

results were more sensitive. For [η ], this sensitivity is likely a

consequence of increased drag on the corners.

Figure 4 shows the prediction for the intrinsic conductiv-

ity of a perfect insulator [σ ]0, as well as the intrinsic solvent

diffusivity [Ds]. As previously mentioned, both of these quan-
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Fig. 4 Intrinsic conductivity of a perfect insulator [σ ]0 and the

intrinsic solvent diffusivity [Ds] for cube-like particles.

tities are related to the hydrodynamic virtual mass tensor,32,35

and have been shown to be equal to negative three halves for a

sphere.30 This is in excellent agreement with the results. Also,

the COMSOL result for the cube is in line with previous cal-

culations.29 In terms of sensitivity, both [σ ]0 and [Ds] were

less sensitive to shape than [η ] but more sensitive than Rh.

This sensitivity can be quantified by the increase in value as

the particles go from spheres to cubes, which is roughly 8 %.

For similar reasons to those for [η ], namely the corners inhibit

flow, [Ds] and thus [σ ]0 are smaller for a cube than a sphere.

In order to compute the properties of cube-like suspensions,

we used three different computational methods, each of which

is based on a different algorithm. We found that all three meth-

ods were in agreement with the exception of C when the finite

element method was used where the slow convergence with

respect to mesh size and R0 is well known.27 Thus, this prob-

lem could probably be overcome by optimizing the meshing

scheme and/or increasing R0. Such improvements are beyond

the scope of our work. Nonetheless, the general agreement

suggests that the scatter in the data is representative of the un-

certainty. We also compared the computational resources re-

quired for the three algorithms and found that they were gen-

erally comparable. Details can be found in the ESI†.

The second osmotic virial coefficient B22 for hard cube-like

particles was computed using numerical integration. The re-

sults can be seen in Fig. 5. We directly compared our results

with those of Batten et al.,23 who used a Monte Carlo method

along with a more general expression for B22. We found excel-

lent agreement between the values of s that were considered by

Ref. 23 and also found that numerical integration allowed us

to compute values for values of s that were difficult to access

with this Monte Carlo method. Such a challenge arises from

0 0.2 0.4 0.6 0.8 1
1/s

4

4.2

4.4

4.6

4.8

5

5.2

5.4

B
2

2
/V

Numerical Integration

Monte Carlo (Batten et al.)

Fig. 5 Second osmotic virial coefficient B22 normalized by volume

for cube-like particles. Symbols correspond to quantities calculated

by Batten et al.23 using a Monte Carlo method.

trying to determine if two almost, but not quite, cube-shaped

particles overlap. However, the Monte Carlo method has the

advantage that it can be easily adapted to compute higher virial

coefficients or to include more complicated pair-wise interac-

tions for B22.57

B22 increased with increasing s, which by definition implied

that the osmotic pressure would be higher for particles that are

more cube-like than those that are more sphere-like. We also

found that the change in the value of B22 was large enough

that, in principal, it could be used as a metric in order to mea-

sure the value of s of a dilute suspension of cube-like particles.

However, unlike [η ] and [Ds], it depends on interparticle inter-

actions thus if the synthesized particles had any interactions

other than an infinite overlap penalty, B22 would need to be

determined using other methods. A better strategy would be

to determine s using [η ] first and then to compare B22 with its

hard object value to determine the role of interparticle interac-

tions.

4.2 Comparison to experiments

Where possible, we directly compared our results to experi-

ments.56,58 This comparison is shown in Table 1; we found

that all the predictions matched the experimental results within

the uncertainty bounds. For s = 1.4, [η ] is quite similar to the

value for a sphere, 2.5, such that for the experimental data,

the value is the same as a sphere within numerical uncertainty.

Note that the experimental Reynold’s number was O(10−11),
so the approximations in calculating Rh from C as well as [η ]
from [σ ]∞ should be valid. Additionally, the particles were

composed of silica shells; as long as the shells are rigid, the

calculations are unaffected. For s approaching infinity, [η ] is

1–7 | 5
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noticeably different from that of a sphere.

Rh for s = 1.4 was determined by measuring the diffusion

coefficient and then using the Stokes-Einstein equation (Eq.

3). This resulted in a value of 0.80 µm± 0.06 µm, which

could be converted to the normalized units using s = 1.4,

a = 0.75 µm± 0.03 µm (see Eq. 1) and the volume of the

cube-like particle (see Eq. 11). The resulting Rh was equal to

both the sphere and the cube-like particle with s = 1.4 within

uncertainty, highlighting the lack of sensitivity of the property

values for values of s close to those of the sphere.

Table 1 Comparison of predictions to experimental work. Values for

s = 1.4 are from Royer et al.58 and values for s → ∞ are from

Mallavajula et al.56 Details on the calculation of the uncertainties,

equivalent to one standard deviation, can be found in the

experimental sources.

s ZENO SCUFF-EM COMSOL Experiment

[η ] 1.4 2.54 2.55 2.54 2.57 ± 0.11

[η ] ∞ 3.04 3.07 2.97 3.1 ± 0.2

Rh 1.4 1.00 1.00 1.02 0.97 ± 0.08

5 Conclusions

We considered three different methods, where possible, to

compute the intrinsic conductivity of both perfect conductors

and insulators, the hydrodynamic radius, the intrinsic viscos-

ity, and the intrinsic solvent diffusivity of dilute suspensions

of cube-like particles. We found that all properties were de-

pendent on the shape but weakly so for more spherical parti-

cles. For more cube-like particles, shape can be used to tune

the properties or alternatively these properties can be used

to characterize particle shape. The latter strategy would be

more useful for suspensions of cube-like particles, since the

intrinsic viscosity has a greater sensitivity to shape. All the

three methods are in agreement and would be useful for fu-

ture calculations. However, for the capacitance, the system

size (R0) may need to be increased for finite element calcu-

lations. We also determined the second osmotic virial coef-

ficient for hard cube-like particles using analytic expressions

coupled with numerical integration and found that our results

were in excellent agreement with a Monte Carlo method. In

the future, we expect the techniques discussed will be applica-

ble to studying other property-shape relationships59 as well as

quantifying shape or individual particle properties.60 One po-

tential example is the properties of dimers, trimers, and finite

linear arrays of superballs. Interestingly, the intrinsic conduc-

tivity of perfectly conducting dimers of cubes is actually lower

than that for dimers of spheres and the difference in magnitude

is much smaller, roughly 1 %.
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Appendix A: Volume, surface area, and integral

of mean curvature

The radius of the cube-like particle describe by Eq. 1 in spher-

ical coordinates can be represented as

r(θ ,ϕ) = a2s(|cos(ϕ)|2s|sin(θ)|2s + |sin(ϕ)|2s|sin(θ)|2s

+ |cos(θ)|2s)−1/(2s) (10)

where 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π . Thus, the volume can be

written as

V =
8

3

∫ π/2

0
dθ

∫ π/2

0
dϕ sin(θ)r3 (11)

where the factor of 8 comes from integrating only over the first

quadrant due to symmetry. Similarly, if x represents a vector

from the origin to the surface at a given θ and ϕ , the surface

area becomes

S = 8

∫ π/2

0
dθ

∫ π/2

0
dϕ|xθ ×xϕ | (12)

where subscripts represent derivatives. Similarly, the integral

of mean curvature is

R =
8

4π

∫ π/2

0
dθ

∫ π/2

0
dϕ{(xθ ·xθ )[(xθ ×xϕ) ·xϕϕ ]

+ (xϕ ·xϕ)[(xθ ×xϕ) ·xθθ ]−2(xθ ·xϕ)[(xθ ×xϕ) ·xθϕ ]}

[2(xθ ·xθ )(xϕ ·xϕ)−2(xθ ·xϕ)
2]−1. (13)

Appendix B: Russell’s approximation

Russell’s approximation53 can be derived using a spherical

harmonic expansion. The radius of the object can be repre-

sented as

r = a

(

1+ ε
∞

∑
k=0

fk(θ ,ϕ)

)

(14)

where a is a coefficient and fk are spherical harmonics. From

Brenner,61 Rh is

Rh = a(1+ ε f0)+O(ε2) (15)

and the surface area is

S = 4πa2(1+2ε f0)+O(ε2). (16)
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Thus, [S/(4π)]1/2 is equal to Rh upto O(ε), a conclusion

which had previously observed by Douglas and Freed.62 This

simple approximation is widely utilized in protein dynamics

simulations.63

Notes and references

1 K. J. Lee, J. Yoon and J. Lahann, Curr. Opin. Colloid In., 2011, 16, 195–

202.

2 S. C. Glotzer and M. J. Solomon, Nat. Mater., 2007, 6, 557–562.

3 T. K. Sau and A. L. Rogach, Adv. Mater., 2010, 22, 1781–1804.

4 Y. Yin and a. P. Alivisatos, Nature, 2005, 437, 664–70.

5 V. F. Puntes, K. M. Krishnan and A. P. Alivisatos, Science, 2001, 291,

2115–7.

6 C.-Y. Chiu, Y. Li, L. Ruan, X. Ye, C. B. Murray and Y. Huang, Nat.

Chem., 2011, 3, 393–9.
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