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Transport of spherical colloids in layered phases of binary mixtures with rod–like

particles

Mauricio Piedrahita, Alejandro Cuetos∗, and Bruno Mart́ınez-Haya
Department of Physical, Chemical and Natural Systems,

Universidad Pablo de Olavide, 41013 Seville, Spain

The transport properties of colloids in anisotropic media constitutes a general problem of fun-
damental interest in experimental sciences, with a broad range of technological applications. This
work investigates the transport of soft spherical colloids in binary mixtures with rod-like particles
by means of Monte Carlo and Brownian Dynamics simulations. Layered phases are considered, that
range from smectic phases to lamellar phases, depending on the molar fraction of the spherical par-
ticles. The investigation serves to characterize the distinct features of transport within layers versus
those of transport across neighboring layers, both of which are neatly differentiated. The insertion
of particles into layers and the diffusion across them occurs at a smaller rate than the intralayer
diffusion and displays a glass-like behavior modulated by the formation of transitory cages in its
initial stages. Collective events, in which two or more colloids diffuse across layers in a concerted
way, is described as a non-negligible process in these fluids.

I. INTRODUCTION

The thermodynamic and transport properties of multi-
component systems constitutes a key topic in Colloidal
Science. The entropic contributions underlying the emer-
gence of thermodynamically stable phases in mixtures
of colloids of dissimilar shape (e.g. spherical, rod-like
or disk-like particles), have been described in numer-
ous computer simulation, theoretical and experimental
investigations [1–13]. Remarkably, phases arise that are
inherent to the multicomponent nature of the systems
and are therefore not present in the corresponding one-
component fluids.

In this work, we present a simulation study of diffu-
sion in layered liquid crystalline phases of binary mix-
tures of spherical and rod-like particles. Insights into
diffusion processes in model systems of this kind are of
fundamental interest for the general understanding of the
behaviour of colloids and macromolecules in crowded en-
vironments. For instance, several studies have related
the properties of sphere/rod colloidal systems to trans-
port processes in cells, such as the self-diffusion of pro-
teins in suspensions of F-actin [14–17], the diffusion of
globular macromolecules in lipid membranes [18, 19], or
chromatin dynamics [20].

The phase diagram of the sphere/rod binary system is
relatively well known [6–9]. In contrast, the investigation
of transport phenomena in these mixtures remains com-
parably scarce. Importantly, the transport properties of
benchmark mono-component rod-like liquid crystals have
been investigated previously. Löwen developed a general
Brownian Dynamics (BD) algorithm that served to char-
acterize the self-diffusion in liquid crystalline phases [21].
More recently, some theoretical [22] and computer simu-
lation studies [23, 24] unveiled specific aspects of the dif-
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fusion within layers and across layers in smectic phases
of the pure fluid of rods. It seemed therefore timely to
determine to which extent the diffusion behavior of pure
systems can be extrapolated to binary mixtures.

The present investigation covers an ample range of mo-
lar fractions. On the one hand, at a low molar fraction
of spheres (xs=0.01) the study basically explores the dif-
fusion of isolated spheres in the smectic fluid of rods.
Some fruitful incursions into the transport properties of
this limiting case, in which the spheres can essentially be
considered to be a tracer, have been performed in previ-
ous studies [25–31]. On the other hand, at the highest
molar fraction of spheres included in our study (xs=0.5),
a lamellar phase is formed that is characterized by alter-
nate layers of rods and spheres, and the fluid presents
novel features with respect to the pure rod fluid. Several
rod elongations are as well explored in order to evaluate
the influence of the layer thickness on the efficiency of
the diffusion of the colloids across them.

Our study extends and revises qualitative aspects of
the previous investigations of diffusion in sphere/rod mix-
tures away from the dilution limit,[32, 33] and should
therefore constitute an updated reference for the com-
prehension of transport in these systems. Specifically, a
marked differentiation between the intralayer transport
and the transport across layers is outlined. Furthermore,
the importance of cooperative phenomena [24] in the dif-
fusion of spheres through the layers of rods is investi-
gated. This mechanism of transport is related to the
enhanced local permeability of the layers that is induced
once one sphere manages to penetrate into it, which trig-
gers the concerted diffusion of neighbouring colloids.

The investigation has involved the extension of a Brow-
nian Dynamics algorithm to the case of sphere/rod mix-
ture, as well as the implementation of a dynamical cri-
terium to probe collective transport events. The most
relevant methodological aspects are described in Sect. II,
and the results are summarized and discussed in the sub-
sequent sections of the paper.
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II. METHODOLOGY

A. Interaction model

The spherical and the rod-like particles are represented
as soft purely repulsive bodies, with the rods modelled
as prolate spherocylinders. Within such framework, the
interaction between two any particles is described via a
shifted and truncated Kihara potential, according to the
following expression [34, 35]:

Uij =

{

4ǫij
[

(1/d∗m)12 − (1/d∗m)6 + 1/4
]

d∗m ≤ 6
√
2

0 d∗m > 6
√
2
(1)

Here, Uij is the interaction energy between two particles
of species i and j (spheres or rods) and dm denotes the
minimum distance between the molecular cores of the
pair of particles (the cylinder axis in the case of sphero-
cylinders and the center of mass in the case of spheres).
Obviously, dm, depends on the relative positions and
orientations of the particles. The algorithm employed
here to compute dm for the only non-trivial case of a
pair of spherocylinders is described in ref. [37]. In Eq.1,
d∗m= dm/σij , where σij represents the half-sum of the di-
ameters of the two interacting particles. In this study,
the same value for the diameter of spheres and rods is
considered, i.e. σij=σ. Hence, the rods are represented
by a cylinder of length L capped by two hemispheres
of diameter σ. This investigation considers such sphero-
cylinders with elongations L∗=L/σ=4, 5, 7. The inter-
action is modulated by the energy parameter ǫij . For the
present work, we have assumed the same strength of in-
teraction for all pairs of particles (sphere-sphere, rod-rod
and sphere-rod), hence ǫij=ǫ.

B. Monte Carlo study of phase stability

The first stage of the study involved the construction
of equilibrated configurations of the binary mixture in
the layered states object of study. For this purpose,
Monte Carlo simulations at constant number of particles,
pressure and temperature (NPT-MC) were performed.
Pressure and temperature are expressed in the reduced
forms P ∗=Pσ3/kBT and T ∗= kBT/ǫ throughout the pa-
per (kB denoting the Boltzmann constant). Binary mix-
tures with molar fractions of spheres xs=0.01, 0.1 and
0.5 were considered. The total number of particles em-
ployed in the simulations was at least N≥ 2000. The tem-
perature of the system was fixed at the reduced value
T ∗=1.47 in all simulations. At this temperature, the
phase behaviour of the soft spherocylinder model resem-
bles most closely the fluid of hard spherocylinders of the
same length and diameter [35, 36].
The system was equilibrated with a long NPT simu-

lation run (over 106 MC cycles), and averages were sub-
sequently computed over 2·105 MC cycles, to character-

ize the thermodynamic and structural properties of the
fluid. A MC cycle consists of N trials to move (rotation
and/or translation) a randomly chosen particle, plus one
attempt to change independently the three sides of the
simulation box. The internal structure of the layered
phase was monitored with the appropriate order param-
eters and distribution functions. [38]
Under the conditions of this study, the equilibration of

the systems at high pressure resulted in layered arrange-
ments, in which the spheres occupied the region in be-
tween the layers of rods. For each mixture, the pressure
was adjusted to probe layered states with different pack-
ing fraction, η= ρ(xsvs + xrvr), where ρ is the number
density, xs, xr are the molar fractions and spheres and
rods, respectively, and vsσ

−3=π/6, vrσ
−3=π/6+πL∗/4

their molecular volumes.

C. Brownian Dynamics

The second stage of the study was devoted to the com-
putation of the dynamical properties of the mixtures.
This was performed with Brownian Dynamics simula-
tions at constant volume, started with the equilibrated
configurations from the MC-NPT simulations described
above. In BD simulations, the Langevin equation is in-
tegrated forward in time and trajectories of particles are
created [21, 39].
For the spherical colloids, the position vector of par-

ticle j, rj , is updated in each BD step according to the
expression:

rj(t+∆t) = rj(t)+
D0

kBT
Fj(t)∆t+(2D0∆t)1/2R0(t) (2)

Here, D0= kBT/(µσ) is the self-diffusion coefficient of a
single sphere, with µ being the viscosity of the solvent. F
is the total force acting on sphere j due to other particles,
and R0 is a random force with components sampled as to
yield variance 1 and zero mean in the simulations. The
time step was fixed at ∆t=10−4τ , with τ = σ2/D0.
For the rod-like colloids, the position of the center of

mass, rj , and the unitary vector defining the orientation
of the particle, ûj , are updated in time by the following
set of equations:

r
‖
j (t+∆t) = r

‖
j (t) +

D‖

kBT
F

‖
j (t)∆t+

+(2D‖∆t)1/2R‖ûj(t)

(3)

r⊥j (t+∆t) = r⊥j (t) +
D⊥

kBT
F⊥

j (t)∆t+

+(2D⊥∆t)1/2(R⊥
1
v̂j,1(t) +R⊥

2
v̂j,2(t))

(4)

ûj(t+∆t) = ûj(t) +
Dϑ

kBT
Tj(t)× ûj(t)∆t+

+(2Dϑ∆t)1/2(Rϑ
1
ŵj,1(t) +Rϑ

2
ŵj,2(t))

(5)
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where r
‖
j and r⊥j are the projections of rj on the direction

of ûj and on the plane orthogonal to it, respectively. F
‖
j

and F⊥
j are the corresponding parallel and perpendicu-

lar components of the forces, and Tj is the total torque
acting over particle j due to the interactions with other
particles of the fluid [40]. The Brownian motion of the
particle is induced through the set of independent Gaus-
sian random numbers (of variance 1 and zero mean), R‖,
R⊥

1
, R⊥

2
, Rϑ

1
and Rϑ

2
, and unitary random vectors per-

pendicular to ûj , denoted in the above equations as v̂j,m

and ŵj,m (m=1, 2).
The self-diffusion coefficients driving the Brownian Dy-

namics of the rods, D‖, D⊥ and Dϑ, have been calculated
with the analytical expressions proposed by Shimizu for
prolate spheroids [41]:

D⊥ = D0

(2a2 − 3b2)S + 2a

16π(a2 − b2)
b,

D‖ = D0

(2a2 − b2)S − 2a

8π(a2 − b2)
b,

Dϑ = 3D0

(2a2 − b2)S − 2a

16π(a4 − b4)
b,

(6)

with S =
2

(a2 − b2)1/2
log

a+ (a2 − b2)1/2

b
,

(a = (L+ σ)/2, b = σ/2)

(7)

For the present study, several types of dynamical ob-
servables were computed for both spheres and rods,
namely the mean square displacement (MSQD), and the
self parts of the intermediate scattering function (SISF)
and of the Van Hove function (SVHF), as defined below.
Mean square displacements of the particles were com-

puted along the three axes of the simulation box:

δk = 〈(∆r)2(t)〉k = 〈 1

Nk

Nk
∑

j=1

(rj(t)− rj(0))
2〉, (8)

where the delimiters 〈...〉 denote ensemble average andNk

is the number of particles of each species (k≡ r, s). In ad-
dition, we computed the components of the mean square
displacements of the particles in the directions parallel,

δ
‖
k= 〈∆r2‖(t)〉k, and perpendicular, δ⊥k = 〈∆r2⊥(t)〉k, to
the nematic director of the system of rods, which is co-
incident with the normal to the layers.
The self intermediate scattering function provides a

measure of the structural relaxation of the density fluc-
tuations and was evaluated for each component of the
mixture, according to the expression:

Fk(q, t) =
1

Nk
〈
Nk
∑

j=1

exp[iq · (rj(t+ t0)− rj(t0))]〉, (9)

where q is the wave vector calculated at the first peak of
the rod static structure factor, which implies |q| = 2π/σ,
and rj(t) are the particle positions at time t. Transverse
and longitudinal relaxations may be defined as F⊥

k (t) =

Fk(q⊥, t) and F
‖
k (t) = Fk(q‖, t), respectively. These func-

tions were calculated at the main peaks of the rod static
structure factor, hence q⊥=2π/σ and q‖=2π/(L+ σ).
An additional simple tool to study the non-continuous

transport of particles through the layers of particles is
the self-part of the van Hove function. To compare the
inter-layer and intra-layer diffusion of the particles we
have analyzed the components of this function, parallel
and perpendicular to the nematic director defined as:

G
‖
k(r, t) =

1

Nk
〈
Nk
∑

i=1

δ(r −∆r‖)〉 (10)

G⊥
k (r, t) =

1

Nk
〈
Nk
∑

i=1

δ(r −∆r⊥)〉 (11)

where, as above, the subscript k refers to the kind of
particle, sphere or rod, and δ(−) denotes in this case the
Dirac delta function. The SHVF can be understood as
the probability density for a displacement r in a time
interval t, along the directions parallel or perpendicular
to the nematic director. Note that the SVHF is related
to SISF by a Fourier transform.
One specific aim of this work is to determine the im-

portance of collective effects in the transport of spheres
through the layers of rods [23, 24]. For this purpose, we
defined the following procedure to probe events of con-
certed diffusion of several particles across a layer. The
jumps of spheres across layers are monitored on the ẑ
coordinate, which defines the displacements in the direc-
tion normal of the layers of rods. The initial time, ti, and
final time, tf , of each jump for a given sphere j are de-
fined as the closest instants where |ẑj(tf )− ẑj(ti)|>L+σ.
For each jump, a particle n (sphere or spherocylinder) is
defined as neighbour of sphere j if, at ti, the minimum
distance between j and n is dm/σ< 6. Being particle n a
neighbour of j, it is also assigned as a companion of j in
the diffusion process if |ẑn(tf )− ẑn(ti)|>L/2, which indi-
cates that it has penetrated into the layer of rods within
the (ti,tf ) time interval. The frequency for events of con-
certed diffusion of a sphere with m companions through
a layer is defined as ωm=Nm/(tNs), where Ns the num-
ber of spheres and Nm is the number of jumps with m
companions occurred during a simulation of time dura-
tion t. The total jump frequency for spheres is then given
by ω =

∑

m ωm.
Figure 1 shows trajectories of two spheres and one

rod involved in a typical event of collective diffusion.
The concerted diffusion of the three particles through
a layer of rods is visualized as a rapid change in their
ẑ-coordinates (at t/τ≈ 750 in this example). As a gen-
eral behavior, it can be appreciated that the particles

Page 3 of 10 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



4

FIG. 1: Typical trajectories of two spheres (red and blue
line) and one rod (black line) particles in a smectic phase.
The ẑ-coordinate (vertical axis) describes the position of the
particles along the normal of the layers. A snapshot of the
smectic arrangement is provided next to the graph for clarity.
Several rapid changes in ẑ, associated with jumps between
layers can be appreciated in each trajectory. In addition,
frustrated jumps in which a sphere or rod particle penetrates
into the neighbouring layer of rods but eventually returns to
its original layer are present. An event of collective motion of
the two spheres and the rod takes place at t/τ ∼ 750, leading
to a concerted change of layer of the three particles (see text
for details).

typically spend a long time within a layer and eventually
undergo comparably a rapid diffusion once they man-
age to penetrate into a neighbouring layer. Nevertheless,
penetration does no imply that the full crossing of the
layer is necessarily accomplished, and ’frustrated’ jumps
are common. Several of such frustrated jumps are high-
lighted in Fig. 1.

III. RESULTS AND DISCUSSION

In order to describe the most salient features of the
diffusion of spheres in the environment provided by the
layered arrangement of the rods, we will consider in the
first place the limiting case of high dilution. This sit-
uation is represented in this work by the mixture with
the lowest molar fraction of spheres, namely xs=0.01.
Typical mean square displacements, self scattering func-
tions and van Hove functions obtained within this regime
are shown in Figs. 2–4. The directionality of the trans-
port imposed by the layered arrangement is specifically
exposed by representing the time evolution of the projec-
tions of those three magnitudes, parallel and perpendic-
ular to the normal of the layers.
It can be appreciated that the MSQD functions of both

rods and spheres evolve linearly at short times (t/τ< 1,
see Fig. 2). This is indicative of an initial regime of non-
collisional diffusive dynamics, in which the absolute dif-
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t/τ
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δ
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δ
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|| 

FIG. 2: Time evolution of the mean square displacements,
δ‖ (solid symbols) and δ⊥ (open symbols), for spheres (top
panel) and rods (bottom panel) in layered smectic states of
binary mixtures with low molar fraction of spheres (xs=0.01).
In these fluids, the rods have L∗=7 and smectic states
with three different packing fractions are considered, namely
η=0.564 (black and squares), 0.537 (blue and circles) and
0.523 (red and triangles).

ferences between δ‖ and δ⊥ are solely determined by ge-
ometrical constraints. At longer times, the MSQD devi-
ates from linearity, giving rise to more or less pronounced
plateaus due to the interaction of the particles with their
nearest neighbors, and eventually enters a new regime of
rapid growth as the particles diffuse past them.

Importantly, for the spheres, δ⊥s is greater than δ
‖
s

throughout all temporal regimes, in some ranges by as
much as one or several orders of magnitude, depending
on the packing fraction of the system. The physical in-
terpretation of this finding is that the spheres diffuse
more efficiently within the region in between layers of
rods with displacements parallel to the layer planes (in-
tralayer transport), while their diffusion into the layers of
rods (interlayer or across-layer transport) is comparably
less favored. Moreover, while δ⊥s is weakly independent
of the density of the smectic phase, at least within the

time range represented in Fig.2, δ
‖
s displays a clear de-

pendence on density at sufficiently long times (t/τ> 1).
In concordance with these features, F⊥

s decays rapidly
to zero and remains roughly independent of the pack-

ing fraction of the system, while F
‖
s follows a much
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FIG. 3: Time evolution of the parallel and perpendicular pro-

jection of self intermediate scattering function, F
‖
k
(solid sym-

bols) and F⊥
k (open symbols), for spheres (top panel) and

rods (bottom panel) for the same fluids and packing fractions
shown in figure 2.

slower decay and develops an extended plateau at times
t/τ> 1 with an appreciable dependence on packing frac-
tion. These observations indicate that the packing of the
smectic layers determines to a large extent the penetra-
bility of the spheres into the layers and their diffusion
across them, but it does not affect so much the intralayer
dynamics.
The marked anisotropy in the diffusion of spheres in

the directions parallel and perpendicular to smectic lay-
ers is observed systematically for all the rod elonga-
tions and molar fractions of spheres studied in this work.
While it seemed a priori plausible that differences be-
tween the diffusion in the two directions should exist, it
must be mentioned that the present observations are in
apparent contradiction with the only previous study that
to our knowledge has considered transport in sphere/rod
mixtures away from the dilution limit, carried out by
Cinacchi and de Gaetani [32, 33], which concluded that
spheres diffuse in a roughly isotropic way within a smec-

tic phase of rods (that is, δ⊥s ≈ δ
‖
s ). The origin of this

discrepancy remains unclear to us, as it seems unlikely
that it is related to the different model that they employ
to represent the rods, or to the fact they use Molecular

Dynamics instead of the Brownian Dynamics presently
employed. To this respect, the present work should con-
stitute a revised reliable reference for the rationalization
of transport in rod/sphere colloidal mixtures.

The plateaus observed in the temporal evolution of δ‖

and F ‖ are indicative of a hindered relaxation in the di-
rection along the normal to the layers, in contrast to the
smooth liquid–like behaviour found for the intralayer dif-
fusion. Such behavior can be interpreted in terms of a
glass-like behavior for the diffusion across layers, where
the formation of transient cages preclude, or delay, the
diffusion of the particles [24].

The directionality in the diffusion is similarly followed
by the rods that conform the smectic layers. Indeed, the
long-time mobility of the rods within the layers is much
more efficient than the diffusion out of the layer, as can

be appreciated in the δ⊥r and δ
‖
r functions depicted in

Fig.2. In fact, the plateaus found for the δ
‖
r of the rods

are much more pronounced than those displayed by δ
‖
s

for the spheres in the binary mixture. This indicates that
while both species are partially trapped in the interlayer
space, the spheres scape from the cages easier than the
rods.

Further noteworthy differences between the diffusion
of rods and spheres arise at intermediate times. Whereas
for spheres the parallel component of the MSQD remains
smaller than the perpendicular one at all times, Fig.2
shows that for rods there are two crossovers, leading to

a broad time window in which δ
‖
r>δ⊥r . This transient

behavior can be related to the slow down of the perpen-
dicular diffusion due to the collision with other particles,
while the free diffusive regime reaches longer times in the
parallel direction. At longer times, the particles eventu-

ally feel the adjacent rod layer where δ
‖
r displays a pro-

nounced plateau and hence becomes significantly smaller
than δ⊥r . The first of those crossovers is analogous to the
one observed experimentally by Grelet et al [42] for a
monocomponent fluid of rod-like particles. The observa-
tion of the second of the crossovers found in our simula-
tions would however involve significantly longer diffusion
times than the ones spanned in those experiments.

Fig. 4 illustrates the diffusion behavior in terms of the
self Van Hove function. The SVHF of spheres and rods
is represented for illustrative layered states of fluids with
rods of L∗=5 and molar fractions of spheres xs=0.01 and
xs=0.5. The noisy aspect of the data for the spheres for
xs=0.01 is a consequence of low concentration of these
particles and the correspondingly poor statistics. The
SVHF has a gaussian shape if the diffusion can be ex-
plained according to Fick’s law. This was found to be
always the case for the transport of the particles within
a given layer; G⊥

k (not shown) is systematically gaussian-
like in our simulations. In contrast, the projection of
the SVHF in the direction parallel to the nematic di-

rector (i.e. along the normal to the layers), G
‖
k, shown

in Fig. 4, evolves to an oscillatory shape that reflects
the non-homogeneous nature of the diffusion across lay-
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ers, where the particles stay long times within a layer,
and eventually undergo comparably sudden jumps across

neighbouring layers. G
‖
k does maintain a gaussian–like

shape, both for rod and spheres, at short times. This is
related to the rattling of the particles around the center
of the layer that they occupy. At longer times, multiple
peaks emerge that cover with time progressively longer
distances and eventually conform a periodic pattern with
maxima at ±(L∗ + 1),±2(L∗ + 1), .., reflecting the diffu-
sion across layers. At long times, the intensities of all the

peaks in G
‖
k tend to even up to similar values, although

this occurs more readily for the spheres than for the rods,
consistently with their more efficient diffusion.
It is important to notice that the comparison of the flu-

ids with xs=0.01 vs. xs=0.5 displayed in Fig. 4, indicates
that the SHVF reaches longer distances more rapidly for
the xs=0.01 case. Care must be taken when interpreting
this result, since it does not reflect the effect of increasing
the concentration of spheres, but it is rather related to
the fact that the rod layers are more tightly packed and,
hence, less permeable in the state of the xs=0.5 fluid.
The reason for this is that the two states involved in
the comparison have similar packing fractions (see figure
caption). Consequently, the density of particles is actu-
ally significantly higher for the xs=0.5 case (the spheres
having a significantly smaller molecular volume than the
rods) and the packing of the rod layers is greater to com-
pensate for the voids in the layers of spheres. It will be
shown below that the higher concentration of spheres in
the binary mixture actually promotes transport by en-
hancing events of collective diffusion through the layers
of rods.
We discuss now the effect of the elongation of the rod-

like particles on the transport properties. Longer rods
make thicker layers, which can be foreseen to affect dif-
fusion across layers. A first insight into this expecta-
tion is provided in Fig. 5 which displays the frequency of
jumps of spheres, across rod layers, ω, as a function of
packing fraction for mixtures with xs=0.01 and L∗=4,
5 or 7 for the rods. For a given value of L∗, ω decreases
steadily with increasing packing fraction, as a natural
consequence of the reduced permeability of the denser
rod layers. More importantly, for any given packing frac-
tion, the frequency of jumps increases rapidly as the rod
elongation is reduced. Indeed, it can be appreciated that
ω for the fluid with L∗=4 rods is about one order of
magnitude larger than for the fluid with L∗=7 rods.
Figure 6, extends these insights with the mean square

displacements for binary mixtures with rods of each of
the three elongations. In this comparison, the overall
packing fraction of the system is similar for the three
systems, η≈ 0.56–0.57. The magnitude and the time
evolution of δ⊥s for the spheres are weakly affected by
the elongation of the rods, which seems to follow from
the fact that the drift of the spheres within the inter-
layer environment can be considered to be sensitive to
the tips of the rods and only indirectly to their length
[38]. Opposite to this, the diffusion along the normal to

the smectic layers changes substantially with rod elonga-
tion. The most relevant effect is related to a reduction
in the plateau in δ

‖
s at long times as the rods become

shorter, which is indicative of a sizeable enhancement of
the crossing of spheres through the smectic layers. This
observation can be attributed to two main aspects. First,
the smectic layers of the shorter rods display a greater
degree of defects and transient ’pores’ which tend to fa-
cilitate the insertion of spheres. Second, for the thinner
layers associated with the shorter rods, the probability of
frustrated jumps is reduced. Indeed, once a sphere has
penetrated into a smectic layer, the probability and the
readiness with which that sphere diffuses fully through it
to the next inter-layer region is greater for the layers of
shorter rods.

Interestingly, the evolution of δ
‖
r for the rods at the

different values of L∗ is qualitatively different than the
one found for the spheres. For the rods, at intermediate
times (within t/τ ≈ 20–200) the mean displacements are
greater for the longer rods. In this regime, the MSQD
is roughly equal to σ, meaning that the rods are in the
process of attempting insertions into the neighbouring
layers. This stage would be more efficient for the longer
rods, presumably as a consequence of their greater de-
gree of parallel orientation. At longer times, this trend
reverses again to a situation similar to the one found for
the spheres, due to the difficulty that encounter the rods
to fully insert into the neighbouring layers as the layers
become thicker.

We move on to discussing the relative importance of
events of collective diffusion, which has been specifically
investigated in this work as a transport mechanism intrin-
sic to layered liquid crystal phases. In a typical event of
this type (see Fig. 1), the insertion of one sphere into the
layer of rods opens a channel that triggers the diffusion of
further neighboring particles (spheres or rods) that even-
tually move along through the layer in a concerted way.
One particular question that our study aimed to answer
was the influence that the molar fraction of spheres may
have on this type of transport phenomena.

Figure 7 depicts the relative frequencies of the jumps
across layers in which the sphere that initiates the dif-
fusion process crosses the layer of rods on its own, as
well as those of the events in which it is accompanied
by either just one particle (sphere or rod), or by two or
more particles, in its drift through the rod layer. Re-
sults are shown for xs=0.01 mixtures with rods of each
of the three elongation included in this study, L∗=4, 5,
7, and for the mixture with L∗=5 rods at the two addi-
tional molar fractions presently investigated, xs=0.1 and
0.5. For reach system, a range of packing fractions are
included.

As a general trend, the importance of collective events
decreases with increasing packing fraction, as a natural
consequence of the reduced permeability of the layers of
rods. Furthermore, the fraction of collective events also
decreases appreciably (by up to one order of magnitude)
as the rod elongation is increased from L∗=4 to 7. This
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FIG. 4: Projection of the self Van Hove function along the normal to the layers, G
‖
k
, at different times for fluids of rods with

L∗=5. Panels (a) and (b) correspond to the limit of high dilution of spheres (xs=0.01, η = 0.521), while the panels (c) and (d)
correspond to a lamellar arrangement (xs=0.5, η=0.536). The curves plotted in each panel correspond to t/τ ≈ 0.1 (black),
10 (red) 1000 (green) and 5000 (blue). In each case, the top panel corresponds to spheres and the bottom one to rods. The

diffusion across layers leads to a progressive reach of G
‖
k
to longer distances and the emergence of a periodic pattern of peaks

reflecting the layer positions.

follows mainly from the enhanced probability of frus-
trated jumps as the layers of rods become thicker. Never-
theless, collective events can become dominant (meaning
that more than half of the jumps involve at least one
companion) in the smectic states of lower density. Fig. 7
shows that, even in the dilution limit (xs=0.01), the rela-
tive frequency of jumps in which the sphere diffuses with
no companions can be as low as ≈ 0.4 in the smectic
states of lowest density investigated (η < 0.5), although
it increases to higher values, even reaching 1.0 (no col-
lective events detected), for the longest rods and highest
densities investigated (L∗=7, η > 0.56).

It seemed timely to introduce in this context the ef-
fect that increasing the molar fraction of spheres may
have on collective diffusion. The enhanced presence of
the spheres can be expected to disrupt the smectic struc-
ture, introducing defects due to steric effects induced, ei-
ther by individual spheres or by the clustering of spheres
in between the layers of rods. For this purpose, we have

explored molar fractions up to values associated with the
binary mixture equimolar in rods and spheres, xs=0.5,
for which the smectic phase is replaced by a commensu-
rable lamellar phase with a stable alternation of layers
of rods and spheres. Specifically, three molar fractions,
namely xs=0.01, 0.1 and 0.5, were investigated for the
mixtures with rods of elongation L∗=5.

Interestingly, the events of collective diffusion gain
rapidly in importance as the molar fraction of spheres is
increased and eventually become dominant at all packing
fractions. For xs=0.5 (lamellar phase), the majority of
jumps occur with at least one companion; in fact, the
frequency for individual jumps of single spheres becomes
smaller than 0.4, while the relative weight of the jumps
with two or more companions reaches values close to 0.5
for the cases here investigated. A detailed inspection of
the type of companions involved in the collective diffu-
sion process revealed that in the limit of high dilution of
spheres the companions are mostly rods; only less than
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FIG. 5: Frequency of jumps of spheres across neighbouring
layers of rods for fluids with rod elongations L∗=4, 5 and 7.
The molar fraction of spheres is xs=0.01 in all cases. The
frequency of jumps decreases rapidly when either the packing
fraction of the fluid or the elongation of the rods is increased.

8% of the companions monitored in our simulations were
spheres. The situation reverses dramatically as the mo-
lar fraction of spheres is increased: at xs=0.1 and 0.5,
as many as ca. 45% and 75% of the companions, respec-
tively, were spheres. Hence, it can be concluded that
the microscopic mechanism driving collective transport,
initiated by the insertion of spheres into the rod layers,
changes qualitatively with the composition of the binary
mixture: at low concentration of spheres, it promotes the
exchange of rods between adjacent layers, while at high
concentration of spheres, the process is dominated by the
collective migration of the spheres themselves. The in-
termediate behaviour found at xs=0.1, suggests that a
smooth switch between both regimes can be expected as
the molar fraction of spheres is varied in the mixture.

IV. CONCLUSIONS

Diffusion in binary mixtures of spherical and rod-like
particles shows a complex dynamic behavior, depending
on factors such as packing fraction, elongation of the rods
or molar fraction of the mixture. In the layered phases in-
vestigated in this work, transport is clearly anisotropic.
The faster contribution to the diffusion of spheres and
rods arises from the direction perpendicular to the nor-
mal of the layers (intralayer diffusion), which is signif-
icantly more efficient than interlayer diffusion involving
transport of particles across layers. The initial stages
of interlayer diffusion of spheres displays a glass-like be-
havior associated with the formation of transitory cages
before potential penetration into the neighbouring layers
occurs [24].
Increasing the packing fraction of the fluid enhances

the directionality of the transport, since it suppresses the
diffusion across layers more efficiently than the inlayer

0.01

1
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δ
s

0.01 1 100
t/τ

0.01

1

100

δ
r

Spheres

Rods

δ
r

 | 

δ
s

 | 

δ
s

|| 

δ
r

|| 

FIG. 6: Time evolution of the mean square displacements,
δ‖ (open symbols) and δ⊥ (close symbols), for spheres (top
panels) and rods (bottom panels) in layered phases of binary
mixtures with rods of different elongation, L∗=4 (red tri-
angles), 5 (blue circles) and 7 (black squares), at a similar
packing fraction (η=0.566, 0.562 and 0.564, respectively).

component. Longer rods have a similar effect, as they
give rise to thicker layers, for which frustrated attempts
of particles to diffuse across them become more common.

Importantly, increasing the molar fraction of spheres
promotes collective diffusion, involving the concerted
transport of groups of particles through the layers of rods.
Collective transport is typically seeded by the insertion
of one sphere into a rod layer, thereby opening a chan-
nel that triggers the diffusion of further particles. This
diffusion mechanism can be dominant under favorable
conditions, namely a small packing of the system and/or
a significant molar fraction of spheres.
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FIG. 7: Relative frequencies of jumps of spheres across neigh-
bouring layers of rods for fluids with rod elongations and mo-
lar fraction of spheres (L∗, xs): (7,0.01) black lines and cir-
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diamonds, (5, 0.1) green line and up triangles, (5, 0.5) orange
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with one companion (ω1/ω, middle), and spheres with two or
more companions (ωm≥2/ω, bottom).
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