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For a wide range of applications of graphene suspension, a thorough understanding of their rheological properties is crucial.
We probe the microstructure of dense suspensions of micron-sized, few-layer, defect-free graphene platelets by measuring their
viscoelastic properties at various concentrations up to 39mg/ml. We propose a model to relate the yield strain to the mesh size
of the microstructure as a function of volume fraction φ . From the yield stress measurements we infer the typical bond energy
(≈ 20kbT ) and φ dependence of the bond number density. These results allow us to express the steady shear viscosity for Peclet
number Pe < 10 in terms of the platelet dimensions, bond energy and φ using a relaxation ansatz.

1 Introduction

The study of 2-dimensional (2D) materials is currently one of
the most dynamic areas of nanoscience. While graphene is
probably the most well-known 2D system, many others ex-
ist including clays1, transition metal dichalcogenides such as
MoS2 and transition metal oxides such as MoO3

2. While such
systems can usually be grown directly, applications such as
conductive ink3,4, coatings, composites and energy storage5

will be facilitated by the ability to produce suspensions of 2D
nanosheets in liquids.

Recently, liquid phase exfoliation6–9 has been developed to
produce dispersions of high quality, defect free nanosheets of
graphene, MoS2 and a range of other materials. While such
dispersions are ideal for the applications described above, pro-
cess development will require a thorough understanding of the
rheology of these suspensions.

In general, the rheological response of colloidal suspen-
sions beyond the rigidity threshold is dictated by the mi-
crostructure of the stress-bearing network that is formed by
these particles and the nature of their interaction. In contrast to
networks of stiff rods such as Carbon Nanotubes (CNTs)10,11

the relationship between microstructure and rheology of sus-
pensions of high aspect ratio graphene platelets beyond the
rigidity percolation remains unexplored. In particular it is un-
known how yield strain and yield stress scale with the volume
fraction φ and platelet dimensions. In contrast to graphene
oxide (GO) suspensions and clays, whose structure and rhe-
ology is sensitive to the surface charges present on these
platelets12–15, our suspensions of pure, defect-free few-layer
graphene platelets provide a well defined model system to
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study stress bearing networks of high aspect ratio platelets
whose interactions are predominantly mediated via van der
Waals forces.

In this Letter we use suspensions of graphene platelets in
N-Methyl-Pyrrolidone (NMP) solvent that have been created
through liquid exfoliation7,8. This process produces suspen-
sions of defect-free, few layer graphene flakes with high as-
pect ratios of ∼ 1000. The suspension is stabilized against ag-
gregation by the solvent itself as its surface energy is closely
matched to that of graphene8 leading to a vanishingly small
enthalpy of mixing9. At high concentrations the platelets can
bond via the van der Waals interaction leading to the cre-
ation of a stress bearing microstructure which exhibits a soft
glassy rheological response14,16. In this work we probe the
microstructure of these suspensions by measuring their vis-
coelastic properties at various concentrations beyond the rigid-
ity percolation.

2 Experimental methods

The graphene suspensions have been prepared via liquid ex-
foliation7,8. The solvent is NMP, for which we measure a
viscosity of 2.2± 0.1 mPa s, which is somewhat larger than
the literature value 1.8 mPa s due to water absorption dur-
ing sample preparation. The exfoliated graphene flakes have
typical a length of D = 1±0.5µm and have on average 3 lay-
ers which corresponds to a thickness of h = 1nm7 (See in-
set Fig.1). The graphene concentrations in our samples range
from 1 to 39 mg/ml, which corresponds to volume fractions
φ between 4.8 · 10−4 to 0.019. In order to make these highly
concentrated suspensions in sufficient quantities, graphite was
first exfoliated in NMP using shear exfoliation6. The unex-
foliated material was removed using coarse filtration with the
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Fig. 1 Viscosity versus graphene concentration measured at γ̇ = 200
s−1. The horizontal and vertical dashed lines denote the solvent
viscosity (ηs = 2.2mPa s) and critical concentration cc = 4.2 mg/ml,
respectively. The black line denotes a logarithmic slope of 2.2.
Inset: TEM image of few-layer graphene flakes on a porous grid.

exfoliated material collected via vacuum filtration and then re-
dispersed in fresh NMP using sonication7.

The viscoelastic measurements are performed in a plate-
plate geometry using an Anton Paar MCR 301 rheometer. The
diameter of the plate and the gap size are 50mm and 0.5mm,
respectively, allowing oscillation measurements down to shear
stresses of 0.1 mPa. The samples were tip-sonicated for 60
minutes prior to loading to ensure a well dispersed suspen-
sion. In order to avoid shear alignment we did not prestress the
samples. To check that the samples have settled into an equi-
librium, we performed consecutive oscillatory strain sweeps
which were highly reproducible. The suspensions are stable
over experimental time scales. We use the same geometry to
measure the viscosity up to strain rates of γ̇ = 200 s−1. For
lower concentrations, we use a Couette geometry to measure
the viscosities at high shear rates up to 45000 s−1. The radius
of the inner cylinder of the Couette cell is 14.36mm and it has
a gap of 100 µm, which is 2 orders of magnitude larger than
the largest platelet dimension.

3 Results

First we determine the critical concentration cc at which the
rigidity percolation occurs. At this point the effective viscos-
ity η of the suspensions increases dramatically and the stor-
age modulus G′ becomes non-zero. In order to determine cc
we measured η over a wide range of concentrations at a con-
stant shear rate of 200 s−1 as shown in Fig.1. The viscosity
changes little up to 4mg/ml, presumably due to shear align-
ment of the platelets, and then starts to increase dramatically
beyond 4 mg/ml with ∼ c2.2. A more precise determination
of cc and the corresponding volume fraction φc comes from
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Fig. 2 Storage plateau modulus G′0 versus the relative packing
fraction φ −φc measured at 1Hz. The line is a fit to the data:
G′0 = 0.65(φ −φc)

3GPa. Inset: (�) Storage (G’) and (◦) loss (G’)
modulus as a function of strain amplitude for φ = 0.00356 (7.5
mg/ml).

measurements of the plateau of the storage modulus, G′0, in
the linear response regime. The inset of Fig.2 shows a typical
strain sweep measurement at constant frequency of 1 Hz at a
concentration above cc. In the linear regime, the storage mod-
ulus G′ exhibits a plateau and is greater than the loss modulus
G′′. Beyond the yield strain G′ decreases and eventually the
suspensions is fluidized when G′′ > G′. This viscoelastic be-
havior is typical of a soft glassy material. Figure 2 shows the
plateau value of the storage modulus G′0 as a function of the
reduced volume fraction φ −φc, where φc corresponds to the
critical volume fraction at which rigidity percolation occurs.
Beyond the percolation threshold we expect G′0 ∝ (φ − φc)

α ,
where α is the percolation exponent. We determine φc by fit-
ting this power law to the data and find φc = 2± 0.05 · 10−3

which corresponds to cc = 4.2±0.1mg/ml.
How does the onset of rigidity φc depend on the dimensions

of platelets? This question has been addressed in the context
of conduction percolation17 and onset of solid-like behaviour
in silicate nanocomposites18,19. Assuming randomly orien-
tated, monodisperse disc-shaped platelets in solution, one can
estimate the percolation threshold as follows18. Approximat-
ing the flakes as discs with diameter D and thickness h, we em-
bed them in hypothetical spheres of diameter D. Below perco-
lation they are free to rotate within their embedding sphere. As
the concentration increases, the randomly dispersed spheres
will eventually touch and form a percolating network. At
this point, the flakes in the percolating sphere cluster are not
free to rotate anymore and a percolating disc network can be
formed. The critical overlap concentration φo is therefore the
ratio of the disc volume to the embedding sphere with a pref-
actor φ j that accounts for the interstices between the spheres:
φo = φ j ·1.5h/D.
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Ren et al. have argued that φ j corresponds to the percola-
tion threshold of (overlapping) spheres (φ j = 0.30), although
the random close pack density, φ j = 0.64, may be an equally
appropriate choice. In both cases, φo is around 2− 4 times
lower than the experimentally determined critical concentra-
tion φc = 2 ·10−3.

However, this estimate can only be a lower bound. Sim-
ulations of (overlapping), monodisperse ellipsoids20 in the
extreme oblate limit (h/D ≈ 1000), which can be consid-
ered a good approximation of discs, have shown that the
conduction percolation threshold is somewhat higher, namely
1.27h/D while experiments on conductivity percolation of
graphite platelets17 have found critical concentrations in the
range 1.3h/D to 1.7h/D. More importantly though, conduc-
tivity percolation is not sufficient for mechanical stability of
the network. For mechanical stability of the network, which
is necessary for the emergence of a finite yield stress, the
platelets require a minimum number of contacts on average.
Recent work on jammed packings of frictional ellipsoids have
shown that for rigidity the average contact number per parti-
cle must be at least 4 in three dimensions21. Therefore, one
would expect the onset of rigidity at concentrations that are
somewhat larger than φo. Nevertheless, there is agreement in
the literature that the critical concentration scales with the in-
verse aspect ratio h/D. For simplicity we will set φ j =1 in
the following, i.e. φo = 1.5h/D = 1.5 ·10−3, mindful that any
small deviations from this value reflect the details of the net-
work structure and are beyond the scope of this study. Such
an approach is valid as the exact prefactor in φo, which is of
order 1, is not crucial for modeling the yield strain (eq.1).

The percolation exponent α is 3.0±0.1 and close to what is
found in graphene oxide composites13. In these GO/PMMA
composites α is sensitive to the oxide content and goes from
2.4 to 3.1 for decreasing Oxide content. Clays, such as
Laponite, usually exhibit a lower exponent α = 2.3515. This
result may be compared to simulations of rigidity percolation
that incorporate both central and bond bending forces22,23. In
the absence of bending forces, where bonds only stretch and
contract, the percolation exponent is 2.1± 0.2, whereas net-
works in which bonds resist bending as well, this exponent is
predicted to be 3.75±0.1. Unlike CNT suspensions for which
α = 2.3± 0.1 and therefore correspond to central force net-
works10, the exponent for our graphene suspensions is clearly
larger and suggests the presence of bending forces. In contrast
to the point-like contacts between rods, graphene flakes may
form spatially extended contacts that restrict their rotational
degrees of freedom. We therefore expect that bond bending
forces play a role. However, α is not close to 3.75 either,
which suggests that a fraction of bonds is point-like. A platelet
may form bonds with its edge or corner, where the latter would
correspond to a point-like bond.

We probe the microscopic structure of the graphene net-
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Fig. 3 G′/G′0 versus γ/γc, where γc is shown in the inset. (�) 5,
(J) 7.5, (I) 10, (�) 15, (H) 20, (N) 22, (•) 25, (F) 33. The dashed
lines indicate γc where G′0 has decreased by a factor of 10. Inset: γc
versus (φ −φc). The red line is eq.1. The black line denotes the
logarithmic slope −0.8.

work by measuring the non-linear rheological response as
shown in the inset of Fig.2 which shows a typical strain sweep
measurement. At low strain amplitudes, the response is linear
and mostly elastic (G′�G′′) as indicated by the plateau of the
moduli. At larger γ , the suspension becomes fluidized leading
to a rapid decay of G′. We define the yield strain γc when G′

has decreased by a factor of 10. This is illustrated in Fig.3,
where the normalized storage moduli G′/G′0 for different φ

plotted against γ/γc collapse onto a master curve. The inset
of Fig.3 shows the φ dependence of γc. Higher concentrations
give rise to a lower γc, a trend that is analogous to CNT’s10.
Close to φc, the yield strain appears to plateau at around 0.5.

The yield strain depends on the microstructure of the net-
work which in turn depends on φ . Below the yield strain,
the response is elastic and determined by the bonds stretch-
ing and bending and possibly the stiffness of the flakes. At
larger strains, the bonds are broken and the response becomes
non-linear. For fluidization to occur, the flakes have to rotate
through angles large enough to disentangle from the network.
In order to rationalize the observed scaling of the yield strain
with the packing fraction, we employ a model analogous to
the one proposed by Hough et al. for CNT’s10.

The flakes will assemble into some disordered network with
a typical mesh size ξ . We can establish a relation between
ξ and the packing fraction φ by embedding the flakes into
a packing of oblate ellipsoids with semi-axes D/2, D/2 and
ξ/2 as shown in Fig.4(a). At the rigidity transition, the pack-
ing fraction corresponds to flakes being embedded in spheres.
Approximating the flakes as discs of diameter D and thickness
h, the packing fraction is then simply φ = 3h/2ξ ∗. At φc,

∗An analogous analysis for rods of diameter D and length L embedded in pro-
late ellipsoids yields φ = 3/2(D ξ )2 which is equivalent to a cubic lattice of
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at φc :  ξ=D

Fig. 4 Estimating the pore size and the yield criterion. (a) Platelet
approximated as a disc of radius D/2 with thickness h embedded in
an ellipsoid to estimate pore size ξ . (b) Illustration of of a platelet
rotated by θmax.

ξ = D and therefore φc = 3h/2D = 1.5 · 10−3 as determined
earlier. Next we estimate the maximum angle of rotation re-
quired for fluidization to occur. For CNT suspensions it was
found previously10 that the arc length of the maximum angle
θmax corresponds to the mesh size ξ assuming an affine defor-
mation and stiff particles. The maximum angle can then be
estimated as follows10 as illustrated in Fig.4(b):

γc = tanθmax ≈
ξ√

D2−ξ 2
=

3h

2D
√

(φ 2−φ 2
c )

, (1)

since ξ = 3h/2φ , D = 3h/2φc.
The agreement between the data and eq.1 is excellent as

shown in the inset of Fig.3. However, the model predicts a
diverging yield strain at φ = φc, which is unphysical as the
yield strain should be finite at the rigidity transition of sticky
particles. Despite this shortcoming this simple, local model
captures the behavior of the yield strain well for φ far from φc.

The model by Shi et al.24 that has recently been used to
predict the scaling of G′0 and γc in nanoclay composites25 can-
not account for the observed behavior. Far from φc the model
predicts G′ ∝ φ

(3+x)/(3−d f ) and γc ∝ φ
−(1+x)/(3−d f ), where x

and d f are the fractal dimensions of the elastic backbone and
the aggregates, respectively. In our case, where γc ∝ −0.8
far from φc (see inset Fig.3), that would mean x = −0.27 and
d f = 2.09. As the fractal dimension should always be positive
we conclude the assumptions in that model do not hold here.

Next we look at the shear stress σ measured at 1 Hz as
a function of strain amplitude. Fig.5(a) shows the oscilla-
tory strain sweeps for various φ . At low strains, the stress

overlapping rods with lattice constant ξ 10
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Fig. 5 (a) Shear stress σ from oscillatory strain sweep
measurements for different concentrations (in mg/ml): (J) 5, (�)
7.5, (H) 10, (N) 15, (•) 25, (�) 39.6. (b) Rescaled stress according
to eq.3 versus strain normalized with the yield strain γc from eq.1.

increases linearly up to the yield point at which σ starts to
plateau. The yield strain corresponds to rigidity loss due to
bond breaking. The corresponding yield stress σy may there-
fore be used to estimate the bond energy Eb between the flakes
assuming that Eb is φ independent. A similar analysis has
been done to obtain the interaction energy between CNT’s10

and colloidal spheres26. The φ dependence of σy can be in-
ferred from the elastic response of the material. Up to the yield
point the response is elastic, therefore the yield stress scales as
σy ∼ G′0γc ∝ (φ −φc)

3(φ 2−φ 2
c )
−0.5.

The stored elastic energy density at the yield point is E =
0.5Gγ2

c = 0.5σyγc. This may be related to the bond energy
Eb assuming that all bonds (or a fixed fraction thereof) are
broken at the yield point and that Eb is φ independent. Hence,
E = nbEb, where nb is the bond density. It follows that

Eb =
σyγc

2nb
. (2)

For Eb to be φ independent, the bond density nb has to scale
as σyγc ∝ (φ−φc)

3/(φ 2−φ 2
c ). In order to obtain the prefactor

of nb, it is helpful to express the bond density as the product
of the number density nn and the average number of bonds per
particle z. The number density nn is simply nn = φ/Vg, where
Vg is the volume of the platelet, D2h. Therefore, the excess
bond density (beyond φc) scales as (φ − φc)/D2h. It follows
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that z scales as (φ −φc)/(φ +φc) with an unknown prefactor.
However, simulations of other disordered jammed systems,
such as sphere packings, have shown that this prefactor is of
order 127. Substituting eq.1 and nb = (φ −φc)

2/D2h(φ +φc)
into eq.2 yields

Eb = σy
3h2D(φ +φc)

0.5

4(φ −φc)2.5 . (3)

Interestingly, if ones uses an empirical power law fit for the
yield strain (see inset Fig.3), γc ∝ (φ−φc)

−0.8, instead of eq.1,
then z ∝ (φ − φc)

0.4. The exponent is close to 0.5 found in
sphere packings21,27. Note that these scalings only hold for
large φ as one would expect a finite bond density and yield
stress/strain at φ = φc.

In order to obtain an estimate for Eb in terms of kBT we
rescale the shear stress, σ3Dh2(φ +φc)

0.5/(4kBT (φ −φc)
2.5)

(eq.3), and plot it versus the strain normalized by the yield
strain (eq.1). Figure 5 shows an excellent collapse of the data
onto a master curve. The plateau develops around ≈ 20kBT .
This energy may be compared an estimate of the van der Waals
bonding energy between graphene flakes. The surface energy
is known9 to be around ∼ 70 mJ/m2. The interaction energy
depends on the geometry of the bond. Bonds across an edge
of a flake with area ∼ hD have energies of 1.7 ·104kBT , while
a point like contact with area h2 yields 17kBT . The latter value
agrees well with the rheology data, we therefore conclude that
most bonds are point-like with limited spatial extend, but are
not purely central force in nature as indicated by the value of
the percolation exponent.

Finally we measure the steady-shear rheology of the
graphene suspension for various φ above the rigidity transition
over a wide range of shear rates γ̇ as shown in Fig.6(a). At all
φ , the suspensions exhibit shear thinning with a small plateau
developing at around γ̇ = 10s−1, except for c= 5mg/ml, where
the plateau starts at γ̇ = 1s−1. At high shear rates the viscosity
approaches the solvent viscosity28 which is presumably due
to shear alignment of the platelets.

Using a relaxation ansatz, we can deduce the steady shear vis-
cosity at low shear rates from the storage modulus and the
yield strain. In this approach, steady shear is approximated
as a sequence of elastic deformations whose stored energy is
dissipated in irreversible microscopic processes on a charac-
teristic relaxation time scale tr 29. In our case this would be the
bond breaking between flakes at the yield strain. After yield-
ing, the bonds quickly re-form through thermal motion, as-
suming that the thermal time scale τ is much smaller than the
deformation time scale γ̇−1, i.e. Pe≡ γ̇τ� 1. For high aspect
ratio nanoparticles such as graphene the relevant time scale is
the rotational diffusion time scale30 τ = 4ηsD3/3kbT = 0.7s,
where we approximate the flakes as disks of diameter D.
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Fig. 6 (a) Apparent viscosity versus Peclet number for different
concentrations (in mg/ml): (�) 5, (•) 10, (N) 20, (H) 25, (�) 33. (b)
Rescaled viscosity versus strain rate γ̇ for the same data. Here,
Eb = 10kBT . Black line denotes γ̇−1 as predicted by the relaxation
ansatz.

The apparent viscosity of the suspension is approximately
η ≈ G′0tr 29. Here, tr is simply the time between consecutive
yielding events, thus tr = γc/γ̇ . It follows that η ≈ G′0γcγ̇−1,
which reduces to η ≈ σyγ̇−1. Expressing σy in terms of the
bond energy and platelet dimensions (eq.3), we obtain

η ≈ 4Eb(φ −φc)
2.5

3h2D(φ +φc)0.5γ̇
. (4)

In order to test this relation, we plot the the rescaled viscos-
ity η3Dh2(φ + φc)

0.5/4Eb(φ − φc)
2.5 versus γ̇ as shown in

Fig.6(b). For Pe < 10, the rescaled viscosity agrees well with
the predicted γ̇−1 scaling except for c= 5mg/ml which is close
to φc. Even though this model does not apply for Pe� 1,
where dissipation is mainly viscous rather than due to bond
breaking, the viscosity still scales with (φ−φc)

2.5/(φ +φc)
0.5

for φ � φc. If one approximates γc ∝ (φ − φc)
−0.8 (Fig.3),

then η ∝ (φ −φc)
2.2 as seen in Fig.1.

4 Conclusions

In conclusion, we have probed the microstructure of graphene
platelets beyond the rigidity percolation through rheological
measurements. The results are consistent with an elastic net-
work of stiff platelets held together by bonds with limited
spatial extent of the order of the width of the platelets with
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an energy of ≈ 20kBT . The yield strain decreases with con-
centration due to decreasing mesh size of the network. The
steady shear viscosity beyond the rigidity percolation is well
described by an relaxation ansatz for Pe < 10 and can be ex-
pressed in terms of the platelet dimensions, bonding energy
and volume fraction. This result is an important step towards
understanding the interplay between microstructure and me-
chanical response of graphene suspensions.
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Text for graphical abstract: 

We propose a simple model to explain the measured yielding behaviour of concentrated 

suspensions of Graphene platelets which allows us to model the viscoelastic response in terms of 

bond energy, packing fraction and platelet dimensions. 
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