
 

 

 

 

 

 

Friction between Ring Polymer Brushes 
 

 

Journal: Soft Matter 

Manuscript ID: SM-ART-12-2014-002818.R3 

Article Type: Paper 

Date Submitted by the Author: 24-Feb-2015 

Complete List of Authors: Erbas, Aykut; Northwestern University,  
Paturej, Jaroslaw; Leibniz-Institut of Polymer Research,  

  

 

 

Soft Matter



Friction between Ring Polymer Brushes

Aykut Erbas
Northwestern University,

Department of Materials Science and Engineering
Evanston, IL 60208, USA

Jaros law Paturej
Leibniz-Institut of Polymer Research, 01069 Dresden, Germany and

Institute of Physics, University of Szczecin, Wielkopolska 15, 70451 Szczecin, Poland
(Dated: February 24, 2015)

Friction between ring polymer brush bilayers at melt densities sliding past each other are studied
using extensive coarse-grained molecular dynamics simulations and scaling arguments, and the re-
sults are compared to the friction between bilayers of linear polymer brushes. We show that for a
velocity range spanning over three decades, the frictional forces measured for ring polymer brushes
are half of the corresponding friction in the case of linear brushes. In the linear-force regime, the
weak inter-digitation between ring brush layers as compared to linear brushes leads also to a lower
number of binary collisions between the monomers from opposing brushes. At high velocities, where
the thickness of the inter-digitation between bilayers is on the order of monomer size regardless of
brush topology, stretched segments of ring polymers adopt the double-stranded conformation. As a
result, monomers of the double-stranded segments collide on average less with the monomers of the
opposing ring brush even though a similar number of monomers occupies the inter-digitation layer
for ring and linear brush bilayers. The numerical data obtained from our simulations is consistent
with the proposed scaling analysis. Conformation-dependent friction reduction observed in ring
brushes can have important consequences in non-equilibrium bulk systems.

INTRODUCTION

If polymer chains are grafted by one of their ends to
a planar or curved surface, above a certain critical graft-
ing density σ∗

g ≈ 1/R2
0 [1], where R0 is the characteris-

tic equilibrium chain size, the chains are stretched away
from the surface due to steric repulsion from surround-
ing chains and form polymer brush. A polymer brush is
a soft polymeric material that can deform under various
external forces. The external force can be due to a fluid
flowing over the brush, a flow due to the relative motion
of a second brush, or alternatively, an external electri-
cal field (if polymers are charged). Once the external
stimulus is completely removed, as the chains constitut-
ing brush relax, deformation of brush is reversed similar
to the elastic deformation observed for solids. However,
the tribological behaviour of polymeric systems resem-
bles more that of a fluid rather than a solid [2]. For
instance, if two inter-digitated polymer brushes are slid
past each other, frictional forces due to the relative mo-
tion of brushes vanish linearly as the relative velocity of
the brushes is decreased towards zero. In other words,
the friction is viscous and no static friction occurs, unlike
the solid-state friction, where finite forces are needed to
initiate motion [3].

Polymer brushes has attracted increasing attention
due to their applications in nanotechnology and mate-
rial sciences as bio-sensors, bio-fueling, stimuli-responsive
surfaces [4–8], or for the stabilisation of colloidal solu-
tions [9, 10]. The most fascinating application of brush-
like structures is facilitated by nature in maintaining the

lubrication in tissues [11–14]. For instance, in mam-
malian joints, where very low lubrication should be re-
tained under pressures as high as 5 MPa, brush-like struc-
tures in combination with the synovial fluid provide lu-
brication in between the articular joints [14–16]. The
surfaces separating the articular cartilage and the syn-
ovial fluid are thought to be covered by high molecu-
lar weight molecules such as lubricin [14, 17]. In turn,
these long and charged glycoproteins may function as
water-based bio-lubricants. The relationship between
morphology of these long and charged macromolecules
on the cartilage surfaces and their function in lubrication
is still under investigation [11, 14, 16–20]. Amphiphilic
lubricin chains can adsorb on both hydrophilic and hy-
drophobic surfaces [16, 21], but their conformations in
the adsorbed state strongly depend on the type of sur-
face. These molecules can bind onto hydrophilic surfaces
via their charged domains located in the central part of
a molecule and form structures resembling a brush com-
posed of linear chains. Alternatively, they can also bind
onto hydrophobic surfaces with their terminal groups to
form loop brush-like structures [16, 21, 22]. Hence, based
on the experimental observations and variations in the
molecular conformations in vitro, one may conclude that
in reality the whole cartilage surface resembles a polymer
brush composed of linear and loop-like chains. Although
molecules mentioned so far are highly charged, and long-
range interactions might be a dominant factor in reduc-
tion of frictional forces, conformation of chains – whether
they are linear or looped – can influence inter-digitation
of molecules as well as their relaxation times, and hence,

Page 1 of 12 Soft Matter



2

friction and lubrication in tissues.

Inter-digitation effects due to ring topology have also
been reported in the context of genetic material: in a
computational study, unconcatenated chains of ring poly-
mers showed a weak trend towards inter-mixing with each
other compared to mixing behaviour of linear chains in
confined environments [23]. We should also underline
that static properties of ring polymers in bulk and at
melt densities exhibit different behaviour with respect to
their linear counterparts [24, 25]. The behaviour of ring
polymers cannot be described by single fractal dimen-
sion unlike linear chains in melts: while size of a linear
chain at melt state scales as R0L ∼ N1/2, a ring poly-
mer in the melt of rings is much more compact and the
characteristic size scales as R0R ∼ N1/2 for short chains
and R0R ∼ N1/3 for sufficiently large polymerization de-
gree N . In between these two limits, an intermediate
regime R0R ∼ N2/5 arises [24, 25]. Moreover, even in
the regimes where the size of ring chain is non-Gaussian,
interestingly higher moments of the end-to-end distance
exhibit a Gaussian-like behaviour [24].

In the last two decades the sheared linear polymer
brush bilayers have been extensively explored using both
theory [26–30] and simulations [26, 31–44]. Existing stud-
ies on linear polymer brushes have shown that frictional
forces acting between brushes exhibit a cross-over from
a linear to a non-linear regime upon increasing shear ve-
locity. The onset of non-linear friction typically appears
at shear rates where grafted chains begin to stretch. Ide-
ally, one would expect a similar behaviour in the case
of ring-polymer brushes. However, how the topology and
peculiar scaling of ring chains alter the friction is an open
question. To the best of our knowledge there are very few
computational investigations of ring polymer brushes out
of equilibrium [45, 46]. In a previous work [46], tribol-
ogy of loop brushes near the overlap concentrations were
studied, but the observed difference in frictional forces
was negligible. However, at melt densities where the cor-
relation length – distance between two chains – is on
order of monomer size, the situation can be different as
the number of collision between brush monomers can sig-
nificantly increase in a denser system.

Characterizing the systematic reduction in brush fric-
tion due to the topology of the constituting chains can
improve our understanding of how nature handles friction
and help to design and improve new advanced biomimetic
lubricants. Thus, spurred by the abundance of brush-
like structures in biological systems and the interest-
ing nature of ring polymers themselves in this paper we
aim to study non-equilibrium behaviour of ring-polymer
brushes at melt densities. In our extensive coarse-grained
MD simulations, we used neutral (uncharged) polymer
brushes. Given the fact that the system we would like to
mimic is under high pressure (e.g., in joints), and ionic
condensation (short Debye length in physiological condi-
tions) can effectively neutralize chains, we believe that

this approximation is reasonable for the sake of minimiz-
ing computational cost [32] since long-range electrostatic
interactions are known to be computationally expensive,
particularly for dense systems. Through a detailed anal-
ysis of simulation trajectories and by employing scaling
arguments, we demonstrate that the topology of chain in
a polymer brush is an important factor in the reduction
of frictional forces.

In our simulations, we found that for untangled
brushes friction forces between two brushes made of lin-
ear chains are always roughly a factor of two higher
than those for ring chains. Although this difference is
small, it persists for various grafting densities and chain
sizes. The difference in frictional forces of ring and lin-
ear brushes can be elucidated by the size of the overlap
zone, which defines the amount of inter-digitation be-
tween two brushes. It turns out that the low tendency of
ring chains to overlap with the opposing ring-brush leads
to lower friction forces whereas linear chains can diffuse
through the opposing brush more easily. Hence, brushes
made of linear chains exhibit higher frictional forces. At
very high velocities, segments of a ring brush adopt a
double-stranded conformation. In turn, double-strands
are less efficient in momentum transfer between the op-
posing brushes. The difference in friction forces between
both systems is confirmed by scaling analysis.

The paper is organized as follows: First we briefly de-
scribe the simulation methodology. Next, the results ob-
tained from non-equilibrium coarse-grained brush simu-
lations will be discussed. We relate the difference in fric-
tion forces to the intrinsic properties of ring and linear
(grafted) chains. The scaling arguments for brush sys-
tems are discussed to infer the difference in forces along
with the simulations data. We conclude the paper with
the summary of our findings and future prospects.

SIMULATION DETAILS

Simulations of polymer brush bilayers were performed
using coarse-grained Kremer-Grest (KG) bead-spring
model [47]. Each individual chain of a polymer brush was
composed of N (or 2N) monomers (beads) connected by
bonds. The non-bonded interactions between monomers
separated by distance r were modeled by the truncated
and shifted Lennard-Jones (LJ) potential

V LJ(r) =

{

4ǫ
[

(σ/r)12 − (σ/r)6 + c
]

r ≤ rc
0 r > rc

(1)

where the interaction strength ǫ is measured in units of
thermal energy kBT , σ is chosen as the unit of length, rc
is the cutoff and c is the shift introduced to avoid discon-
tinuity of potential at rc. The simulations were carried
out with the following parameters ǫ = kBT , c = 1/4 and
rc = 21/6 σ. The choice of LJ potential cutoff rc results
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in purely repulsive interactions between monomers which
in combination with a monomer density of ρm ≈ 0.6σ−3

provides correct melt statistics [26, 32, 48]. The bonded
interactions in a molecule were described by the Kremer-
Grest potential, V KG(r) = V FENE(r) + V LJ(r) with the
“finitely extensible nonlinear elastic” (FENE) potential:

V FENE(r) =







− 1

2
kr20 ln

[

1 −
(

r
r0

)2
]

r ≤ r0

∞ r > r0
(2)

where k = 30 ǫ/σ2 is bond stiffness and r0 = 1.5σ is
maximum bond length [47].

Polymer brushes composed of chains with either linear
or ring-like topology were studied. We performed simula-
tions with linear-polymer brushes composed of N = 60,
100 monomers, and ring-polymer brushes of N = 120,
200 monomers per grafted chain. Chains were grafted
on a square-lattice surface with dimensions 42σ × 36σ.
The ring chains were grafted by one of their monomers on
the surface. No equation of motion was solved for surface
monomers (surface monomers were immobile during sim-
ulations). The surface and the brush monomers interact
via interaction given in Eq. (1). The grafting densities of
linear chains are σL

g = 0.11σ−2, 0.25σ−2, which respec-
tively corresponds to inter-anchored monomer distances
of 3σ , 2σ at the surface. In the case of ring brushes,
to obtain an equal monomeric density (ρm ≈ 0.6 σ−3)
as compared to the linear brushes, the grafting densi-
ties were taken as σR

g = 0.5σL
g at the same inter-plate

distance D. Note that D and σL,R
g are connected via

ρm ≈ NσL,R
g /D. In order to construct brush bilayer sys-

tems, first two non-interacting single brushes were gen-
erated as mirror images of one another. While one of the
brushes is fixed at z = 0, the other brush is brought into
contact slowly at the desired inter-plate distance z = D
to obtain the same monomer density for each σL,R

g and
N . Finally, the systems were run at velocity v = 0 (no
shear) for at least 107 MD steps to allow chains to relax.

The molecular dynamics simulations were performed
by solving the Langevin equation of motion, which de-
scribes the Brownian motion of a set of interacting
monomers, as

mr̈i = F
LJ

i + F
FENE

i − Γṙi + F
R

i , i = 1, . . . , N, (3)

where ri = [xi, yi, zi] is the position of i–th monomer.
F

LJ

i and F
FENE

i in Eq. (3) are respectively LJ and FENE
forces exerted on the i–th monomer and given by deriva-
tives of Eqs. (2) and (1) with respect to ri. The effect of
the implicit solvent in Eq. (3) is split into a slowly evolv-
ing viscous force −Γṙi and a rapidly fluctuating stochas-
tic force F

R

i . This random force F
R

i is related to the
friction coefficient Γ by the fluctuation-dissipation theo-
rem 〈FR

i (t)FR

j (t′)〉 = kBTΓδijδ(t − t′). The friction co-

efficient used in simulations was Γ = 0.5mτ−1, where

f 

f 

g
L,R

 momoners

D
δ
L,R

 

z

x

δ
L,R

 

v

v

FIG. 1: Scheme of brush bilayer shear simulation. The
force f acts in the direction opposite to velocity v.

Chains at the top and bottom brush are rendered in
different colors. The overlap zone (OZ) with thickness
δL,R is indicated by a milky-white region. The dashed

circle shows the segments of chains with gL,R monomers
inside the penetration zone. Here N = 60,

σL
g = 0.25 σ−2 and D = 50 σ. Images are obtained via

VMD.

m = 1 is the monomer mass and time was measured in
units of τ =

√

mσ2/ǫ. The integration step was taken to
be ∆τ = 0.002 τ . The velocity Verlet scheme was used
for numerical integration of equations of motion Eq. (3).
All simulations were performed in the NmV T -ensemble,
i.e. at constant volume V , total particle number Nm

and temperature T . The system temperature was set to
the value T = 1.68 ǫ/kB with kB = 1 [48, 49]. Peri-
odic boundary conditions were introduced in the lateral
directions, i.e. in x̂ and ŷ whereas in the ẑ-direction
fixed boundary conditions were imposed. Simulations
were carried out using molecular package LAMMPS [50].
Simulation snapshots were rendered using Visual Molec-
ular Dynamics (VMD) [51].

The non-equilibrium shear simulations were performed
as shown in Fig. 1. Both plates grafted by polymers
were moved laterally in the opposite (±x̂-directions) at
prescribed velocities in a range of v ≈ 10−3 σ/τ and
v ≈ 1σ/τ . The inter-plane distance D was kept constant
during shearing. For each plate velocity, all system were
run for 107 MD steps until the steady state in friction
force was reached, i.e. error bars in time-averaged quan-
tities were independent of simulation time. Error bars
were calculated via block-averaging. For the purpose of
data analysis, additional simulations were run for 106 up
to 108 MD simulation steps depending on the velocity
and in order to obtain proper plate displacements. As
a rule each plate was displaced by at least 5 times in
the corresponding ±x̂-directions. To avoid any bias on
friction forces or vertical chain diffusion while the sys-
tem was sheared, the thermostat was applied only in the
ŷ-direction [31, 48].

In this paper, we report frictional forces which are

Page 3 of 12 Soft Matter



4

the forces acting on the plates due to relative motion
of brushes. If there is no contact between brush bilayers,
the friction force is zero. To keep the plates at the pre-
scribed velocity, at each timestep the external force was
subtracted from the friction force to obtain a zero to-
tal force on each plate. Averaged brush properties were
calculated from monomer trajectories. Unless otherwise
noted, all results presented in this paper were averaged
over time.

RESULTS AND DISCUSSION

In the course of simulations, two compressed polymer
brushes were moved in the opposite (±x̂) directions by
driving both planes grafted by chains at prescribed ve-
locities v as shown in Fig 1. Each plane experiences a
friction force in the opposite direction to its motion due
to relative motion of brushes. In Fig. 2, the friction force
for linear brushes fL (filled symbols) and for ring brushes
fR (open symbols) are shown as a function of velocity v,
for various brush systems with different polymerization
degrees N and chain topologies. The overall velocity de-
pendence of friction forces is consistent with previously
reported results [26, 32, 33, 52]: The frictional force in-
creases linearly up to a threshold velocity, which occurs
at different velocities for different brush bilayers. Above
a threshold velocity, a sublinear increase occurs for all
brush systems considered here. The velocity dependence
of the friction force within the non-linear regime for both
linear and ring brushes was found to be in perfect agree-
ment with the scaling fL ∼ v0.55±0.03 reported by several
groups [26, 32, 33]. We observe this linear-to-sublinear
transition in most of our systems except the case with
inter-plate distance D = 35σ, where only the onset of
the non-linear regime can be seen in Fig. 2d. As we
will discuss in more details in the following sections, this
is due to the fact that the threshold velocity separat-
ing the linear and non-linear force regimes depends on
segment size inside the overlap volume, where two op-
posing brushes can co-exist. Hence, as the size of the av-
erage segments increases inside the overlap volume, much
slower velocities are required to observe the linear-force
regime. The comparison of friction forces acting on lin-
ear and ring brushes, which is the main motivation of
this work, shows that friction forces for linear brushes
are always higher than those acting on ring brushes, i.e.
fL > fR. The numerical value of the ratio between these
two forces is fL/fR ≈ 2 as can be seen in the insets of
Fig. 2. The ratio holds for a broad range of shearing
velocities (v ≈ 10−3-100 σ/τ).

Average normal forces acting on the plates in the ẑ-
direction were also measured. We observe that normal
pressure exhibit a weak dependence on velocity, i.e. a
three order of magnitude increase in velocity leads to a
roughly 10% increase in the normal forces for both linear

TABLE I: The equilibrium values of the thickness of the
overlap zone (OZ) δ0L,0R (calculated via Eq. 4) and
number of monomers g0L,0R per segment of a chain

located inside the OZ for linear and ring brush bilayers
with various inter-plate distances D and grafting

densities σR
g = 0.5σL

g . The number of monomers per
segment is denoted by N .

Linear brush Ring brush

D[σ] σL
g [σ−2] N δ0L[σ] g0L σR

g [σ−2] N δ0R[σ] g0R

50 0.25 60 2.97 9 0.125 120 2.47 15

22 0.11 60 4.88 22 0.055 120 3.81 37

80 0.25 100 3.82 12 0.125 200 2.91 21

35 0.11 100 6.05 33 0.055 200 4.62 53

and ring brushes (data not shown). At high velocities,
a slight decrease in all measured pressures is observed.
Similar to the frictional forces, the normal pressures mea-
sured for linear brushes are factor of two higher than ring
brushes, pLz /p

R
z ≈ 2. However, if total normal forces are

rescaled by the number of grafted chains for each system,
normal forces per chain are of almost equivalent in both
systems.

In what follows, we discuss the observed difference in
the frictional forces acting on linear and ring brushes. We
consider linear and non-linear force regimes separately
and demonstrate that the ratio fL/fR ≈ 2 is related to
the topology of chains and of their velocity-dependent
conformations.

Linear regime

In this subsection we consider the regime where fric-
tional forces increase linearly with the driving velocity v
(Fig. 2). If two dense polymer brushes are brought into
contact at the inter-plate distance D > R0, as shown
in Fig. 1, where R0 is equilibrium size of a free chain
in bulk, chain segments near the free ends can interpen-
etrate through the opposing brush. Hence, an overlap
zone (OZ), where monomers of opposing brushes can mu-
tually interact, can be defined as illustrated in Fig. 1 by
a rectangular region.

From simulation trajectories, the thickness of the OZ
can be obtained using the cross product of monomer den-
sity profiles of top ρtop(z) and bottom ρbott(z) brushes
for each velocity. The cross product is non-zero only if
monomers from both parts of brush coexist at the same z
coordinate. The width of the OZ can be calculated from
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FIG. 2: Total friction forces f as a function of plate
velocity v for linear and ring brushes. The grafting

densities are for a) σL
g = 0.25σ−2 b) σL

g = 0.11σ−2 c)

σL
g = 0.25σ−2 d) σL

g = 0.11σ−2 with σR
g = 0.5σL

g for all
plots.

the cross-product-weighted averages as

δ2(v) ≡ 〈z2〉 − 〈z〉2 (4)

≡ 4





∫ D/2

−D/2

z2ω(z)dz −

(

∫ D/2

−D/2

zω(z)dz

)2


 ,

FIG. 3: The equilibrium values of the width of the
overlap zone (OZ) versus number of monomers g0 per

segment of a chain located inside the OZ for linear (full
symbols) and ring (empty symbols) brushes. Dashed

lines represent fitted power laws: δ0 ≈ 1.0g
1/2
0 (for

linear chains) and ≈ 0.625g
1/2
0 (for rings). The inset

shows fluctuation of the end-to-end size of segments
r0 ≡ 〈r20〉

1/2 inside the OZ as a function of δ0. Solid line
shows the scaling r0 ∼ δ0. See also Table I.

where the normalized cross product was defined as

ω(z) ≡ ρtop(z)ρbott(z) such that
∫D/2

−D/2
ω(z)dz = 1. Eq. 4

is valid for any brush for which D > R0. In the case
of D ≈ R0 the thickness of the OZ is D ≈ δ. Note
that for symmetric bilayers the first moment 〈z〉 is zero.
In Fig. 4 monomeric density profiles ρtop(z) and ρbott(z)
and their products ρtop(z)ρbott(z) are shown for both lin-
ear (solid lines) and ring (dashed lines) brush bilayers at
v = 0. While outside of the OZ the monomeric density
profiles are uniform along the simulation box, inside the
OZ chains from the top brush can only penetrate a fi-
nite distance δ from the bottom brush. The distance δ is
defined by Eq. 4.

The equilibrium value of the OZ thickness can be ob-
tained from simulations without shear, i.e. δ(v = 0) ≡ δ0.
Note that in this paper we use subscript “zero” to indi-
cate equilibrium, i.e. at a plate velocity v = 0, or linear-
response values of corresponding parameters whereas
subscripts L and R refer respectively to linear and ring
brushes. The equilibrium values of the widths of the OZ
for linear and ring brushes δ0L,0R are shown in Fig. 3
as a function of the number of monomers g0L,0R per
participating chain for linear and ring brushes (see also
Table I which lists the numerical values of both quan-
tities). As a rule a chain is considered as “participat-
ing”, i.e. being present inside the OZ, if z coordinate of
the N -th monomer of the corresponding chain satisfies
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FIG. 4: The equilibrium monomer density profiles ρ(z)
for linear (solid lines) and ring (dashed lines) brush
bilayers plotted as a function of the rescaled vertical
distance between plates z/D. The red curves display

cross products of densities of top and bottom layers; the
width of these distribution given by Eq. 4 defines the
overlap zone of brush bilayer. Here for linear brushes
N = 100 and σL

g = 0.11 σ−2 whereas for ring brushes

N = 200 and σR
g = 2σL

g . The inter-plate distance for
both cases is D = 35 σ.

the following condition: D/2 − δL,R < z < D/2 + δL,R.
As we perform our simulations nearly at melt density
(ρm ≈ 0.6σ−3), the random-walk statistics allows us to
express the end-to-end distance of a segment with g0L,0R

monomers as r0L,0R ≡ 〈r20L,0R〉
1/2 ∼ g

1/2
0L,0R for short

enough segments. If the size of the segment determines
the width of the OZ, the relation r0L,0R ≈ δ0L,0R should
hold. Indeed, this is what we observe in Fig. 3 and in its
inset for both linear and ring brushes: r0L,0R ≈ δ0L,0R ∼

g
1/2
0L,0R. Interestingly, we found that at the same inter-

plate distance D, a chain in a ring brush occupies the
overlap volume filled with more monomers than a chain
in a linear brush (g0R > g0L). This finding demonstrates
that the segments of ring brushes are more compact in-
side the OZ as compared to segments of linear brushes.
This is also supported by Fig. 3 since the pre-factor of
the power-law fit is 1.6 times larger for linear brushes.
The compactness of segments in ring brushes yields to
a narrower OZ. As a remark, for very long segments in
ring brushes (gR ≫ 1) the width of the OZ should in the

asymptotic limit converge to 〈r20R〉
1/2 ≈ δ0R ∼ g

1/3
0R . In

that case: δ0L/δ0R ∼ g
1/2
0L /g

1/3
0R .

Since two opposing brushes can only interact inside the
OZ, the observed frictional forces should be related to the
width of OZ. The grafted chains are not static as they
constantly diffuse in and out of the overlap volume which
is given by A×δL,R where A is the area of a grafting plate
due to thermal fluctuations. When two plates are moved
at nonzero velocity v > 0, any chain segment that en-
ters the OZ feels a flow induced by the relative motion

of monomers moving in the opposite direction. The force
acting on each monomer inside the overlap volume can be
most generally expressed via Stokes drag fm ≈ ζv, where
ζ is the monomeric friction coefficient. The total friction
force acting on ρmAδ monomers inside the overlap vol-
ume can be expressed for both linear and ring brushes as
follows

fL,R ≈ ζ0vρmδL,RAΩL,R. (5)

In Eq. (5), we introduced ΩL,R which quantifies the num-
ber of binary collisions between the monomers of two op-
posing brushes and depends on the topology of grafted
chains. As we will see shortly, although there are ρmδA
monomers inside the overlap volume, only a fraction of
them participate in momentum exchange between oppos-
ing brushes. Hence, ΩL,R is an important quantity to
distinguish the friction among different brush systems.
In addition, the equilibrium value of the monomeric fric-
tion coefficient ζ0 is expected to be equal for monomers
of both linear and ring brushes. Indeed, calculated force
per monomer inside the overlap volume at a specific ve-
locity does not show any difference for ring and linear
brushes (data not shown). This is due to the fact that
on the time scales comparable with time between inter-
bead collisions monomer cannot know whether it belongs
to a linear or ring chain.

Based on the linear-response theory, which states that
any fluctuation takes its equilibrium value if the per-
turbation is small, we replace the quantities appearing
in Eq. (5) with their equilibrium values as v → 0, i.e.,
δL ≈ δ0L and δR ≈ δ0R and similarly ΩL ≈ Ω0L and
ΩR ≈ Ω0R. Thus, the frictional force ratio in the linear-
force regime reads

fL
fR

≈
δ0LΩ0L

δ0RΩ0R
. (6)

The validity of Eq. (6) can be verified from the simula-
tion data by calculating the equilibrium values of δL,R

and ΩL,R for both linear or ring brushes. From now
on, to keep the manuscript more compact we will only
show data from four of our eight brush systems. All
comparisons and discussions are valid for the systems
which are not shown here as well. We show results of
non-equilibrium simulation for the thickness of OZ δL,R

as a function of plate velocity v for various linear and
ring brushes in Fig. 5. Each frame of Fig. 5 compares
the OZ width of ring brushes (open symbols) to those
obtained for linear brushes (filled symbols) at the same
inter-plate distance D. Independently of the chain topol-
ogy the width of the OZs exhibit a plateau for all brush
systems as v → 0. The plateau values of the OZs, which
are δL ≈ δ0L and δR ≈ δ0R, persist up to the plate ve-
locities, around which the linear-force regime observed in
Fig. 2 ends. Indeed, as we proposed in Eq. 6, the widths
of OZs δL,R are equal to their equilibrium values. This
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FIG. 5: The thickness δ of the overlap zone for linear
and ring brushes plotted as a function of plate velocity
v. The values of δ were calculated using Eq. (4). The
insets show the ratios. The grafting densities are a)
σL
g = 0.25σ−2 and b) σL

g = 0.11σ−2 with σR
g = 0.5σL

g

for all plots.

is due to the fact that within the linear-force regime, for
which frictional forces change linearly with velocity, val-
ues of δ0L,0R are given by the fluctuations in size of a
chain segments in the ẑ-direction inside the OZ (Fig. 3).
The size of a segment with gL,R monomers defines the
width of the OZ as also illustrated in Fig. 1.

The number of monomers per segment gL,R inside the
OZ for linear and ring brushes was analyzed and is shown
in Fig. 6 as a function of the plate velocity v using the
same color code as in Figs. 2 and 5. In the entire velocity
range considered here the following ratio holds gR ≈ 2gL
for the same value of D. At slow velocities (v → 0)
the ratio of monomers per segment g0L/g0R is ≈ 0.6.
The ratio drops to gL/gR ≈ 0.4 at higher velocities (v >
10−1 σ/τ).

Similar trajectory analysis was also conducted to de-
termine the number of binary collisions ΩL,R inside the
overlap volume. To count collisions, distances between
the monomers from opposing brushes were calculated. If
the distance is equal or smaller than the cutoff distance
of LJ potential rc defined in Eq. (1), this specific pair is
counted as a colliding pair. To obtain ΩL,R and compare
the number of collisions for ring and linear chains, the
total number of collisions is rescaled by the correspond-
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FIG. 6: The number of monomers g inside the overlap
zone per participating chain for ring and linear brush

bilayers as a function of the plate velocity v. Insets show
the ratios. The grafting densities are a) σL

g = 0.25σ−2

and b) σL
g = 0.11σ−2 with σR

g = 0.5σL
g for all plots.

ing value of ρmAδL,R. In Fig. 7, we show the binary-
collision fractions ΩL,R, as well as their ratios in the
insets. Interestingly, for linear brushes there are more
collisions as compared to ring brushes, i.e. ΩL > ΩR for
the entire velocity range although gR ≈ 2gL. An aver-
age ratio of gL/gR ≈ 0.5 indicate that a single chain in
ring brushes can occupy the overlap volume with more
monomers than a chain in linear brushes (gR > gL). The
compactness of the segments in ring brushes yield to a
narrower OZ (Fig. 3). The compactness also suppresses
inter-brush collisions between the monomers of opposing
brushes. Since some monomers of the segments in ring
brushes are shielded from collisions, we found ΩL > ΩR

and consequently fL > fR ≈ 2.

Values of ΩL and ΩR as v → 0 in Fig. 7 are close
to values obtained in equilibrium simulations, i.e., ΩL ≈
ΩL0 and ΩR ≈ Ω0R. At the same plate separation D,
the ratios of plateau values are δ0L/δ0R ≈ 1.3±0.05 from
Fig. 5 and Ω0L/Ω0R ≈ 1.7 ± 0.1 from Fig. 7. Plugging
the later expression into Eq. 6 gives the ratio of friction
force for the linear-force regime fL/fR ≈ 2.3, which is
consistent with the ratios of forces obtained in the insets
of Fig. 2).

As the frictional forces increase linearly (see Fig. 2)
in principle none of terms in Eq. (5) should be velocity
dependent. Indeed, this is what one would expect at
the linear-response level: at slow enough velocities (<
10−1 σ/τ) the conformation of chain segments within the
OZ are not affected by the velocity. As a result, the
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ratios of forces for linear and ring brushes are constant
and given by Eq. (6).

Our analyzes confirm that in ring brush bilayers, the
amount of inter-digitation of chains is weaker compared
to that in linear brush bilayers at slow driving velocities,
where the friction increases linearly with velocity.

Non-linear regime

In this subsection we will focus on the regime where
frictional forces demonstrate sublinear plate velocity v
dependence. As can be seen in Fig. 2 nonlinear regime
is observed for both linear and ring bilayers. Another in-
dication of the non-linear regime is the shrinkage of the
overlap volume with increasing velocity v (shear thin-
ning) as shown in Fig. 5. Onset of the non-linear regime
occurs at a threshold velocity v = v∗. Indeed, v∗ has
different values for different chain sizes as can be noticed
in Figs. 2 and 5. Before we further continue our discus-
sion on the non-linear regime, we will briefly discuss two
scaling predictions for the threshold velocity, and refer
them as v∗I and v∗II .

We will temporarily drop the indexes for ring and lin-
ear brushes for simplicity and refer g0 ≡ g0L ≡ g0R and
δ0 ≡ δ0L ≡ δ0R, etc. If a segment with g0 monomers

enters the OZ, the force acting on this segment in the
linear regime can be expressed as fch ≈ ζ0g0v. As we
have discussed in the previous section, below the thresh-
old velocity the chains are still Gaussian. Hence, as ex-
pected from a Gaussian chain, segment chain sizes in
x̂, ŷ and ẑ-directions are not coupled, i.e. fluctuations
in segment size in all direction are independent of each
other. However, as the velocity is increased, the fric-
tional force per segment inside the OZ reaches a thresh-
old force f∗

ch ≈ kBT/b ≈ ζ0g0v
∗
I at v = v∗I [28] where

b is the characteristic monomer (Kuhn) size. The force
on the segment, f∗

ch ≈ kBT/b, is high enough to align
individual bonds in the direction of the relative mo-
tion in the x̂-direction. Thus, vertical segment fluctua-
tions in the ẑ-direction, which define the width of OZ,
will be affected by the relative motion. As a result
the OZ decreases with respect to its equilibrium value
δ < δ0 at v > v∗I ≈ kBT/bζ0g0 ∼ 1/g0 [28]. On the
other hand, in a concentrated solution one may argue
that the threshold velocity occurs at slower velocities
and is given by f∗

ch ≈ ζ0gv
∗
II ≈ kBT/δ0 that leads to

v∗II ≈ kBT/bζ0g
1+ν
L/R [26], where ν is the scaling exponent

(ν = 1/2 for an ideal chain and ν = 0.588 for a swollen
chain in 3D). In our simulations, hydrodynamic interac-
tions are screened, therefore, we can take ν = 1/2 and

obtain v∗II ∼ 1/g
3/2
0 . The ratio of two predictions for

the threshold velocities obtained above is v∗I/v
∗
II = g

1/2
0 .

Unfortunately, in our simulations segment chain sizes in-
side the OZ are of the order of g0L,0R ∼ 10. Thus,
we cannot capture a significant difference between the
threshold-velocity predictions v∗I and v∗II . In principle,
brush systems with larger g0L,0R values can be designed.
However, for longer segment sizes, e.g. g0L,0R ≈ 100
chain entanglements will also come into play and intro-
duce more complexities. Hence, throughout this work we
will leave investigation of the threshold velocity v∗ for a
separate work [53], and refer v∗ only to distinguish be-
tween the linear (any segment inside OZ is stretched less
than its equilibrium size) and the non-linear force regimes
(the segment end-to-end distance exceeds its equilibrium
size).

As discussed above, at v > v∗ the segments inside the
OZ are not Gaussian as they are stretched due to the rel-
ative motion of brushes, as illustrated by the snapshots
given in Fig. 8. At the velocity range v∗ < v < vmax,
where the maximum velocity that we considered here
vmax ≈ 1 σ/τ , both δL and δR decrease in a similar way
with increasing velocity as shown in Fig. 5. Thus, Eq. 6 is
still valid to explain the difference in the frictional forces
for velocities v∗ < v < vmax.

At around vmax ≈ 1 σ/τ , regardless of the brush topol-
ogy, the width of the OZs goes to unity δL,R → σ as
shown Fig. 5. Hence, at v >

∼ vmax, according to Eq. 6,
the ratio of friction forces for linear and ring brushes is
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reduced to

fL
fR

≈
ΩL

ΩR
. (7)

Indeed Fig. 7 shows that the ratio of binary-collision fac-
tors for ring and linear ΩL,R is even higher at high ve-
locities and reaches ΩL/ΩR ≈ 2. The limit of δL,R → σ
for both ring and linear brushes at high velocities im-
plies that there should be equal number of monomers
inside the overlap volumes ρmAδL,R. Additionally, from
Fig. 6 we know that gR ≈ 2gL . As δL,R → σ , this is
only possible if stretched segments of ring brushes form
double-stranded conformations inside the OZ as can be
seen in the snapshot given for the non-linear regime in
Fig. 8b. In the non-linear regime, a segment of ring brush
with gR monomers inside the OZ is highly stretched and
adopts a double-stranded conformation. Due to double-
stranding, each monomer of a segment in the ring brush
has on average three neighbours from the same segment –
two bonded and one non-bonded. Contrarily, a monomer
inside the OZ in the linear brush has only two bonded
neighbours in the non-linear force regime (Fig. 8d). The
difference in conformation between linear and ring chains
inside the OZ leads to smaller number of collisions be-
tween monomers from opposing layers in the latter case.

Another way of confirming that chain segments of ring
brushes are double-stranded inside the OZ is to calculate
the fraction of “participating” chains ΨL,R (i.e. the frac-
tion of these chains which occupy the OZ). Since linear
chains has smaller number of monomers inside the OZ
(gL < gR) larger number of chains should occupy the
OZ to keep the monomer density ρm uniform through-
out the simulation box. Calculated values of ΨL,R ac-
cording to previously described ”participating” chain de-
scription are shown in Fig. 9 with ratios given in the
insets. For slow velocities (v < 10−1 σ/τ), which also cor-
respond to the linear-force regime, Ψ0L is slightly larger
than Ψ0R for all cases. On the other hand at high ve-
locities (v > v∗) the difference between linear and ring
brushes increases and is consistent with the conditions
that gR > gL and δL,R → σ. Note that in Fig. 9b, the
increase in the ratio ΨL/ΨR is less pronounced. Possible
reason is that our criterion for the participating chains
can underestimate looping segments since we checked
only whether the Nth monomer of the corresponding
chain is within the OZ or not.

Finally, at ultra-high velocities v ≫ 1 σ/τ , for which
we cannot perform simulation since the thermostat can-
not keep the system temperature uniform throughout the
simulation box, one would expect that both δL,R → σ
and ΩL,R → 1. Since the grafted chains are completely
inclined and gL,R → 1, two opposing brushes can only in-
teract via few monomers near the free edges of the grafted
chains. This scenario indeed yields to a high-velocity lin-
ear regime and fL/fR → 1.

Ring brush 

@ Linear regime

Ring brush; 

@ Non-Linear regime

Linear brush; 

@ Linear regime

Linear brush; 

@ Non-Linear regime

a) b)

c) d)

FIG. 8: Snapshots of the two arbitrarily-chosen chains
from ring (a and b) and linear brush bilayers (c and d)
simulations in the linear-force regimes (left column) and

non-linear-force regimes (right columns).
Polymerization degree of chains for linear brushes is

N = 60, and for ring brushes is N = 120. Dotted lines
indicate roughly the center of the overlap zones.

Monomers of surrounding grafted chains are represented
by dots. Top and bottom brushes were depicted with

different colors.
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CONCLUSION

In this work we demonstrated using scaling arguments
and MD simulations that friction forces of linear chains
are higher than those of ring brushes for a broad range
of velocities spanning over three decades. For slow driv-
ing velocities (or shear rates), segments of a linear brush
can penetrate through opposing brush deeper compared
to segments of ring brushes. This is mainly due to the
compactness of the segments in ring brushes. The com-
pactness also decreases the number of collisions between
two opposing ring brushes and results in lower frictional
forces between two relatively moving brushes. For large
driving velocities (shear rates), segments inside the over-
lap zone between brushes are highly stretched regardless
of the topology of chains. In the ring brushes, stretched
segments form double-stranded conformations which re-
duce the number of collisions with the monomers of the
opposing brush.

We also observed that both friction forces and nor-
mal pressures in the linear chains are factor of two larger
than those in ring brushes. This leads to equal kinetic
friction coefficients µ = f/p for both systems. However,
the effective viscosity ηeff = f/v should be experimentally
distinguishable for ring and linear chains.

A more interesting situation can arise when entangled
brushes are considered. If chain segments can diffuse
into the overlap volume with longer segments (around
100 monomers per chain for the bead-spring model),
the segments of opposing brushes can entangle with
each other. Since the bulk melts of ring chains exhibit
no relaxation plateau in their stress-relaxation mod-
uli [54, 55], their frictional responses should be much
lower than those of entangled linear brushes. We will
consider this scenario in a future publication.
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