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We present an easy-to-use analytic toolbox for the calculation of short-time transport properties of concentrated suspensions

of spherical colloidal particles with internal hydrodynamic structure, and direct interactions described by a hard-core or soft

Hertz pair potential. The considered dynamic properties include self-diffusion and sedimentation coefficients, the wavenumber-

dependent diffusion function determined in dynamic scattering experiments, and the high-frequency shear viscosity. The toolbox

is based on the hydrodynamic radius model (HRM) wherein the internal particle structure is mapped on a hydrodynamic radius

parameter for unchanged direct interactions, and on an existing simulation data base for solvent-permeable and spherical annulus

particles. Useful scaling relations for the diffusion function and self-diffusion coefficient, known to be valid for hard-core

interaction, are shown to apply also for soft pair potentials. We further discuss extensions of the toolbox to long-time transport

properties including the low-shear zero-frequency viscosity and the long-time self-diffusion coefficient. The versatility of the

toolbox is demonstrated by the analysis of a previous light scattering study of suspensions of non-ionic PNiPAM microgels

[Eckert et al., J. Chem. Phys., 2008, 129, 124902] in which a detailed theoretical analysis of the dynamic data was left as an

open task. By the comparison with Hertz potential based calculations, we show that the experimental data are consistently and

accurately described using the Verlet-Weis corrected Percus-Yevick structure factor as input, and for a solvent penetration length

equal to three percent of the excluded volume radius. This small amount of solvent permeability of the microgel particles has a

significant dynamic effect at larger concentrations.

1 Introduction

Suspensions of globular colloidal particles with internal hy-

drodynamic structure, and different surface boundary condi-

tions, are abundant in soft matter science. Examples of tech-

nological and biomedical relevance are non-ionic and ionic

microgel particles, and core-shell particles consisting of a dry

spherical core and a shell of some soft material such as a poly-

mer brush. These particulate systems are to a certain degree

permeable to the solvent. Microgel particles in particular con-

sist of a network formed by cross-linked polymer chains. They

have useful features such as temperature-, pH-, salinity- and

concentration-dependent1 swelling behavior as well as elas-

ticity and flexibility. This renders them as good candidates

for various applications such as drug delivery agents2–4, the

engineering of tissues5–8, and the modification of rheological

properties9. The elasticity of microgels can be controlled, e.g.,

by the amount of crosslinker, and the length of polymer chains

used in the synthetization process. Microgels can be therefore
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considered as bridging the gap between genuine hard spheres

and ultra-soft colloids10.

Although microgel and core-shell particle systems have

been intensely studied experimentally over the past years, a

quantitative theoretical description of the diffusion and rheo-

logical properties of concentrated suspensions is still in de-

mand. This is owed to the complicated many-particle hydro-

dynamic interactions (HIs) which are significantly influenced

by the hydrodynamic structure of the particles. A theoretical

understanding of the influence of HIs on colloidal transport

properties such as translational and rotational diffusion coef-

ficients, the generalized sedimentation coefficient (hydrody-

namic function), and high-frequency and zero-frequency vis-

cosities is of key importance also in process engineering, e.g.

in filtration and fractionation processes11,12, and for the en-

ergy cost reduction in the transportation of colloidal suspen-

sions through viscosity minimization.

On a coarse-grained level, the porosity-averaged fluid flow

inside a solvent-permeable particle is commonly described

by the Brinkman-Debye-Bueche (BDB) equation invoking the

Darcy permeability, κ2, where 1/κ is the hydrodynamic pen-

etration length13,14. Globular particles with an on average

spherically symmetric hydrodynamic structure can be charac-

terized by a permeability coefficient, κ(d), depending on the
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radial distance, d, from the particle center15. Versatile hydro-

dynamic simulation tools such as the HYDROMULTIPOLE

hydrodynamic force multipole method16 have been developed

which allow for calculating transport properties of concen-

trated dispersions of hydrodynamically structured particles

with the full inclusion of HIs. However, these simulations

are numerically expensive, and in principle they must be per-

formed separately for each particle model. In a recent series of

papers, various short-time dynamic properties of dispersions

of uniformly permeable spheres17–20, and of core-shell par-

ticles with uniformly permeable shell21–23, have been calcu-

lated using the HYDROMULTIPOLE method, as functions of

particle concentration, reduced Darcy permeability, and shell-

thickness to particle size ratio. The non-hydrodynamic direct

particle interactions in these simulations have been taken for

simplicity as pure hard-core interactions characterized by the

excluded volume particle radius a = σ/2. Any softness in the

effective pair potential, V (r), between two globular particles

at center-to-center distance r is hereby disregarded.

As discussed in Refs.22–24, a simplifying concept allowing

for abstracting from specific intraparticle structures is the so-

called hydrodynamic radius model (HRM) which invokes the

notion of an apparent no-slip hydrodynamic particle radius

ah (see also Refs.25,26). The HRM amounts to approximat-

ing a globular particle of spherically symmetric hydrodynamic

structure by a no-slip sphere of hydrodynamic radius ah while

leaving the effective pair potential unchanged. Under from an

experimental viewpoint surprisingly general conditions, ah is

unequivocally determined from the measurement of a single-

particle transport property such as the translational diffusion

coefficient Dt
0 or the intrinsic viscosity [η ]. The definition

of the HRM includes also spherical particles with fuzzy hy-

drodynamic structure and no sharp outer boundary, and with a

soft pair potential such as for weakly cross-linked ionic micro-

gels1,27,28. For spherical particles having excluded volume in-

teractions only with ah < a, the HRM reduces to the so-called

spherical annulus model. For the annulus model, numeri-

cally precise simulation results for various short-time dynamic

properties have been given in Ref.21. The good accuracy of the

simplifying HRM was demonstrated in Refs.19,21,29 for uni-

formly permeable and core-shell spheres with pure excluded

volume interactions, by a thorough comparison with simula-

tion results. While a single hydrodynamic radius suffices to

characterize the hydrodynamic intraparticle structure of many

experimentally realized suspensions, regarding its influence

on configuration-averaged transport properties, the replace-

ment of the soft pair potential by an effective hard-core poten-

tial is in general a less successful strategy. Methods of calcu-

lating static suspension properties based on an effective hard-

sphere potential such as the Barker-Henderson perturbation

scheme, a second virial coefficient mapping, and additional

variational methods commonly fail if the longer-ranged, soft

part of the pair potential stretches out significantly beyond the

physical excluded volume radius. For charge-stabilized col-

loids, e.g., this has been shown in Refs.30,31.

In this article, we present an easy-to-apply set of analytic

methods, referred to for short as a toolbox, to calculate short-

time transport properties of concentrated dispersions consist-

ing of spherical colloidal particles with internal hydrodynamic

structure, and with direct interactions given by the hard-core

and two-parameter soft Hertz potentials. The latter poten-

tial is continuous and bounded, and it describes the energy

penalty caused by the elastic deformation of two colliding

spheres27,32. The Hertz potential has been shown to be a use-

ful description of the direct interactions between non-ionic,

soft microgels of low cross-link density, and this even though

the particles are of a distinctly inhomogeneous structure27,33.

Our toolbox is based on the HRM, and it takes advantage of

the tabulated simulation data for spherical annulus particles

listed in Ref.21. The toolbox incorporates in particular useful

approximate scaling relations for the wavenumber-dependent

sedimentation coefficient, H(q), the short-time self-diffusion

coefficient DS, and the high-frequency viscosity η∞. These

quantities are routinely determined in dynamic scattering ex-

periments. The scaling relation expressions are known for per-

meable particles with hard-core interactions to be in remark-

ably good agreement with simulation data17,18,34. We show

that they apply likewise to particles with a soft pair potential,

and we augment them by scaling expressions for the collective

diffusion coefficient, DC, and the associated sedimentation co-

efficient K.

Moreover, we extend the toolbox to long-time dynamic

properties of concentrated systems of hydrodynamically struc-

tured particles, including the low-shear zero-frequency sus-

pension viscosity η , and the long-time translational self-

diffusion coefficient DL. Different from their short-time sib-

lings, long-time transport properties are affected addition-

ally by the non-instantaneous microstructural relaxation of the

cloud of neighboring Brownian particles. This relaxation is

controlled both by direct and hydrodynamic interactions. The

toolbox extension to long-time properties combines the HRM

with a factorization approximation method introduced origi-

nally by Medina-Noyola35, and elaborated subsequently by

Brady36,37 and Banchio et al.38. The HRM is useful also for

long-time properties, since the hydrodynamic mobilities in the

generalized many-particle Smoluchowski diffusion equation

describing the configurational distribution function are time-

independent31.

We demonstrate the accuracy of our user-friendly toolbox

through the analysis of a light scattering study on a concentra-

tion series of non-ionic, submicron-sized PNiPAM microgel

particles dispersed in dimethylformamide (DMF). We show

that the static and dynamic scattering data for the static struc-

ture factor S(q) and hydrodynamic function H(q), respec-
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tively, can be quantitatively described in the complete exper-

imental wavenumber range, on using a deduced solvent pen-

etration length equal to three percent of the particle diameter.

Calculations based on the Hertz potential show that the PNi-

PAM microgels behave statically as effective hard spheres in

the whole fluid-phase concentration regime.

The paper is organized as follows: The structure factor and

the associated radial distributon function (RDF), g(r), of the

Hertz potential model are discussed in Subsec. 2.1, and com-

pared with static light scattering data of non-ionic PNiPAM

microgels. Subsec. 2.2 describes how hydrodynamic parti-

cle structures are related to the generic HRM, exemplified for

the two important examples of uniformly permeable spheres

and non-permeable rigid spheres with partial hydrodynamic

surface slip. Sec. 3 includes the discussion of various short-

time dynamic properties, including H(q), DS, K, and the high-

frequency viscosity η∞. Approximate analytic expressions

for these quantities are presented, and the accuracy of these

expressions is scrutinized against simulation results for the

spherical annulus model. In Sec. 4, the toolbox results are

compared with static and dynamic light scattering (SLS and

DLS) data by Eckert et al. on PNiPAM microgel suspensions.

Sec. 5 describes the extension of the toolbox to long-time

transport properties including the long-time translational self-

diffusion coefficient DL and the zero-frequency viscosity η .

Our conclusions are contained in Sec. 6. The pairwise additiv-

ity (PA) and the self-part corrected Beenakker Mazur methods

of calculating short-time transport properties are explained in

the Appendices A and B, respectively, in the context of the

HRM.

2 Equilibrium Microstructure and Hydrody-

namic Radius Model

2.1 Static pair correlations

Owing to the many possible applications, various theoretical

schemes have been developed for the analytic calculation of

static properties of microgel suspensions. Progress in this di-

rection was made, in particular for ionic microgels, through

the development of effective pair potentials characterized by

the suspension temperature and salinity, and the bare charge

of the microgel particles39–41. The validity of these effective

pair potentials has been scrutinized in various joint theoretical-

experimental studies (see e.g. Refs.27,42). In contrast to ionic

microgels, the effective pair potentials used for non-ionic soft

microgels where short-range interactions are not masked by

the longer-ranged electrostatic repulsion are to date still on a

more heuristic level. The pronounced dependence of the pair

potential in non-ionic microgel systems on ambient and intra-

particle conditions such as the solvent quality and tempera-

ture, number and distribution of crosslinker, and length and

functionality of polymer chains requires a larger number of

parameters characterizing the effective pair potential on a mi-

croscopic level. On a more coarse-grained level, simplifying

pair potentials have been used such as the hard-sphere43 and

elastic Hertz27,33 potentials, and certain ultra-soft pair poten-

tials10. The intricate dependence on environmental parame-

ters is hidden in these coarse-grained potentials in a reduced

number of interaction parameters such as the effective interac-

tion strength and the effective particle radius.

A useful coarse-grained effective pair potential for non-

ionic globular microgel particles is the Hertz potential,

βV (r) =







ε
(

1− r
σs

)
5
2

r ≤ σs

0 r > σs ,
(1)

which describes the elastic deformation of two spheres in con-

tact. Here, β = 1/(kBT ) is the reduced inverse temperature

with Boltzmann constant kB and absolute temperature T , and

σs plays the role of an effective soft particle diameter. For dis-

tances r ≥ σs, two Hertz model particles do not interact with

each other. The strength of the continuous potential is quan-

tified by the non-dimensional elasticity parameter (effective

potential strength),

ε =
2Y σ3

s

15kBT (1−ν2)
, (2)

depending on the bulk modulus Y and the Poisson ratio ν
of a particle27,32. On approximating the mesoscopic particle

elastic moduli Y and ν by macroscopic values, the estimate

ε ≈ 104 ∼ 105 is obtained for micron-sized microgels. Note

here the strong size dependence ε ∝ σ3
s , implying a signifi-

cantly decreased potential strength for smaller microgel parti-

cles. While our work is concerned with the fluid-like concen-

tration regime only, as an aside we remark that quite different

solid phases are observed in concentrated Hertz potential sys-

tems for different values of ε 44. The Hertz potential has been

shown to provide a nearly fit-parameter free description of the

structure and phase behavior of neutral microgel systems, in

good agreement with experimental results for various parti-

cle sizes27,33, and values of ε in the range from 102 − 104.

While for large ε the Hertz and hard-sphere potentials lead to

very similar results for the equilibrium microstructure, the ef-

fective diameter in the Hertz potential is in general somewhat

larger than the corresponding hard-sphere value, i.e. σs & σ .

This reflects the fact that the Hertz potential incorporates over-

all the softness of a microgel particle which in turn originates

from the radially inhomogeneous crosslinker density.

For very large values of ε , the Hertz potential is practically

indistinguishable from the hard-sphere potential

VHS(r) =

{

∞ r ≤ σ = 2a

0 r > σ ,
(3)
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with σs playing now the role of the hard-sphere diameter σ .

Considering the high-energy deformation penalty ε of micron-

sized, non-ionic PNiPAM microgels, the usage of the hard-

sphere potential in place of the Hertz potential is well justified

(see inset in Fig. 3). This is advantageous from a theoreti-

cal viewpoint since colloidal hard spheres are among the most

thoroughly studied soft matter systems.

In addition to being the key quantities in static scattering

experiments on concentrated suspensions, the static structure

factor, S(q), and its associated RDF, g(r), are required as

inputs in various methods of calculating colloidal transport

properties. For the Hertz potential model, we determine the

two pair correlation functions numerically from solving the

approximate Percus-Yevick (PY) integral equation45,46. The

corresponding pair correlation functions for the hard-sphere

model are determined from the analytic PY solution combined

with the Verlet-Weis (VW) correction47 incorporating the ac-

curate Carnahan-Starling equation of state (see also Ref.48).

The VW correction compensates in particular the overestima-

tion by the PY solution of the principal peak height, S(qm),
of the hard-sphere structure factor for volume fractions φ =
(π/6)nσ3 & 0.4. Here, n is the number concentration of par-

ticles.

0 5 10
qσ

0

1

2

3

4

S(
q)

φ = 0.299
φ = 0.378
φ = 0.419
φ = 0.500

Fig. 1 Comparison of the experimental static structure factor, S(q),
of PNiPAM microgels (filled symbols, taken from Ref.43) with the

Verlet-Weis corrected Percus Yevick prediction (solid lines), for

various particle volume fractions φ as indicated. The bare PY

structure factor for the largest considered volume fraction φ = 0.5 is

represented by the dashed curve.

In Fig. 1, we compare the PY-VW structre factors for the

hard-sphere model with static light scattering results by Eck-

ert and Richtering43 for a concentration series of non-ionic

poly(N-isopropylacrylamide) (PNiPAM) microgels in DMF.

The details of the particle synthesis are given in Refs.43,49,50.

In our PY-VW calculations, we have used the experimen-

tally obtained (mean) particle diameter σ = 240 nm, and the

(volume-swelling corrected) volume fractions φ as given in

Ref.43. We refer to this reference for the details on how the

volume fractions have been determined. The agreement be-

tween the experimental and PY-VW structure factors is good

even for small wavenumbers q. There is in particular a sig-

nificantly improved agreement for the largest considered vol-

ume fraction (dashed curve in Fig. 1), as compared to the

bare PY S(q) used in the earlier work43. The remaining

small deviations for the most concentrated system at φ = 0.5
can be at least partially attributed to experimental uncertain-

ties, and possibly also to the breakdown of the exact factor-

ization of the mean scattered intensity into static structure

and form factors as discussed by Likos et al.51,52. In Fig.

0 0.025 0.05 0.075

q [nm
-1

]

0

0.5

1

1.5

2

S(
q)

Exp.
Hertz PY
HS PY-VW

Fig. 2 Experimental structure factor at φ = 0.378 (filled circles) in

comparison with the best-fit hard-sphere model PY-VW S(q) (black

solid line), and the best-fit Hertz model S(q) calculated in PY

approximation (red solid line). For the Hertz model, the parameters

ε = 104 , σs = 245 nm, and φs = 0.398 have been used.

2, the experimental structure factor of PNiPAM microgels is

compared, for φ = 0.378, with the best-fit hard-sphere and

the best-fit Hertz potential structure factors. For the Hertz

model system, the parameter values σs = 245 nm, ε = 104,

and φs = (π/6)nσ3
s = 0.398 have been used. The theoretical

curves coincide practically, as expected for the invoked large

value of ε which restricts the softness range of the Hertz po-

tential to a narrow interval around the effective diameter σs.

This can be noticed from the inset of Fig. 3. The remnant po-

tential softness still necessitates a slightly larger effective di-

ameter σs than the hard-sphere model value σ = 240 nm, for

the Hertz potential incorporates the interactions by dangling

polymer chains at the periphery of microgel particles. The

larger particle size in the Hertz potential model goes along

with a larger volume fraction φs than that used in the best-fit

hard-sphere model result. With increasing volume fraction in
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the range φs ∈ [0.299−0.5], a slight decrease of the best-fit ef-

fective diameter σs is observed. However, owing to the small-

ness of the particle size shrinkage, for the considered PNiPAM

in DMF system this effect can be disregarded in its influence

on static and dynamic properties.

The g(r)’s corresponding to the best-fit Hertz and hard-sphere

1 1.5 2 2.5
r/σ

0

1

2

3

4

g(
r)

Hertz PY
HS PY
HS PY-VW

230 240 250
r [nm]

0

10

20

βu
(r

)

Fig. 3 Radial distribution functions, g(r), corresponding to the

hard-sphere and Hertz potential structure factors in Fig. 2. The inset

compares the hard-sphere and Hertz pair potential, for the

parameters in Fig. 2.

model structure factors in Fig. 2 are depicted in Fig. 3. The

slight softness of the Hertz potential is reflected in the some-

what reduced peak height of g(r) (red solid curve), and in the

slight extension of the RDF into the overlap region r < σs.

From Figs. 2 and 3, we conclude that the pair correlations of

the considered PNiPAM suspensions in the experimental con-

centration range are fully compatible with the simple hard-

sphere potential. For microgels of lower crosslinker density

and smaller size where the softness of the particles is impor-

tant, the Hertz potential model should be used.

2.2 Hydrodynamic Particle Modeling

As an illustration of the concept of a hydrodynamic ra-

dius ah and its associated slip length Lh, consider two sim-

ple hydrodynamic particle models, namely uniformly fluid-

permeable rigid spheres53,54, and non-permeable rigid spheres

with Navier partial slip hydrodynamic surface boundary con-

dition55. The physical (material) sphere radius in both models

is denoted here by a.

In the uniformly-permeable sphere model, the pore-size

averaged fluid flow inside a particle is described by the

Brinkman-Debye-Bueche (BDB) equation, and the outside

flow by the low-Reynolds-number Stokes equation56. The im-

posed boundary condition is here that the fluid velocity and

tangential stress are continuous across the particle surface.

The suspension transport properties in this model depend on

the material-specific parameter

λx =
1

κa
, (4)

equal to the ratio of the hydrodynamic penetration length, 1/κ ,

and particle radius a. The penetration length is roughly equal

to the mean pore size of the rigid skeleton of a permeable

sphere. In the limit λx → 0 of vanishing mean pore size, a

non-permeable sphere with no-slip hydrodynamic boundary

condition (BC) on its surface is obtained. For the BDB equa-

tion to apply, the mean pore size should be no larger than one

tenth of the particle radius so that λx ≤ 0.1. The present model

has been generalized to spherical particles with a permeability

profile κ(r) varying with the radial distance (see, e.g. Ref.53)

such as core-shell particles21,57–59 consisting of a dry core and

a permeable outer shell. The core-shell model describes in

a coarse-grained manner the hydrodynamic effect, e.g., of a

polymer brush surrounding the core.

The Navier partial-slip model on the other hand describes

fluid-impermeable colloidal spheres where the fluid is allowed

to partially slip along their surfaces. The associated Navier

partial-slip BC demands for a stationary sphere at each surface

point the proportionality of surface-tangential fluid velocity,

u‖, and shear-stress, t‖, according to

u‖ =
ls

η0
t‖ . (5)

The proportionality constant is given by the ratio of the so-

called Navier length, ls, and the fluid shear viscosity η0. In

the limit l∗s → 0, the no-slip BC describing zero surface slip

is recovered. Here, l∗s = ls/a is the reduced Navier length.

In the opposite limit l∗s → ∞, the free-surface BC of zero tan-

gential stress is obtained, corresponding to fluid perfectly slip-

ping along the sphere surface in form of local plug flow. The

Navier partial-slip BC can serve as an effective description of

a hydrophobic particle surface, and of a rigid particle with sur-

face roughness and corrugations60. It is also applicable when

non-adsorbing (short) polymers are dispersed in the fluid, ow-

ing to the formation of a thin clear-fluid depletion layer at the

particle surfaces61.

The hydrodynamic radius is a single-particle property

which depends on the intra-particle hydrodynamic structure

of the spherical particle, and in principle also on the consid-

ered single-particle transport property. It can be defined oper-

ationally through the Stokes-Einstein-Debye expressions

Dt
0(α) =

kBT

6πη0 at
h(α)

(6)

Dr
0(α) =

kBT

8πη0 ar
h(α)3

, (7)
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for the translational and rotational diffusion coefficients Dt
0

and Dr
0, respectively, of an isolated spherical particle in an

infinite fluid. An additional definition not considered here is

based on the intrinsic viscosity, [η ], of dispersed spheres19.

Here, α denotes a set of parameters characterizing the hydro-

dynamic particle red structure. For the two considered models

is α = {λx, l
∗
s }. The respective translational and rotational hy-

drodynamic radii are53,54

at
h(λx)

a
=

2x2 (x− tanh(x))

2x3 +3(x− tanh(x))
(8)

ar
h(λx)

a
=

[

1+
3

x2
−

3coth(x)

x

]
1
3

, (9)

for a homogeneously permeable sphere with x = 1/λx, and55

at
h(l

∗
s )

a
=

1+2 l∗s

1+3 l∗s
(10)

ar
h(l

∗
s )

a
=

(

1

1+3 l∗s

)1/3

, (11)

for a Navier partial-slip sphere.

One can associate each hydrodynamic radius ah with a re-

duced hydrodynamic slip length, L∗
h, through

L∗
h(α) =

Lh(α)

a
= 1−

ah(α)

a
. (12)

The quantity L∗
h is the relative radial distance, Lh = a−ah, of

the apparent no-slip spherical surface inside the particle to its

outside surface, in units of the outside surface radius a. Except

for λx, the asterisk is used throughout to label lengths given in

units of a, .

In the experimentally common situation where L∗
h is small,

curvature effects are negligible and the particle-fluid inter-

face can be described as flat. As it is explained in Ref.23,

the key point to notice is that the reduced slip length, L∗
h, f =

1− ah, f /a, in the flat-interface approximation and its associ-

ated flat-interface hydrodynamic radius, ah, f , are independent

of the single-particle transport properties Dt
0, Dr

0 and [η ] used

in their definition. Since each of these transport properties is

associated with a particular ambient velocity field, e.g. with

a constant flow field in case of Dt
0, an equivalent statement is

that Lh, f is independent of the ambient flow.

It was shown in Ref.23 that the relations

L∗
h(α) = L∗

h, f (α)
[

1+O
(

L∗
h, f (α)

)]

(13)

a∗h(α) = a∗h, f (α)
[

1+O
(

L∗
h, f (α)2

)]

, (14)

apply universally to rigid spheres with arbitrary, non-singular

spherically symmetric hydrodynamic structures and boundary

conditions, independent of the invoked single-particle trans-

port property.

These relations are readily verified, using Eqs. (8) - (11),

for the special case of a Navier partial-slip sphere where the

flat-interface slip length is equal to

L∗
h, f (l

∗
s ) = l∗s , (15)

and for a uniformly permeable sphere where

L∗
h, f (λx) = λx . (16)

Note that the slip length Lh is equal to the Navier length ls in

the flat-interface limit only.

Eqs. (13-14) do not apply to non-rigid particles such as

spherical liquid droplets, and rigid particles of singular hydro-

dynamic structure. The latter case is exemplified in Ref.54 by

a hollow sphere with a uniformly permeable rigid shell of in-

finitesimal thickness. The hydrodynamic radii at
h and ar

h of

the ultra-thin hollow sphere differ already to linear order in

the smallness parameter λx. As for a droplet, an inscribed ap-

parent no-slip spherical surface which is necessarily rigid can

not be introduced for the singular hollow-sphere example.

Eqs. (8-11) can be inverted to obtain the material-specific

parameters λx and l∗s in terms of the ratio

γ =
ah

a
, (17)

or likewise in terms of the reduced width (slip length), γ =
1−γ , of the apparent fluid annulus region surrounding the ap-

parent no-slip sphere. The parameter γ completely character-

izes the intra-particle hydrodynamic structure in the hydrody-

namic radius model (HRM) where spherical particles of arbi-

trary hydrodynamic structure are described hydrodynamically

as no-slip spheres of reduced radius ah, for unchanged pair

potential. This implies in particular an unchanged excluded

volume radius a > ah.

Numerical results illustrating this inversion are depicted in

Fig. 4 where the reduced penetration length of a permeable

sphere, λ
t,r
x , and the reduced slip length of a Navier partial-

slip sphere, (l∗s )
t,r

, are plotted as functions of γ . The reduced

lengths derived from the translational (rotational) Stokes-

Einstein-(Debye) relation are labeled by the superscript t (su-

perscript r). For a thin annulus shell with γ > 0.9, the four

reduced lengths are small and commonly described by the

dashed-dotted line γ , corresponding to λx ≈ Lh and l∗s ≈ Lh.

This situation is common to colloidal systems for which val-

ues λx < 0.05 are typically found, and for which the Navier

length is commonly equal to a few nanometers.

Differences between the considered lengths are significant

for larger values of γ . For a given reduced hydrodynamic ra-

dius γ = ah/a, two different values λ t
x 6= λ r

x are then obtained.

The perfect-slip limit l∗s →∞ corresponds to γ = 1/3 for trans-

lational, and to γ = 1 for rotational diffusion. While a rotating

perfect-slip sphere experiences no friction, akin to a point par-

ticle for which γ = 0, the values of γ for a translating Navier
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Fig. 4 Reduced fluid penetration length λ
t,r
x (red lines) and reduced

Navier length (l∗s )
t,r (blue lines), as functions of the reduced fluid

annulus width γ = 1− γ . Solid lines (dashed lines) describe

quantities derived from the translational (rotational) single-sphere

Stokes-Einstein-(Debye) relation.

sphere do not exceed 1/3. Regarding the translational dif-

fusion coefficient, a perfect-slip sphere with γ = 2/3 has the

same value, Dt
0 = kBT/(4πη0a), as a uniformly permeable

sphere with λx ≈ 0.278. However, such a large value of λx is

unrealistic. In order for the BDB equation to describe flow in-

side a permeable particle, λx should be no larger than 0.1, cor-

responding to a maximally allowed penetration length equal

to one-tenth of the particle radius.

3 Short-time Transport Properties

In studying the dynamics in dispersions of colloidal particles,

one distinguishes the short-time regime where τB ≪ t ≪ τD

from the long-time regime where t ≫ τD. Here, t denotes

the correlation time of particle concentration fluctuations, and

τB and τD are the characteristic particle momentum relax-

ation and diffusion times, respectively. The time τB is the

decay time of velocity correlations of a particle. For sub-

micron sized particles in a low-viscosity fluid such as the

here considered PNiPAM in DMF microgels, τB is of the or-

der of microseconds. The particle diffusion time can be es-

timated by τD ∼ a2/Dt
0 which for the considered microgels

is in the millisecond range. In the short-time regime, the

particle configuration has changed so little that the slowing

influence of non-hydrodynamic direct interactions is not yet

operative, different from the solvent-mediated HIs which act

quasi-instantaneously on the colloidal scale. Short-time trans-

port properties are thus expressible as simple equilibrium av-

erages, with the direct interactions entering only by their influ-

ence on the equilibrium microstructure, e.g on the RDF g(r).
Long-time transport properties are additionally influenced by

the Brownian motion of the particles so that they depend in a

direct way both on direct and hydrodynamic interactions.

In this section, we describe our analytic toolbox of calcu-

lating short-time diffusion and rheological properties of hy-

drodynamically structured particles, in the framework of the

HRM. In the subsequent sections, the toolbox is used for ana-

lyzing light scattering data on PNiPAM in DMF suspensions.

3.1 Hydrodynamic function

The colloidal short-time regime is probed in DLS experiments

by analyzing the initially exponential decay,

S(q, t ≪ τD) = S(q)exp
[

−q2D(q) t
]

, (18)

of the dynamic structure factor, S(q, t), in its dependence on

the modulus q of the single-scattering wave vector q. The dy-

namic structure factor is the q-th Fourier component of spatio-

temporal correlations in thermally induced particle concentra-

tion fluctuations. On basis of the many-particle generalized

Smoluchowski equation (GSmE), the wavenumber-dependent

diffusion function, D(q), quantifying the short-time exponen-

tial decay can be expressed by the ratio42

D(q) = Dt
0

H(q)

S(q)
, (19)

of the hydrodynamic function H(q) and the static structure

factor S(q). The hydrodynamic function is the key quantity

containing information on colloidal short-time diffusion pro-

cesses. It can be expressed by the equilibrium configurational

average31,

H (q) =

〈

kBT

N Dt
0

N

∑
i, j=1

q̂ ·µµµ i j (X) · q̂ eiq·[Ri−R j]

〉

, (20)

over an ensemble of N colloidal spheres, with the thermody-

namic limit N → ∞ for a fixed particle concentration n per-

formed subsequently, in order to describe a macroscopically

large scattering volume. Here, q̂ is the unit vector in the di-

rection of q, and kBT is the system temperature T multiplied

by the Boltzmann constant. The translational mobility tensor

µµµ i j linearly relates the hydrodynamic force acting on particle

j at the instant position R j to the resulting velocity change of

a particle i. It depends on the hydrodynamic structure of the

globular particles, e.g. on particle sizes, surface BCs and fluid

permeability, and on the many-particles HIs for an instant con-

figuration, X = {R1, · · · ,RN}, of particle centers.

Without HIs, H(q) would be identically equal to one inde-

pendent of q. Any wavenumber dependence reflects thus the
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presence of HIs. The hydrodynamic function consists of a q-

independent self-part and a distinct part, i.e.

H (q) =
DS

Dt
0

+Hd(q) , (21)

with the distinct part, Hd(q), approaching its asymptotic value

zero for q → ∞. Thus, for large q corresponding to small dis-

tances resolved, H(q) reduces to the short-time self-diffusion

coefficient, DS, expressed in units of the single-sphere trans-

lational diffusion coefficient Dt
0. The coefficient DS quanti-

fies the initial (i.e., short-time) slope of the mean-squared dis-

placement of a particle in presence of other ones. Owing to

the slowing influence of the HIs at non-zero particle concen-

trations, DS is smaller than Dt
0 to which it reduces at infinite

dilution only.

The hydrodynamic function has the physical interpretation

of a short-time generalized sedimentation coefficient for a

homogeneous suspension of monodisperse colloidal spheres

subjected to a weak force field colinear with q and oscillating

spatially as cos(q · r) with positions r62. For q → 0, a homo-

geneous force field is recovered such as the local gravitational

field on earth. Consequently,

K =
Vsed

V0
= lim

q→0
H(q) (22)

is the short-time average sedimentation velocity, Vsed, of hy-

drodynamically interacting colloidal particles, normalized by

the particle model dependent mean velocity, V0, of an isolated

particle sedimenting in the same force field. The sedimenta-

tion coefficient K is related to the short-time collective diffu-

sion coefficient, DC, by

DC = Dt
0

K

S(0)
, (23)

where for monodisperse particles S(0) ≡ limq→0S(q) is the

relative osmotic compressibility of the suspension. At larger

concentrations where S(0) is small, DC is significantly larger

than Dt
0. In principle, the short-time coefficient DC should be

distinguished from the associated long-time collective diffu-

sion coefficient appearing in Fick’s law of macroscopic gra-

dient diffusion. The latter, however, is only slightly smaller

than the short-time coefficient, by less than 7 % even for

a concentrated suspension of no-slip colloidal hard spheres

at volume fraction φ = 0.4563. The difference between the

two collective diffusion coefficients can be expected to be

even smaller for particles with weaker HIs such as perme-

able and partial-slip spheres, and charge-stabilized particles

with long-range electrostatic repulsion. Different from collec-

tive diffusion and sedimentation, the long-time translational

self-diffusion coefficient DL can be substantially smaller than

its short-time sibling DS, owing to the retarding relaxation of

next-neighbor particle cages which are slightly distorted from

their equilibrium spherical symmetry at long times. For col-

loidal hard spheres at the freezing transition concentration,

e.g., DL/DS ≈ 0.1 according to the empirical freezing rule by

Löwen et al.64,65.

In this work, we discuss useful analytic scaling relations

for the calculation of short-time diffusion and viscosity prop-

erties of suspensions of internally structured particles. These

relations are complemented by two semi-analytic and easy-to-

implement approximation schemes which have been success-

fully applied in the past to suspensions of no-slip neutral and

charge-stabilized spherical particles42,66–68. The first scheme

is the so-called pairwise-additivity (PA) approximation where

all two-body contributions to the hydrodynamic mobilities µµµ i j

are accounted for including near-contact lubrication terms,

but three-body and higher-order contributions are disregarded.

The PA method is thus well suited for low concentrations

where it is basically exact. The second method is a self-part

corrected improved version42 of the δγ renormalized concen-

tration fluctuation expansion by Beenakker and Mazur69–71,

where many-particle HIs contributions are approximately ac-

counted for in terms of so-called ring diagrams, but with lu-

brication corrections disregarded (see also Ref.72). The δγ
method is well suited in particular for larger concentrations.

The only input required by these methods is the RDF or like-

wise the static structure factor. The explicit expressions by

both methods for H(q) and the high-frequency (short-time)

suspension viscosity η∞, generalized to the HRM, are pre-

sented in the Appendices A and B, respectively.

A key observation regarding the translational mobility ten-

sors µµµ i j of hydrodynamically structured spherical particles is

the relation

µµµ i j(X) = µµµ i j;HRM(X;ah, f )
[

1+O(L∗
h, f

2)
]

, (24)

where µµµ i j;HRM(X;ah, f ) are the mobility tensors of the asso-

ciated HRM. The relation follows from Eqs. (13) and (14)

in conjunction with a general scattering series expansion of

the exact N-sphere translational mobility tensors22,23. Since

the short-time transport properties are equilibrium averages of

specific mobility tensor elements, it follows that

H(q) = HHRM(q)
[

1+O(L∗
h, f

2)
]

(25)

with an analogous expression valid for η∞. Thus, the er-

ror introduced in calculating short-time transport properties

of hydrodynamically structured particles using the simplify-

ing HRM is of O(L∗
h, f

2) small.

3.2 Translational self-diffusion

In Refs.34,42, it was shown by comparison with computer

simulation results for uniformly permeable hard spheres with
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λx < 0.2 that DS normalized by its infinite dilution Dt
0 is well

represented by the simple scaling relation,

DS (φ ,λt)

Dt
0 (λt)

= 1+λt φ
(

1+0.12φ −0.70φ 2
)

, (26)

for all φ ≤ 0.5 and with an accuracy of 3.5 % or better. A

similar scaling relation has been obtained for the short-time

rotational self-diffusion coefficient of permeable-sphere sus-

pensions with hard-core interactions34. The only dependence

in Eq. (26) on the permeability parameter λx characterizing

the intra-particle hydrodynamic structure is contained in the

second virial coefficient, λt = λt(λx), which is the linear coef-

ficient in the expansion of DS in powers of φ . Eq. (26) states

that the DS for hydrodynamically structured particles can be

scaled to the corresponding coefficient of no-slip hard spheres

where λx = 0 and λt(λx = 0) =−1.8315.

In fact, on the level of the HRM model Eq. (26) is ap-

plicable to suspensions of hard spheres of arbitrary hydro-

dynamic structure, with deviations from the DS of the actual

particle system being of quadratic order small in the reduced

slip length L∗
h according to Eq. (25). On recalling that for

spherical particles with hard-core direct interactions only the

HRM reduces to the spherical annulus model, the only input

required in Eq. (26) is the second virial coefficient, λt(γ), of

spherical annulus particles depending on the ratio, γ = ah/a,

of hydrodynamic and hard-core radius. Using for λt(γ) the

Eq. (63) in Appendix A in conjunction with tabulated numer-

ical values for the longitudinal and transversal mobility co-

efficients, x11(r) and y11(r), of two no-slip spheres of radius

ah calculated using the method of Jeffrey and Onishi73, we

have obtained numerically precise values for the second virial

coefficient of spherical annulus particles. These values are de-

scribed to high accuracy by the polynomial fit

λt (γ) =−1.8315+7.820γ −14.231γ2 (27)

+14.908γ3 −9.383γ4 +2.717γ5 ,

accounting for the numerically correct limiting value

λt (γ = 1) =−1.8315 of no-slip hard spheres.

In Fig. 5, the high accuracy of the polynomial fit in Eq.

(27) is shown in comparison with earlier numerical results22,74

for the second virial coefficient of spherical annulus particles.

Note that λt (γ = 0)= 0 relates to the limiting case of spherical

annulus particles interacting hydrodynamically as point parti-

cles for which there are no hydrodynamic self-reflections so

that DS reduces to Dt
0 independent of φ . The associated long-

time coefficient DL for γ = 0 is still φ -dependent and smaller

than Dt
0.

The accuracy of the analytic scaling formula in Eq. (26) in

combination with Eq. (27) for the short-time self-diffusion co-

efficient of spherical annulus particle systems is established in

0 0.2 0.4 0.6 0.8 1
γ−

0

0.5

1

1.5

2

|λ
t
|

Eq. (27)
Cichocki et al. [22]
Cichocki and Felderhof [74]

Fig. 5 Modulus |λt| of the first-order virial coefficient of DS in the

spherical annulus model, as a function of the reduced fluid annulus

shell width γ = 1− γ . Solid line: Polynomial fit according to Eq.

(27). Filled squares: Tabulated values by Cichocki et al.22 for

spherical annulus particles with γ ≤ 1/3. Filled diamonds:

Tabulated values by Cichocki and Felderhof74.

0 0.1 0.2 0.3 0.4
γ−

0.2
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0.6

0.8

1

D
s/D

0t

φ  = 0.05
φ  = 0.15
φ  = 0.25
φ  = 0.35
φ  = 0.45

Fig. 6 Results for the reduced self-diffusion coefficient, DS/Dt
0, of

the spherical annulus model as function of γ = 1− γ , for several

volume fractions φ as indicated. Solid lines: Prediction by the

scaling formula in Eq. (26) in combination with the first order virial

coefficient fitting polynomial in Eq. (27). Closed symbols:

HYDROMULTIPOLE simulation data for the spherical annulus

model tabulated in Ref.21. Open symbols: Simulation data for

uniformly permeable spheres tabulated in Ref.17, with Eq. (8) used

in mapping the permeability parameter λx onto the annulus model

parameter γ = ah/a (recall Fig. 4).
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Fig. 6 by the comparison with high-precision benchmark sim-

ulation data for the spherical annulus21 and uniformly perme-

able particle models17. Regarding the latter model, the con-

version of λx to the related reduced hydrodynamic radius pa-

rameter γ in the spherical annulus model was done using Eq.

(8) for Dt
0(λx). This corresponds to the inversion of the curve

for λ t
x in Fig. (4) in terms of γ . For example, the smallest

reasonably selected value λx = 0.1 corresponds to γ = 0.89.

Results for DS are depicted in Fig. 6 in dependence on the

reduced slip length γ , for volume fractions extending over a

broad concentration range.

The excellent agreement between the scaling formula for

DS (solid lines) and the simulation data (symbols) does not

only validate this formula. For the special case of permeable

hard spheres, it additionally highlights the good performance

of the HRM, for a broad concentration range and permeability

values largely exceeding the ones discussed earlier in the thin

shell-limit discussion of the core-shell model in Ref.22.

In summary, the analytic formula in Eqs. (26) and (27)

allows for a quick and accurate calculation of the transla-

tional short-time self-diffusion coefficient of hydrodynami-

cally structured spherical particles with hard-core interactions.

The only input is the single-particle property ah/a which can

be determined experimentally, e.g., by a DLS measurement of

Dt
0 in conjunction with a static scattering experiment deter-

mining the excluded volume radius. The formula for DS is ap-

plicable also to particles with a short-range, weakly soft pair

potential such as the Hertz potential for non-small potential

strengths ε , provided the effective diameter σs and the related

volume fraction φs are used instead of σ and φ .

The formula for DS in Eqs. (26) and (27) based on its virial

expansion is not valid for particles with a long-range, soft pair

potential where an (effective) excluded volume diameter is not

the characteristic parameter. An example in case are low-

salinity suspensions of charge-stabilized colloidal spheres,

where according to theory, simulation and experiment DS

has to good accuracy the fractional concentration dependence

DS/D0
S −1 ≈ AS φ 4/3, with a coefficient AS h 2.5−2.9 which

varies to a small extent with the particle size and charge67,75.

The initial slope of DS at φ = 0 is thus zero in these charge-

stabilized systems. Different from the formula in Eqs. (26)

and (27), the HRM is applicable also to spherical particles

with arbitrary soft direct interactions, and to particles of fuzzy

hydrodynamic structure without a sharp outer boundary. In

the framework of the HRM, the coefficient DS and other short-

time transport properties of particles with soft interactions can

be approximately and semi-analytically calculated using the

PA method at smaller and the self-part corrected δγ method at

larger concentrations. The inputs g(r) and S(q) to these meth-

ods can be obtained from Ornstein-Zernike integral equation

schemes such as the analytical scheme for charge-stabilized

particles introduced in Refs.76,77.

3.3 Sedimentation coefficient

Different from self-diffusion, the neglect of hydrodynamic

near-distance and particularly lubrication effects in approxi-

mate analytic calculations is less consequential regarding sed-

imentation. Therefore, K can be described semi-qualitatively

on the Rotne-Prager (RP) type level where only the long-

distance dipolar contribution to the mobility tensors is ac-

counted for. This amounts hydrodynamically to the neglect

of all hydrodynamic flow reflection by the particles.
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Fig. 7 Concentration dependence of the sedimentation coefficient,

K, of the spherical annulus model for reduced hydrodynamic radius

values γ as indicated. Solid lines: RP approximation KRP in Eq.

(28). Filled symbols: Simulation data taken from Ref.21.

Using the RP approximation in conjunction with the an-

alytic PY solution for the Laplace transform of r g(r),
Contreras-Aburto et al.78 have derived analytic expressions

for the short-time sedimentation coefficient of Navier partial-

slip and uniformly permeable spheres with hard-core interac-

tion. Here, we present the according expression for spherical

annulus particles,

KRP (φ ,γ) = 1+ γ φ

(

γ2 +12

[

φ (2−φ)−10

20(1+2φ)

])

, (28)

which includes hydrodynamic point particles as a limiting case

for which K(φ ,γ = 0) = 1. In the opposite limit, γ = 1, of

no-slip hard spheres, Eq. (28) reproduces an expression by

Banchio and Nägele67 which was rederived subsequently by

Gilleland et al.79 using a variational method.

The comparison in Fig. 7 of the RP based analytic formula

in Eq. (28) with benchmark simulation data for spherical an-

nulus hard spheres21 shows that the sedimentation velocity is

overestimated by the formula at larger concentrations. This

is a consequence of the neglect of flow reflections in the RP
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approximation which becomes less severe with decreasing an-

nulus parameter γ , owing to the for a fixed φ increasing dis-

tances between the hydrodynamic particle surfaces. For the

lowest considered value γ = 0.6, excellent agreement between

the simulation data and KRP is observed. The largest devia-

tions occur for no-slip hard spheres where KRP provides an

upper bound to the exact sedimentation coefficient62,79. As an

aside, we note that even at φ = 0.5, KRP changes only slightly

if the VW-corrected g(r) is used instead of the bare PY g(r).

0 0.2 0.4 0.6 0.8
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Cichocki et al. [22]
Cichocki and Felderhof [74]

Fig. 8 First-order virial coefficient, λK , of the sedimentation

coefficient of spherical annulus particles. Filled symbols: Tabulated

values by Cichocki et al. for thick (diamonds)74 and thin annulus

shell (squares) systems22, in comparison with the polynomial in Eq.

(30) (black solid line).

While KRP nicely describes the trends of the exact spheri-

cal annulus sedimentation coefficient K in its φ and γ depen-

dence, in search of an improved analytic expression we make

the ansatz

K (φ ,γ) = 1+λk (γ) uk (φ ,γ) (29)

= 1+λk (γ)φ [1+O (φ)] ,

where λK (γ) is the first-order virial coefficient of the sedimen-

tation coefficient for which high-precision values have been

provided by Cichocki et al.22,74. According to Fig. 8, these

tabulated values are well represented by the polynomial,

λK (γ) =−6.5464+8.592γ −3.901γ2 (30)

+2.011γ3 −0.142γ4

in the full parameter range 0 < γ ≤ 1. At γ = 1 in particu-

lar, the known value λK =−6.5464 of no-slip hard spheres is

recovered from the polynomial.

In the first equality in Eq. (29), we have introduced the sed-

imentation scaling function uK = (K −1)/λK. In Ref.34, a

scaling ansatz analogous to Eq. (29) was used for the short-

time translational and rotational self-diffusion coefficients of

uniformly permeable hard spheres. By the comparison with

simulation data, it was shown therein that the scaling func-

tions uS(φ ,λx) and uR(φ ,λx) associated with translational and

rotational self-diffusion, respectively, are practically indepen-

dent of the permeability coefficient for all values λx ≤ 0.1.

They are therefore well approximated by (i.e. scaled to) the

respective functions uS,R(φ ,λx = 0) of non-permeable solid

spheres. On using a third-order polynomial fit of uS(φ ,λx = 0)
obtained from simulation data of no-slip hard spheres, and the

first two known virial coefficients of DS(φ ,λx = 0), Eq. (26)

for DS(φ ,λx) has been obtained34,42.
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γ = 0.6

Fig. 9 Concentration dependence of the scaling function uK (φ ,γ)
associated with the sedimentation coefficient of spherical annulus

particles, for values of γ as indicated. Colored closed symbols:

Values obtained from simulation data of K(φ ,γ)21. Colored solid

lines: Semi-empirical formula in Eq. (31).

As noticed already in the context of permeable spheres34,

uK depends significantly on the intra-particle hydrodynamic

structure, different from its self-diffusion siblings. In Fig. 9,

this is demonstrated for the spherical annulus system using

tabulated simulation data for K(φ ,γ) in Ref.21. The simula-

tion data of uK(φ ,γ) for a fixed φ > 0 clearly differ from each

other for different γ values. Thus, the γ-dependence of K(φ ,γ)
cannot be embodied solely in terms of the first-order virial co-

efficient, in contrast to Eq. (26) describing DS. However, as

it is shown in Fig. 9, the simulation data for uK are well de-

scribed for γ ≥ 0.8 by a forth-order polynomial in γφ , namely

uK (φ ,γ) = φ
[

1−3.348γφ +7.426(γφ)2
(31)

−10.034(γφ)3 +5.882(γφ)4
]

.
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The resulting analytic expression,

K (φ ,γ) = 1− λK (γ)φ
[

1−3.348γφ +7.426(γφ)2
(32)

−10.034(γφ)3 +5.882(γφ)4
]

,

for the sedimentation coefficient provides in conjunction with

Eq. (30) for λK(γ) an accurate description in the from the

experimental viewpoint sufficiently broad parameter range γ ∈
{0.8− 1}. The numerical coefficient 3.348 in the bracket of

Eq. (32) is selected such that at γ = 1 the correct numerical

value 21.918 of the second virial coefficient of no-slip rigid

spheres74 is recovered.
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Fig. 10 Sedimentation coefficient of the spherical annulus model as

a function of φ , for values of γ as indicated. Filled squares:

Simulation data for spherical annulus particles21. Solid lines:

Analytic formula in Eq. (32) with λK according to Eq. (30). Dashed

lines: Self-part corrected δγ method prediction, with self-part DS

according to Eq. (26) and VW-PY input for S(q).

From Fig. 10, the good agreement of the semi-empirical

formula for K(φ ,γ) in Eq. (32) with the spherical annulus

simulation data21 is noticed for γ ≥ 0.8. The figure depicts

also simulation data for permeable spheres where λx has been

converted to the respective γ using Eq. (8). Moreover, re-

sults for K(φ ,γ) are displayed as predicted by the self-part

corrected δγ scheme with VW-PY structure factor input where

the self-part contribution to K was calculated according to Eq.

(26). See Appendix B for details on the δγ method of calcu-

lating H(q) and its self-part correction. While in good overall

agreement with the simulation data, the self-part corrected δγ
method results for K deviate significantly at larger φ . Differ-

ent from Eq. (32) which applies to spherical particles with

hard-core interactions only, the δγ method is applicable also

to particles with soft interactions.

The analytic expressions in Eqs. (32) and (26) for K and DS

are profitably used in the following discussion of the hydrody-

namic function of core-shell particle systems.

3.4 Hydrodynamic function scaling

Due to the fact that H(q) is given according to Eq. (20) by an

equilibrium average over hydrodynamic mobilities, its prin-

cipal peak location and the wavenumber locations of its sec-

ondary maxima are nearly coincident with those of S(q). As a

static equilibrium property, S(q) is independent of the hydro-

dynamic particle structure and the HIs in general. This obser-

vation has led Abade et al. to the following remarkable find-

ing18, which they analyzed in the context of uniformly perme-

able hard spheres: While the amplitudes of the oscillations in

H(q) are strongly sensitive to the permeability (i.e., the hydro-

dynamic particle structure), the relative q-dependence of H(q)
is practically permeability independent and can be scaled thus

to that of no-slip hard spheres. To see this quantitatively, con-

sider the so-called reduced hydrodymanic function18,

hd (q) =
Hd(q)

|Hd(q = 0)|
, (33)

where Hd(q) is the wavenumber-dependent distinct part of

H(q) introduced in Eq. (21).

0 10 20
qσ

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

h d(q
)

γ = 1.00
γ = 0.95
γ = 0.90
γ = 0.80
γ = 0.60
ns

Fig. 11 Reduced hydrodynamic function, hd(q), for spherical

annulus particles at fixed volume fraction φ = 0.35 and varying γ as

indicated. The wavenumber is scaled in terms of the hard-sphere

diameter σ = 2a. Solid lines: δγ method results using VW-PY

structure factors as input (cf. Appendix B). Filled squares:

Simulation result for no-slip (ns) hard spheres (γ = 1) taken from

Ref.18.

The reduced hydrodynamic function is defined such that

hd(q = 0) = −1 and hd(q → ∞) = 0. Abade et al. found that
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hd(q) is at all q nearly independent of the permeability param-

eter λx, practically in the complete liquid-phase concentration

interval. In extrapolating their finding to the spherical annulus

model as motivated by our general discussion in Subsec. 2.2,

H(q) can be expected to be well represented by

H (q)≈
DS (φ ,γ)

Dt
0 (γ)

+hns
d (q)

[

K(φ ,γ)−
DS (φ ,γ)

Dt
0 (γ)

]

, (34)

where hns
d (q) = hd(q,γ = 1) is the reduced hydrodynamic

function of no-slip hard spheres. The hydrodynamic particle

structure enters into this expression by the coefficients K and

DS/Dt
0 only for which we have provided accurate analytic ex-

pressions. The relative q-dependence of H(q) is described by

the master function hns
d (q) which can be conveniently calcu-

lated using the semi-analytic δγ method for Hd(q). The δγ
method has been shown, in comparison to Stokesian dynam-

ics simulations, to give quite accurate predictions not only for

the Hd(q) of no-slip hard spheres42, but likewise for charge-

stabilized suspensions with long-range electrostatic interac-

tions42,68. To validate hydrodynamic function scaling for the

0 10 20
qσ
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0.5

1

H
(q

)

γ = 1.0
γ = 0.95
γ = 0.9
γ = 0.8
γ = 0.6

Fig. 12 Hydrodynamic function, H(q), of spherical annulus spheres

for φ = 0.35 and values of γ as indicated. The solid lines show

results by the semi-analytic formula in Eq. (34), with DS/Dt
0 and K

according to Eqs. (26) and (32), respectively, and hns
d (q) calculated

using the δγ method.

spherical annulus model, in Fig. 11 we present results for

hd(q,γ) in a broad γ parameter range, obtained using the δγ
method in Appendix B. All curves collapse practically on a

single master curve which in turn nicely agrees with the sim-

ulation data for no-slip (ns) hard spheres taken from Ref.18.

The sensitivity of H(q) on the reduced hydrodynamic radius

γ is illustrated in Figure 12, where H(q) has been calculated

according to Eq. (34). The strength of the HIs ceases with

decreasing γ . Notice that H(q)→ 1 for γ → 0.
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qσ

s
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-0.5

0

0.5

h d(q
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γ = 1.00
γ = 0.95
γ = 0.90
γ = 0.80
γ = 0.60

0.6 0.8 1r/σ
s

0

1

βV
(r

)

Fig. 13 Reduced hydrodynamic function, hd(q), for a Hertzian

spheres system of interaction strength ε = 10 (dashed lines) and

ε = 104 (solid lines), respectively, for various reduced

hydrodynamic radii, γ = ah/as, as indicated. The effective volume

fraction is φs = 0.35. The depicted results have been calculated

using the δγ method with PY structure factor input. Inset: Excerpt

of the Hertz potential curve for ε = 10 (dashed) and ε = 104 (solid),

respectively. Wavenumber q and radial distance r are scaled by the

effective soft diameter, σs = 2as, of the Hertz potential.

To date, the validity of the hydrodynamic function scal-

ing was scrutinized for particles with hard-sphere interactions

only17,18. As discussed in Subsec. 2.1, the soft Hertz potential

in Eq. (1) is a useful description of the coarse-grained interac-

tion of certain types of mechanically soft microgel particles.

For this reason, we investigate now the scaling of the hydro-

dynamic function for suspensions of Hertz particles of differ-

ent interaction strengths ε . In Fig. 13, the functions hd(q) of

Hertz particles are shown for various values of the reduced hy-

drodynamic radius, defined here by γ = ah/as with as = σs/2

denoting the effective soft radius of the Hertz potential. Two

largely distinct interaction (softness) parameters ε = 10 and

104 are considered, representing highly soft and weakly soft

particle systems, respectively. The inset depicts the respective

shapes of the Hertz potential. For ε = 10, there is a significant

likelihood of finding two particles at a distance smaller than

σs, as quantified by values of g(r < σs) significantly larger

than zero. Even then the HRM remains applicable, provided

the hydrodynamic structure of the actual soft particles is not

significantly distorted away (on average) from spherical sym-

metry during particle interpenetration.

The curves for hd(q) in Fig. 13 have been obtained using

the HRM-based δγ method with the structure factor input for

the Hertzian spheres calculated in PY approximation. The fig-

ure shows that hydrodynamic function scaling applies to Hertz

model particles for a broad softness range, with the shape of
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the γ-independent master curve for hd(q) depending on the

softness parameter. The scaling behavior of H(q) can be ex-

pected to hold also for other soft pair potentials.

3.5 High-frequency viscosity

So far diffusion related properties have been addressed only.

We discuss next a short-time rheological property, namely the

high-frequency-limiting suspension viscosity, η∞, which lin-

early relates the average suspension shear stress to the applied

rate of strain in a low-amplitude, high-frequency shear exper-

iment. Like the short-time diffusion properties discussed be-

fore, η∞ is a quantity of purely hydrodymanic origin, influ-

enced by direct particle interactions through the equilibrium

averaging only. For particles acting hydrodynamically like

points (γ = 0), it reduces thus to the shear viscosity, η0, of

the suspending Newtonian fluid.

The high-frequency viscosity should be distinguished from

the zero-frequency viscosity80,

η (φ) = η∞ (φ)+∆η (φ) , (35)

determined in a steady low-shear experiment. The zero-

frequency viscosity η has an additional contribution, ∆η > 0,

originating from the relaxation of the shear-distorted dynamic

particle cage formed around each particle. The shear relax-

ation part ∆η is influenced both by direct and hydrodynamic

interactions, with the consequence that for strongly correlated

colloidal particles it is substantially larger than η∞. An ana-

lytic method of calculating the long-time transport property η
is presented in Subsec. 5.2.

In Refs.18,20, a generalized Saitô formula for the high-

frequency viscosity of permeable spheres with hard-core in-

teractions has been introduced which for φ ≤ 0.5 gives results

in good agreement with simulation data. In the framework of

the spherical annulus model, the formula reads

η∞ (φ ,γ)

η0
= 1+[η ] (γ)φ

1+ Ŝ (φ ,γ)

1− 2
5
[η ] (γ)φ

(

1+ Ŝ (φ ,γ)
) . (36)

It expresses η∞ in terms of the intrinsic viscosity, [η ] (γ) =
(5/2) γ3, depending on the hydrodynamic particle structure

only, and the Saitô function Ŝ (φ ,γ). The latter is approxi-

mated linearly in φ as

Ŝ (φ ,γ) =

(

λV (γ)

[η ](γ)
−

2

5
[η ](γ)

)

φ , (37)

where λV (γ) is the first-order virial coefficient in the expan-

sion of η∞/η0 in powers of φ . Numerical values for the first

virial coefficient of spherical annulus particles are given in

Ref.22. For γ ≥ 2/3, these values are well represented by the
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γ = 0.9
γ = 0.8
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δγ

Fig. 14 High-frequency viscosity, η∞, of spherical annulus particles

in dependence on φ , for values of γ as indicated. Filled symbols:

Simulation data taken from Refs.21,67. Solid lines: Generalized

Saitô formula in Eqs. (36) - (38). Dashed lines: PA scheme results

with VW-PY input for g(r). Dotted lines: δγ scheme results with

VW-PY input for S(q).

polynomial

λV(γ) = 5.0021−39.279γ +143.179γ2 (38)

−288.202γ3 +254.581γ4 .

In Fig. 14, the predictions for η∞ by the generalized Saitô

formula in Eqs. (36) - (38) are compared with existing sim-

ulation results21 for the spherical annulus model. There is

good agreement with the simulation in the displayed liquid-

phase concentration range. For fixed concentration n and fixed

hard-core radius a, the viscosity increases with increasing ah,

i.e. increasing γ , owing to the enlarged dissipation. Addi-

tionally shown in the figure are results for η∞ by the PA and

δγ methods described in Appendices A and B, respectively.

Like in the PA scheme for short-time diffusion properties, two-

body HIs contributions to η∞ are fully accounted for but three-

body and higher order contributions have been neglected. The

PA scheme is in good agreement with the simulation data for

φ < 0.2 only. For small γ , the applicability of the PA method

extends to somewhat larger φ . We attribute this first to the

weaker hydrodynamic interactions for γ < 1, and second to the

fast O(1/r6) asymptotic decay of the shear mobility function

associated with η∞ (see Appendix A). While the δγ scheme

viscosity predictions for no-slip spheres are in better agree-

ment with the simulation data than those by the PA scheme,

for γ < 1 the δγ scheme consistently overestimates the high-

frequency viscosity. Quite interestingly, for all φ < 0.5 the δγ
prediction for η∞ scales to good accuracy with the hydrody-

namic volume fraction φh = γ3φ .
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Fig. 15 Test of the short-time GSE relation in Eq. (39) for spherical

annulus particles with values of γ as indicated. Solid lines: Product

function ΛSV of the generalized Saitô expression in Eq. (36) for

η∞/η0 and Eq. (26) for DS/Dt
0 in accord with Eq. (40).

As straightforward applications of the generalized Saitô for-

mula and Eq. (26) describing η∞(φ ,γ) and DS(φ ,λ ) in the

spherical annulus model, we analyze next the validity of the

short-time generalized Stokes-Einstein (GSE) relation,

ΛSV(φ ,γ)≈ 1 , (39)

with the short-time GSE function

ΛSV(φ ,γ) =
DS(φ ,γ)

Dt
0(γ)

×
η∞(φ ,γ)

η0
. (40)

Eq. (39) expresses that DS(φ ,γ) should be proportional for

all concentrations to the inverse of η∞(φ ,γ). This relation is

trivially fulfilled at infinite dilution where it reduces to the

single-sphere translational Stokes-Einstein relation for a hy-

drodynamically structured colloidal sphere. The approximate

validity of this relation would be quite useful, since η∞ can

then be determined more easily, and using a smaller amount

of particles, by a dynamic scattering experiment instead of

a rheo-mechanical measurement. This is why GSE relations

including the present one have been thoroughly subjected to

theoretical explorations, for particulate systems including per-

meable hard spheres20 and charge-stabilized particles38,67.

An exact GSE relation is reflected in Fig. (15) by a hori-

zontal straight line of unit height. However, for all considered

values of γ , significant deviations from ΛSV = 1 are observed

at larger volume fractions. The deviations are largest for no-

slip hard-core particles where the HIs are strongest, amount-

ing to about 40% at φ = 0.45. For concentrations φ ≤ 0.4, the

displayed curves for ΛSV(φ) are nearly straight lines, charac-

terized by the linear coefficient, λSV(γ), in the expansion of

ΛSV to linear order in φ . The linear concentration coefficient

derived from our analytic expressions for DS and η∞ is given

by the polynomial

λSV(γ) = 0.6685+0.3201γ +O
(

γ2
)

. (41)

For a given hydrodynamic particle model, the values of γ
which should be used in calculating DS and η∞, respectively,

are actually different if the O(L∗
h, f )

2 corrections to ah, f in Eq.

(14) cannot be neglected. However, this does not affect our

general conclusion that the GSE relation is violated, as illus-

trated by the curves in Fig. (15) where for simplicity the same

γ values were used in calculating DS and η∞.

According to Fig. (15), the ordering relation ΛSV(φ) >
1 is obeyed by particles with pure hard-core interactions.

As shown in Ref.67, the same ordering applies to charge-

stabilized suspensions. In contrast, the long-time product

function ΛLV(φ) = (DL/Dt
0)×(η/η0) relating long-time self-

diffusion coefficient DL to zero-frequency viscosity η has

been shown for no-slip hard-sphere and charge-stabilized sus-

pensions to fulfill the opposite ordering ΛLV(φ) < 1 for φ >
038.

4 Theory versus Experiment

We demonstrate now the accuracy of our easy-to-apply tool-

box methods of calculating short-time diffusion properties by

analyzing DLS measurements by Eckert and Richtering43 on

non-ionic PNiPAM microgels in DMF. As discussed in Sub-

sec. 2.1, the microgel particles behave as hard spheres as far

as their static properties are concerned. On modeling the mi-

crogels also hydrodynamically as no-slip hard spheres with

ah = a, and on basis of bare δγ method results for H(q),
Eckert and Richtering came to the conclusion that short-time

particle diffusion is underestimated by the no-slip hard-sphere

model. This suggests that the non-uniform crosslinker-density

of the microgels should have a significant hydrodynamic ef-

fect.

To account for this effect, we model here the microgels

as spherical annulus particles, and determine H(q) using the

scaling Eq. (34) in conjunction with the analytic expressions

in Eqs. (32) and (26) for K and DS, respectively. In the δγ
method calculation of hns

d (q) which enters into the scaling ex-

pression of H(q), we use the HS-PY structure factors depicted

in Fig. 1, with the hard-core radius a = 120 nm. The only

adjustable parameter in our model is thus the reduced hydro-

dynamic radius γ = ah/a.

In Fig. 16, our theoretical results for H(q) are presented

and compared with the experimental findings in Ref.43. The

latter have been obtained indirectly from dividing the DLS

first cumulant data for the diffusion function D(q) by the

VW-PY S(q) taken at q = 0 (c.f. Eq. (19)). Using the
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Fig. 16 Experimentally deduced hydrodynamic function of

PNiPAM microgels in DMF (filled symbols, taken from Ref.43)

compared with the theoretical predictions (solid lines) for the

spherical annulus model, using γ = 0.97 and Eq. (34) for H(q)
combined with Eq. (32) for K and Eq. (26) for DS. Dashed line:

Theoretical prediction for non-permeable particles (γ = 1) at

φ = 0.5. The wavenumbers are scaled by the hard-core diamter

σ = 240 nm.

constant ratio γ = 0.97, we obtain very good agreement be-

tween theory and experiment for all volume fractions. Our

finding of a concentration-independent hydrodynamic radius

ah = 0.97×a points to the consistency of our analytic method

of calculating H(q), since as an intrinsic particle property, ah

should not depend significantly on the volume fraction. While

this holds for the strongly cross-linked non-ionic microgels

considered here, for weakly cross-linked ionic microgels in

the swollen-state temperature range a significant size shrink-

age with increasing concentration is observed1.

The deduced hydrodynamic microgel radius is only 3%

smaller than the excluded volume radius, corresponding to a

likewise small value, λx = 0.029, of the reduced fluid penetra-

tion length. This exemplifies the common experimental situ-

ation of ah ≈ ah, f , with a relative correction to the flat plane

value ah, f being here of O

(

(L∗
h, f )

2
)

≈ 10−3 small.

The small microgel permeability nonetheless significantly

affects H(q), in particular at larger concentrations. This is

shown in Fig. 16 for φ = 0.5 by the comparison with the

hydrodynamic function for zero permeability (dashed curve):

The residual particle permeability enlarges the sedimentation

velocity by more than 100%, and the self-diffusion coefficient

by more than 30%.

In Fig. 17, our theoretical results for D(q)/Dt
0 are plotted

together with the DLS data43 for the same quantity. The theo-

retical curves have been obtained from dividing the spherical
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qσ

0

1

2

D
(q

) 
/ D

0t
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φ = 0.350
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φ = 0.500

Fig. 17 DLS data for the reduced diffusion function D(q)/Dt
0 (filled

symbols) taken from Ref.43, in comparison with our theoretical

predictions for γ = 0.97, obtained by multiplying the sperical

annulus results for H(q) depicted in Fig. 16 by the VW-PY values

of S(q = 0).

annulus H(q)’s depicted in Fig. 16 by the associated VW-PY

structure factors, S(q), of hard spheres in accordance with Eq.

(19). At q = 0 , the VW-PY S(q) reduces to the Carnahan-

Starling expression for the reduced osmotic compressibility,

S(q = 0) =
(1−φ)4

(1+2φ)2 +φ 3 (φ −4)
, (42)

valid in the full fluid-phase volume fraction range of hard

spheres. The agreement between theoretical and experimental

diffusion functions is very good in the intermediate wavenum-

ber range including the principal peak position, qm, of S(q)
where D(q) is minimal, and also for larger wavenumbers. At

small q values and large volume fractions, the experimental

data are overestimated. Even considering the remaining small-

q deviations, the here presented theoretical results for D(q) are

in distinctly better agreement with the experimental data than

the earlier ones presented in Ref.43 where permeability effects

were not included.

The deviations in D(q) at small-q can be partially attributed

to the high sensitivity of the inverse compressibility factor,

1/S(0), multiplying H(0) in Eq. (23), on the residual soft-

ness of the microgels. This is demonstrated in Fig. 18, where

the concentration dependence of 1/S(0) for hard spheres is

compared to that of the Hertz potential system for the strongly

distinct softness parameters ε = 104, 102 and 10. Accord-

ing to the figure, even a small residual softness characterized

by ε = 104 significantly enlarges the osmotic compressibility

for large volume fractions, with 1/S(0) being lowered accord-

ingly. Viewed on the scale of the structure factors in Fig. 2, the
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Fig. 18 Influence of particle softness (elasticity) on the inverse

compressibility factor 1/S(0), for hard-sphere and Hertz potential

particles, plotted as a function of φ . The Carnahan-Starling (CS)

(black solid line) and PY (red solid line) results for hard spheres are

compared with the PY-based pedictions for Hertz model particles

with softness parameters ε = 104 (dashed line), 102 (dashed-dotted

line), and 10 (dotted line).

small-q differences are not resolved since S(0) is very small

for large concentrations. While the smaller factor 1/S(0) in

the Hertz model would improve the agreement with the exper-

imental D(q) at small q, we recall in referring to Fig. 2 that

a somewhat larger volume fraction φs than for hard spheres is

required in the Hertz model for an equally good fit of the ex-

perimental S(q). If the enlarged volume fraction is accounted

for, there remains a small final reduction in 1/S(0) only. An

additional cause for the small-q differences can be size poly-

dispersity. It was shown in Ref.81, that a small degree of po-

lidispersity significantly enlarges in concentrated suspensions

the measured diffusion function at small q.

In summarizing, we conclude that our HRM based toolbox

methods reproduce the short-time diffusion properties of the

non-ionic microgel suspensions very well, and with little nu-

merical effort. The non-homogeneous cross-linker density is

accounted for by a hydrodynamic radius which is only three

percent smaller than the excluded volume radius.

5 Long-time Transport Properties

Long-time colloidal transport properties such as DL and η
characterize the particle dynamics on time scales t ≫ τD dur-

ing which the particle configuration has changed significantly.

Different from short-time properties, they are influenced by

thermally driven microstructural relaxations depending on di-

rect and hydrodynamic interactions alike. This renders a first-

principles calculation of long-time properties demanding, both

in theory and simulations, in particular when the salient HIs

are accounted for. Consequently, in most simulation studies

of the concentration dependence of DL and η , the influence

of the HIs has been ignored82–84. The few existing three-

dimensional simulation studies where HIs are included have

been focused on Brownian hard spheres with no-slip BC85–87.

Therefore, a theoretical scheme is in demand allowing for the

approximate calculation of DL and η for suspensions of hy-

drodynamically structured particles.

In the following, we present such a scheme which as a

bonus requires only little numerical effort. It is based on

the HRM and a factorization approximation method proposed

originally by Medina-Noyola for self-diffusion35. We point

out that the HRM error estimation for short-time properties

in Eq. (25) applies also to long-time properties including

DL/Dt
0 and η , and also the dynamic structure factor S(q, t)

for arbitrary correlation times. This follows from general ex-

pressions for long-time transport coefficients and S(q, t) which

have been obtained using the Mori-Zwanzig projection oper-

ator formalism in conjunction with the many-particle gener-

alized Smoluchowski equation for the configurational proba-

bility distribution function31. The crucial fact to notice here

is that the hydrodynamic mobility tensors entering into the

GSmE have no explicit time dependence.

We exemplify the error estimate for DL by starting from the

configurational average expression31,

DL = DS +∆D , (43)

with

∆D =−
〈

(q̂ ·V1)O
−1
B (q̂ ·V1)

〉

. (44)

The slowing effect on DL by the dynamically restructuring

cage of next neighbors formed around each particle is embod-

ied in the negative valued relaxation contribution, ∆D, to DL

implying DL < DS for φ > 0. In Eq. (44), V1 = OBR1 is the

coarse-grained velocity of a representative particle 1 whose

Brownian motion is considered, q̂ = q/q, and OB(X) the so-

called backward Smoluchowksi differential operator generat-

ing the time evolution of the probability distribution function.

The operator inverse is denoted by O
−1
B . The only information

about OB needed here is its linear dependence on the mobility

tensors µµµ i j. From this and Eq. (24), it follows that the er-

ror introduced on approximating DL/Dt
0 by DL;HRM/Dt

0 is of

O

(

(L∗
h, f )

2
)

.

5.1 Long-time self-diffusion

Using Eq. (43), DL can be written as

DL (φ) = DS (φ)

[

1+
∆D(φ)

DS(φ)

]

, (45)
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where in the term in brackets, the explicit dependence on

DS has been scaled out. According to arguments first put

forward by Medina-Noyola35, and subsequently substantially

elaborated by Brady also regarding the zero-frequency viscos-

ity36,37, the factor function in brackets is not only scale in-

variant with respect to DS, but for hard spheres it is to decent

approximation also independent of the HIs. This implies the

no-HI factorization approximation,

[

1+
∆D

DS

]

≈

[

DL

Dt
0

]

no-HI

, (46)

where the bracket term is approximated by a purely structural

factor determined by excluded volume interactions only. For

known DS, the problem of calculating DL is thus simplified

to the calculation of the reduced long-time self-diffusion co-

efficient without HIs. The dependence of DL on the HIs, and

the hydrodynamic particle structure, is embodied here in DS

alone.

Brownian dynamics simulation results for [DL(φ)/Dt
0]no-HI

by Hinsen and Cichocki82 and Moriguchi88 are depicted in

Fig. 19. In the fluid-phase concentration regime φ ≤ φ f ,

where φ f = 0.494 is the volume fraction at freezing, the sim-

ulation data are well described by the polynomial least-square

fit,
[

DL

Dt
0

]

no-HI

= 1−2φ +1.272φ 2 −1.951φ 3 (47)

where the exact first-order virial coefficient, λL = 2, for a hard-

sphere suspension without HIs has been incorporated. The

figure depicts furthermore the analytic approximation,

[

DL

Dt
0

]

no-HI

≈
1

1+2φg(σ+;φ)
, (48)

given by Brady36, where the structural factor is expressed in

terms of the RDF contact value, g(σ+;φ), of hard spheres.

The contact value for the fluid-phase concentration range is

to high accuracy described by the Carnahan-Starling expres-

sion89

g(σ+;φ) =
1−φ/2

(1−φ)3
(49)

with g(σ+;φ f ) = 5.81. Eq. (48) incorporates the exact first-

order virial coefficient, λL = −2. Moreover, near random

closed packing at φrcp ≈ 0.64 where a metastable hard-sphere

fluid gets jammed, on basis of results for g(σ+;φ) by Rintoul

and Torquato89 it predicts that [DL]no-HI diminishes linearly

like 0.59×(1−φ/φrcp). Since DS vanishes likewise linearly in

case of no-slip hard spheres, the quadratic scaling prediction

DL ∼ (1−φ/φrcp)
2 near random closed packing is obtained in

the factorization approximation.

The performance of the no-HI factorization approximation

for the DL of no-slip spheres on basis of Eq. (26) for DS at

0 0.1 0.2 0.3 0.4 0.5
φ

0

0.2

0.4

0.6

0.8

1

[D
L
 /D

0t  ]
no

-H
i

Hinsen [82]
Moriguchi [88]
Eq. (47)
Eq. (48)

Fig. 19 Reduced long-time self-diffusion coefficient,
[

DL/Dt
0

]

no-HI
,

of colloidal hard spheres without HIs. Filled circles and squares:

Brownian dynamics simulation results by Hinsen and Cichocki82

and Moriguchi88, respectively. Solid line: Polynomial fit in Eq.

(47). Dashed line: Eq. (48) with Carnahan-Starling contact value

input.

γ = 1 and Eq. (47) for
[

DL/Dt
0

]

no-HI
, is documented in Fig.

20 by the comparison with DLS data by van Megen et al.90,91,

and simulation results by Phung et al.85 with HIs included.

The Stokesian dynamics simulation data for Brownian hard

spheres by Phung et al. have been obtained for a small num-

ber (N = 27) of particles, and for a small albeit non-zero shear

Peclet number Pe = 0.01. The overall agreement with the ex-

perimental and simulation data is quite good. The factoriza-

tion approximation gives λL =−3.831 for the first-order virial

coefficient of hydrodynamically interacting no-slip spheres,

while its correct numerical value is given by λL = −2.1. The

initial low-concentration decrease of DL is thus overestimated.

The good performance of the no-HI factorization approxi-

mation for no-slip hard spheres gives support to its straightfor-

ward extension to hydrodynamically structured particles, by

using for DS/Dt
0 now the analytic expression in Eq. (26) for

spherical annulus spheres. Our results for DL/Dt
0 based on

this extended factorization scheme are shown in Fig. 21. With

decreasing γ , the slowing down effect of the HIs on DL dimin-

ishes. In the limit γ → 0 of hard spheres acting hydrodynami-

cally as point particles, the long-time self-diffusion coefficient

in the absence of HIs is recovered. According to Cichocki

and Felderhof74, the linear concentration coefficient of DL/Dt
0

for small γ is λL(γ) = −2
[

1−1.031γ +0.111γ2 +O(γ3)
]

,

where the linear and quadratic terms in γ are due to the so-

called Oseen long-distance HIs contribution to the relaxation

part ∆D. The contributions of the short-time part, DS, to DL

appear first in quadratic order in γ . While this describes quan-

titatively how DL approaches [DL]no-HI for small γ , we reem-
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0 0.1 0.2 0.3 0.4 0.5
φ

0
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L
/D
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van Megen [90,91]
Phung [85]
Eqs. (26) & (45)-(47)

Fig. 20 Reduced long-time self-diffusion coefficient, DL/Dt
0, of

no-slip colloidal hard spheres. Filled circles: Experimental data by

van Megen et al.90,91. Filled squares: Simulation data by Phung et

al. 85. Solid line: No-HI factorization approximation in Eqs.

(45)-(47), with the short-time factor DS/Dt
0 according to Eq. (26)

for γ = 1.

0 0.1 0.2 0.3 0.4 0.5
φ

0

0.2

0.4

0.6

0.8
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D
L
/D
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γ = 1.0
γ = 0.95
γ = 0.9
γ = 0.8
γ = 0.0

Fig. 21 Generic influence of the intra-particle hydrodynamic

structure on DL/Dt
0, quantified in the no-HI factorization

approximation, Eqs. (45)-(47), using for DS/Dt
0 the spherical

annulus model formula in Eqs. (26) and (27). Several values of γ are

considered as indicated.

phasize that γ > 0.8 for most hydrodynamically structured col-

loidal particles.

The no-HI factorization approximation predicts the ratio,

DL/DS, of long-time and short-time coefficients to be in-

dependent of HIs and hydrodynamic particle structure, with

value equal to [DL/Dt
0]no-HI. This implies with Eqs. (45) and

(46) that
(

DL

DS

)

(φ f )≈ 0.1 , (50)

in good accord with the Löwen-Palberg freezing criterion

value of about 0.1. Thus, a universal freezing value of 0.1
is predicted not only for colloidal suspensions with different

pair potentials, but also with different hydrodynamic intra-

particle structures. For pair interactions characterized by a

single length scale, the dynamic Löwen-Palberg criterion has

been shown to be equivalent to the static Hansen-Verlet freez-

ing criterion for the value S(qm) of the structure factor peak

height65.

5.2 Zero-frequency viscosity

Analogous to Eq. (45) for DL, in Eq. (35) for the low-shear

zero-frequency viscosity η , we factor out the high-frequency

(short-time) contribution η∞ according to

η (φ) = η∞ (φ)

[

1+
∆η (φ)

η∞ (φ)

]

, (51)

with the term in brackets expected to be approximately inde-

pendent of the HIs. This suggests the no-HI factorization ap-

proximation,

∆η (φ)

η∞ (φ)
≈

[

∆η (φ)

η0

]

no-HI

, (52)

where [∆η ]no-HI is the shear relaxation viscosity part without

HIs. In this approximation, the HIs are assumed to affect η
only by means of the factored out η∞ in Eq. (51). The neglect

of HIs simplifies the calculation of the shear relaxation vis-

cosity part considerably. Following works by Brady36,37, an

analytic estimate of ∆η for no-slip hard spheres without HIs

is given by
[

∆η

η0

]

no-HI

≈
12

5
φ 2g(σ+;φ) , (53)

with g(σ+,φ) given by Eq. (49) for φ ≤ 0.49. This estimate

combines the exact low concentration limit, 2.4φ 2 +O(φ 3),
of [∆η ]no-HI with its divergence at random closed packing ac-

cording to [∆η ]no-HI ∼
(

1−φ/φrcp

)−1
, triggered by the di-

vergence of the hard-sphere contact value. Together with

the likewise linear divergence of η∞ for no-slip hard spheres,

a quadratic divergence η ∼
(

1−φ/φrcp

)−2
is thus predicted

for the zero-frequency viscosity. For hydrodynamically struc-

tured particles where ah < a, there are no diverging lubrication
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η/

η 0] no
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I

BD Foss and Brady [84]
Eq. (53)
Eq. (54)

Fig. 22 Reduced shear relaxation viscosity part without HIs,

[∆η/η0]no-HI, of a suspension of Brownian hard spheres in

dependence of φ . Filled circles: Brownian dynamics (BD)

simulation data by Foss and Brady84. Solid line: Analytic estimate

in Eq. (53). Dashed line: Semi-empirical fit in Eq. (54).

forces for spheres in contact. The high-frequency viscosity re-

mains then finite at random closed packing, and the particles

can still rotate individually. Moreover, η diverges only lin-

early as η(φ ,γ < 1)∼
(

1−φ/φrcp

)−1
.

In Fig. 22, the outcome of Eq. (53) for [∆η ]no-HI is com-

pared to Brownian dynamics simulation results without HIs

by Foss and Brady84,86. Up to φ ≈ 0.35, the simulation data

are decently well represented by the analytic expression, but

the steep rise of [∆η ]no-HI at large volume fractions is not re-

produced. The simulation data are well captured for all φ by

the semi-empirical expression

[

∆η

η0

]

no-HI

=
12
5

φ 2
(

1−7.085φ +20.182φ 2
)

(

1− φ
φrcp

) , (54)

combining the exact quadratic-order concentration depen-

dence with the linear order divergence at random closed pack-

ing. Throughout this work, we restrict our analysis to the equi-

librium fluid-phase concentration regime φ ≤ 0.5, while the

viscosity simulations in Refs.83,84,86 have been extended to

the metastable fluid concentration regime φf < φ < φrcp where

crystallization is kinetically suppressed. Regarding the shear

relaxation viscosity part with HIs included, Brady has pro-

posed the following approximate scaling expression36,37,

∆η

η∞

≈
12

5
φ 2 g(σ+;φ)

ΛSV(φ)
, (55)

where the influence of the HIs on the ratio ∆η/η∞ is solely

embodied in the short-time GSE function ΛSV defined in Eq.

0 0.1 0.2 0.3 0.4 0.5
φ

0

10

20

30

40

η/
η 0

exp. Segre [92]
exp. Weiss [93]
SD Foss and Brady [86]
SD Phung [85]
Eq. (53)
Eq. (54)
Eq. (55)
Eq. (56)
Eq. (57)

Fig. 23 Zero-frequency viscosity, η/η0, of no-slip Brownian hard

spheres with HIs. Solid and dashed black lines: No-HI factorization

predictions using η∞(φ ,γ = 1) according to Eq. (36), and

[η/η0]no-HI according to Eqs. (53) and (54), respectively. Solid and

dashed red lines: Brady’s (modified) scaling approximations using

Eqs. (55) and (56) for ∆η/η∞, respectively, and Eq. (36) for the

factored out η∞. The factor 1/ΛSV in the (modified) scaling

approximation is calculated using Eq. (36) for η∞ and Eq. (26) for

DS. Dotted line: Eq. (57). Filled symbols: Experimental data by

Segrè et al. and Weiss et al.92,93. Open symbols: Stokesian

dynamics (SD) simulation results for Brownian hard spheres by

Foss and Brady86 and Phung85.
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(40). For no-slip hard spheres, ΛSV is well represented for

φ < 0.4 by ΛSV ≈ 1 + 0.67φ according to Eq. (41), while

without HIs ΛSV is equal to one. Consequently, Eq. (55) pre-

dicts ∆η/η∞ to be only mildly affected by the HIs, giving

some credit to the no-HI factorization approximation in Eq.

(52). Eq. (55) was obtained from arguing that the adequate

diffusion time scale in a concentrated suspension is a2
h/Ds in-

stead of a2
h/Dt

0, and from using a low-concentration estimate

of the weakly shear-distorted stationary pair distribution func-

tion with the prefactor g(σ+;φ) preserved36. A detailed dis-

cussion of the approximations going into Eq. (52) is given by

Lionberger and Russel94,95.

On using in place of Eq. (53) the semi-empirical fitting

expression in Eq. (54) as the non-hydrodynamic factor in Eq.

(55) , Brady’s scaling relation is modified to

∆η

η∞

≈
12
5

φ 2
(

1−7.085φ +20.182φ 2
)

(

1− φ
φrcp

)

ΛSV(φ)
. (56)

The two here considered variants of the no-HI scaling ap-

proximation of η consist of using Eqs. (53) and (54), respec-

tively, as input for the ratio ∆η/η∞ in the bracket term in Eq.

(51), in conjunction with the accurate generalized Saitô for-

mula in Eq. (36) used for η∞. In addition, Brady’s scaling ex-

pression for η and its modification consist of approximating

∆η/η∞ in the bracket term in Eq. (51) by Eqs. (55) and (56),

respectively, with the generalized Saito formula used again for

the factored out high-frequency viscosity. The hydrodynamic

factor 1/ΛSV in the two scaling expressions is calculated an-

alytically using Eq. (26) for DS, and the generalized Saitô

formula for η∞.

The results for η(φ ,γ = 1) by the four inter-related ana-

lytic approximations are depicted in Fig. 23. They are com-

pared with experimental data by Segrè et al.92 and Weiss et

al.93, and Stokesian dynamics (SD) simulation data for Brow-

nian hard spheres with HIs included by Foss and Brady86 and

Phung at al.85. The latter have been obtained for a small

number (N = 27) of particles in the basic simulation box. In

Ref.86, ∆η was deduced using a general Green-Kubo formula

for the shear stress correlation function of hydrodynamically

interacting particles96. The viscosity curves by all four ap-

proximations compare overall quite well with the simulation

data. Depending on the used approximation for ∆η/η∞, devi-

ations are visible at intermediate and large volume fractions.

The neglect of HIs in ∆η/η∞ results in an overestimation of

the simulations data at large φ , but the large-φ experimental

viscosity data are well described. On considering the simula-

tion data to be more trustworthy than the experimental data,

owing to experimental polydispersity effects and difficulties

in determining the precise volume fraction, the modified scal-

ing expression by Brady in Eq. (56) provides the overall best

description of the SD data for η , slightly better than Brady’s

original scaling expression in Eq. (55). We use the modified

scaling expression in the following discussion of hydrodynam-

ically structured particles. Note that the second-order in con-

centration coefficient of η is predicted by all four factorization

approximation variants as 5.01+ 2.4 = 7.41, while the exact

coefficient is equal to 5.93197. This low-φ difference is not

resolved on the scale of Fig. 23.

The figure includes additionally the viscosity prediction by

the formula

η(φ)/η0 =
1−0.4φ +0.222φ

2

(

1−φ
)2

, (57)

with φ = φ/φrcp, which incorporates the first two known

virial coefficients in η/η0 = 1+ 2.5φ + 5.91φ 2 +O(φ 3) and

a quadratic divergence of η at φrcp. As seen in Fig. 23,

it describes the simulation and experimental data well for

φ ≤ 0.35, but it strongly underestimates them at larger φ .
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γ = 0.97
γ = 0.9
γ = 0.8
γ = 0.0

Fig. 24 Predictions for the reduced zero-frequency viscosity,

η(φ ,γ)/η0, of hydrodynamically structured particles, based on the

modified Brady scaling expression for ∆η/η∞ in Eq. (56), and the

generalize Saitô formula in Eq. (36) for η∞(φ ,γ). The

hydrodynamic factor ΛSV(φ ,γ) is calculated using Eq. (36) for

η∞(φ ,γ), and Eq. (26) for DS(φ ,γ)/Dt
0(γ). Several values of γ are

considered as indicated.

Akin to long-time self-diffusion, we can straightforwardly

extend our analysis to hydrodynamically structured particles,

by using the generalized Saitô expression in Eq. (36) for

η∞(φ ,γ), in combination with the modified Brady scaling ex-

pression in Eq. (56) for ∆η/η∞. The viscosity predictions

for different reduced hydodynamic radii γ and volume frac-

tions extending up to φf are depicted in Fig. 24. Note the

pronounced reduction of η(φ ,γ) with decreasing γ , owing to

the reduced dissipation, inherited from the similar behavior

of η∞(φ ,γ). In the limit γ → 0, the zero-frequency viscosity

1–26 | 21

Page 21 of 28 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



reduces to η(φ ,0) = η0 +[∆η ]no-HI. In spite of being approx-

imate, the analytic modified scaling expression for η(φ ,γ) in

Eq. (56) can be expected to be useful for a quick analysis

of experimental viscosity data of hydrodynamically structured

colloidal suspensions. For the PNiPAM microgels in DMF,

e.g., where γ = 0.97 has been deduced, a significant reduction

both in η and η∞ is predicted relative to the corresponding

viscosities of non-permeable particles. It will be interesting

to compare our zero-frequency and high-frequency viscosity

predictions with future viscosity measurements on non-ionic

PNiPAM in DMF systems.

6 Concluding Remarks

We have presented a toolbox of methods for calculating short-

time and long-time transport properties of suspensions of

spherical particles with intrinsic hydrodynamic structure. The

analytic scaling expressions for systems at or near to thermo-

dynamic equilibrium given in the paper combine high accu-

racy predictions with a practical implementation, and they ap-

ply to the full liquid-phase concentration regime. They are

useful to experimenters for a fast yet precise data analysis of

scattering and rheo-mechanical experiments. We have high-

lighted this in our analysis of SLS and DLS experiments on

non-ionic PNiPAM microgels in DMF. By a detailed compar-

ison with Hertz potential calculations, we have shown that the

microgels behave statically to good accuracy as hard spheres,

and hydrodynamically as permeable spheres with a reduced

penetration length λx ≈ 0.03 corresponding to a reduced hy-

drodynamic radius of γ = 0.97. It will be interesting to scru-

tinize the analytic viscosity expressions for η∞ and η of hy-

drodynamically structured, rigid spheres against future rheo-

mechanic measurements on non-ionic PNiPAM microgels.

The analytic toolbox expressions for the collective diffu-

sion coefficient and the zero-frequency viscosity have been al-

ready profitably used in a recent crossflow ultrafilration study

of solvent-permeable nanoparticles suspensions11. The short-

time transport coefficient expressions can serve also as input

in the calculation of frequency- and time-dependent trans-

port properties on basis of mode-coupling theory and dy-

namic density functional theory methods were HIs are in-

cluded98,99. They are likewise useful as input in the context of

the empirically observed time-wavenumber factorization scal-

ing of S(q, t) at q ≈ qm for intermediate to long correlation

times100,101.

The intra-particle hydrodynamic structure has been ac-

counted for using the hydrodynamic radius model where the

particles are described hydrodynamically as no-slip spheres,

characterized by a hydrodynamic radius derived from a single-

particle transport property for unchanged direct interactions.

In spite of its simplicity, the HRM is universally applica-

ble since corrections terms are usually quite small, i.e. of

quadratic order in the reduced slip length. In many partic-

ulate systems, these corrections are negligible, and a unique

hydrodynamic radius ah, f can be used independent of the con-

sidered transport property. As we have shown in comparison

with existing computer simulation results, the HRM based

scaling expressions for hard-sphere-like particles are decent

approximations also for strongly structured particles charac-

terized by values of γ significantly smaller than one, provided

ah is deduced from an associated single-particle transport co-

efficient, namely from [η ] in viscosity calculations, and Dt
0 in

self-diffusion and sedimentation calculations for concentrated

suspensions. While our focus has been on monodisperse parti-

cle systems, it is feasible to generalize the HRM to size poly-

disperse particles using an appropriate particle size distribu-

tion. In future work, it will be rewarding to search for possi-

ble extensions of the scaling relations to polydisperse colloidal

systems and mixtures.

Most results presented in this work are for hydrodynami-

cally structured, stiff particles with pure hard-core interactions

where the HRM reduces to the spherical annulus model. Part

of our toolbox methods are likewise applicable, with appropri-

ate modifications, to spherical particles with short-ranged soft

interactions. We have illustrated this in Fig. 13 for the reduced

hydrodynamic function, hd(q), of soft Hertz potential particles

with ε = 10. According to our calculations based on the δγ
method, hydrodynamic function scaling remains valid for soft

spherical particles. Note here that the self-part corrected δγ
scheme, and the PA approximation for HRM particles, can be

used for arbitrary pair potentials.

We finally point to the invalidity of the presented scaling

relations for DS, K, and DL for particles with long-range soft

repulsion that are not adequately described by an effective

excluded volume diameter. Examples in case are low salin-

ity suspensions of charge-stabilized particles75, and quasi-two

dimensional systems of magnetically repelling particles at a

liquid-gas interface102. As shown both in computer simula-

tions and experiments, DS and K in these systems follow a

fractal ∼ φ 4/3 and ∼ φ 1/3 concentration dependence, respec-

tively, of zero and negative infinite initial slope67,75. More-

over, the factorization scaling relation in Eqs. (45) and (46)

predicting that DL < [DL]no-HI does not apply to these long-

range repulsive systems where, on the contrary, a hydrody-

namic enhancement of long-time self-diffusion is observed in

theory98, simulation65,103 and experiments102. The short-time

self-diffusion coefficient in these systems is only weakly af-

fected hydrodynamically at lower concentrations so that DS ≈
Dt

0. The major effect originates instead from the relaxation

part ∆D whose magnitude is lowered by the here dominat-

ing far-field part of the HIs98. While the scaling expressions

are invalid, the hydrodynamic structures of the low-salinity

charge- stabilized and magnetic particles is still well described

by the HRM. On basis of the HRM the short-time properties
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of hydrodynamically structured charge-stabilized particles can

be calculated using the self-part corrected δγ scheme in con-

junction with the PA method for the self-part.
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A Pairwise-additivity (PA) approximation ap-

plied to the HRM

The PA approximation of short-time diffusion properties is

based on the cluster expansion of the N-particle translational

mobility tensors of colloidal spheres,

µµµ i j (X) = µ t
0 1δi j +

[

µµµ
(2)
i j (X)−µ t

0 1δi j

]

+ three-body terms+ . . . , (58)

where the three-body and higher-order cluster contributions

are disregarded. Here, µ t
0 = Dt

0/(kBT ) is the single-particle

translational mobility coefficient depending on the hydrody-

namic particle structure, and 1 is the unit tensor. The hydro-

dynamic mobility tensors on the pairwise additive level,

µµµ
(2)
i j (X) = µ t

0

[

δi j

(

1+
N

∑
l=1;l 6=i

ωωω11 (Ril)

)

(59)

+(1−δi j) ωωω12 (Ri j)

]

,

with Ri j = Ri − R j, are fully accounted for including the

near-contact lubrication terms. The two-particle tensors ωωω11

and ωωω12 describe the hydrodynamic self-interaction of a

sphere through flow reflections at the second one, and cross-

interactions of the two particles, respectively. The axial sym-

metry of the two-sphere problem allows for splitting these ten-

sors into longitudinal and transversal components,

ωωω i j = xi j(r)r̂r̂+ yi j (r) [1− r̂r̂] . (60)

The transversal and longitudinal mobilities xi j(r) and yi j(r),
with i, j ∈ {1,2}, can be calculated recursively in the form

of a power series in the reduced inverse pair distance

ah/r, combined with known near-contact lubrication expres-

sions56,73,104.

Insertion of Eq. (59) into Eq. (21) leads to the PA approxi-

mation expressions for DS and Hd(q)
42. We present these here

in a form suitable for HRM particles where one distinguishes

between the hydrodynamic particle diameter, σh = 2ah, and

the direct interaction diameter σ . For rigid spherical particles,

σ = 2a is the hard-core diameter, while for mechanically soft

particles, σ is identified with a characteristic soft diameter σs

such as the one in the Hertz potential.

Introducing the reduced length x = r/σh and wavenumber

y = qσh, the self-part contribution to H(q) is

DS (φ ,γ)

Dt
0 (γ)

∣

∣

∣

∣

PA

= 1+8γ3φ

∫ ∞

0
dxx2g(γx) [x11 (x)+2y11 (x)−3] .

(61)

The distinct part contribution reads

Hd (y,γ)
∣

∣

∣

PA
= γ3φ (62)

+18γφ

∫ ∞

0
dx xh(γx)

[

j0 (xy)−
j1 (xy)

xy
+ γ2 j2 (xy)

6x2

]

+24γ3φ

∫ ∞

0
dx x2g(γx)y12 (x) j0 (xy)

+24γ3φ

∫ ∞

0
dx x2g(γx) [x12 (x)− y12 (x)]

[

j1 (xy)

xy
− j2 (xy)

]

,

where jn is the spherical Bessel function of order n, and h =
g−1 is the total correlation function. The overlines in x12(x)
and x12(x) indicate that the respective far-field parts up to third

order in 1/x have been subtracted off. The argument γx in g

and h, with γ =σh/σ , is a reminder that the RDF is commonly

calculated as a function of r/σ such as in the VW-PY solution

for hard spheres.

According to Eq. (61), the first-order virial coefficient of

DS is given by

λt (γ) = 8γ3
∫ ∞

0
dx x2 exp [−βV (x)] [x11 (x)+2y11 (x)−3] .

(63)

The PA approximation expression for the high-frequency

limiting viscosity, generalized to the HRM reads,

η∞ (φ ,γ)

η0

∣

∣

∣

∣

PA

= 1+
5

2
γ3φ

[

1+ γ3φ
]

+60
(

γ3φ
)2
∫ ∞

0
dxx2g(γx)J (x) , (64)

with the rapidly decaying two-sphere shear mobility function,

J(x), accounting for the two-body HIs. It decays asymptot-

ically as J(x) ∼ (15/128)x−6. We employ an accurate nu-

merical table for J(x) based on recursion expressions and the

lubrication analysis given in Ref.105.

Finally, we note that in the spherical annulus model of hy-

drodynamically structured hard spheres, the lower integration

boundary of all integrals in the present appendix is equal to

1/γ .
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B Self-part corrected Beenakker-Mazur

method applied to the HRM

Except for η∞, the applicability range of the PA approxima-

tion is restricted to lower φ values where it becomes accurate.

In contrast, the δγ-scheme for H(q) and η∞ by Beenakker and

Mazur70,71 is applicable also to concentrated systems. We dis-

cuss here a standard version of this scheme, generalized to the

HRM, where S(q) is the only required input. Once the self-

part DS of H(q) is suitably corrected42,106, the δγ method

provides a decent description of short-time transport proper-

ties, for neutral and charge-stabilized particle systems alike

(see Ref.42). The δγ method results for η∞ and H(q) reveal

inaccuracies at all concentrations which can be partially at-

tributed to its approximate treatment of the HIs. This is un-

derlined in recent work by Makuch and Cichocki72 where the

approximation steps in the derivation of the δγ scheme have

been reduced. The fact that their revised version of the δγ
scheme with improved hydrodynamic mobility tensors does

not significantly improve the agreement with simulation data

for no-slip hard spheres points to a fortuitous cancellation of

errors introduced in the approximate derivational steps of the

original (non self-part corrected) Beenakker-Mazur method.

A simple yet significant improvement over the original δγ
scheme preserving its analytical simplicity is obtained from

using this scheme for the distinct part Hd(q) only, where it

gives overall good results. This was shown in Refs.42,67,106

both for neutral and charge-stabilized particle systems. Re-

garding the self-part, DS, of H(q), accurate expressions can

be used instead such as the scaling relation in Eq. (26) for par-

ticles with hard-core interactions, or the PA approximation ex-

pression in Eq. (61) for lower-concentrated charge-stabilized

systems. This hybrid procedure is referred to as the self-part

corrected δγ scheme.

The δγ scheme expression for Hd(q) by Beenakker and

Mazur70,71, generalized to the HRM, reads

Hd (y,γ)
∣

∣

∣

δγ
=

3

4π

∫ ∞

0
dy′

(

sin
(

1
2
y′
)

1
2
y′

)2
1

1+ γ3φSγ0

(

1
2
y′
)

·
∫ 1

−1
dµ
(

1−µ2
)

[

S

(

1

γ

√

y2 + y′2 −2yy′µ

)

−1

]

,

(65)

with y = qσh. The function Sγ0
(x) consists of an infinite

sum of wavenumber-dependent contributions depending on φh

as well as on the inter-related scalar coefficients γ
(n)
0 , with

n ∈ {0,1,2, · · ·}. Explicit expressions for Sγ0
(x) and γ

(n)
0 are

given in Refs.66,70. We have calculated the γ
(n)
0 coefficients in

an iterative procedure up to n = 10, using a fine grid of vol-

ume fractions in [0.01−0.5] of grid size ∆φ = 0.01. This has

resulted in an improved accuracy as compared to the original

work by Beenakker and Mazur. However, the differences in

Hd(q) and η∞ are quite small, i.e. there is no more than a 3%

difference.

The δγ scheme expression for η∞ by Beenakker69, adapted

to the HRM, is given by

η∞ (φ ,γ)

η0

∣

∣

∣

∣

δγ

=
1

λ (0) (φ ,γ)+λ (2) (φ ,γ)
, (66)

where

λ (0) (φ ,γ) =

[

1+
5

2
γ3φ γ̃

(2)
0

]−1

(67)

λ (2) (φ ,γ) =
15

2π
γ3φ

[

γ̃
(2)
0 λ (0) (φ ,γ)

]2

∫ ∞

0
dy

j2
1

(

1
2
y
)

1+ γ3φSγ0

(

1
2
y,γ3φ

)

[

S

(

y

γ

)

−1

]

.

(68)

Here, γ̃
(2)
0 = γ

(2)
0 /n with n denoting the particle number den-

sity. The argument y/γ in the static structure factor is used as

a reminder that it is usually calculated as a function of qσ .
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30 M. G. McPhie and G. Nägele, J. Chem. Phys., 2007, 127, 034906.
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48 G. Nägele, The Physics of Colloidal Soft Matter, Institute of Funda-

mental Technological Research, Polish Academy of Sciences, Warsaw,

Poland, Warsaw, 2004, p. 182.

49 H. Senff and W. Richtering, J. Chem. Phys., 1999, 111, 1705.

50 M. Stieger and W. Richtering, Macromolecules, 2003, 36, 8811–8818.

51 C. N. Likos, M. Schmidt, H. Löwen, M. Ballauff, D. Pötschke and
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2011, 134, 044532.
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An analytic toolbox is presented for the calculation of short-time and long-
time transport properties of hydrodynamically structured particles suspensions.
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