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The role of bond tangency and bond gap in hard-

sphere crystallization of chains 

Nikos Ch. Karayiannis,*
a
 Katerina Foteinopoulou

a
 and Manuel Laso

a 
,  

We report results from Monte Carlo simulations on dense packings of linear, freely-jointed 

chains of hard spheres of uniform size. In contrast to our past studies where bonded spheres 

along the chain backbone were tangent, in the present work a finite tolerance in the bond is 

allowed. Bond lengths are allowed to fluctuate in the interval [ , ]dlσ σ + , where σ  is the sphere 

diameter. We find that bond tolerance affects the phase behaviour of hard-sphere chains, 

especially in the close vicinity of the melting transition. First, a critical 
critdl exists marking the 

threshold for crystallization, whose value decreases with increasing volume fraction. Second, 

bond gaps enhance the onset of phase transition by accelerating crystal nucleation and growth. 

Finally, bond tolerance has an effect on crystal morphologies: in the tangent limit the majority 

of structures correspond to stack-faulted random hexagonal close packing (r.h.c.p.). However, 

as bond tolerance increases a wealth of diverse structures can be observed: from single fcc (or 

hcp) crystallites to random hcp/fcc stackings with multiple directions. By extending the 

simulations over trillions of MC steps (1012) we are able to observe crystal-crystal transitions 

and perfection even for entangled polymer chains in accordance to the Ostwald´s rule of stages 

in crystal polymorphism. Through simple geometric arguments we explain how the presence of 

rigid or flexible constraints affects crystallization in general atomic and particulate systems. 

Based on the present results, it can be concluded that proper tuning of bond gaps and of the 

connectivity network can be a controlling factor for the phase behaviour of model, polymer-

based colloidal and granular systems.  
 
 
 
 
 
 
 

1 Introduction 

  
Controlling the phase behaviour of atomic and particulate 

systems is of extraordinary importance in diverse physical, 

chemical, engineering and biological processes. How complex 

molecular structures can be arranged in the bulk or in a 

confined space and under various processing conditions, is a 

research topic that keeps receiving persistent scientific 

attention. This is because the general subject of packing is not 

limited to the fundamental concepts alone but also applies to a 

vast number of daily-life applications: from grain silos and 

transport/storage containers to cosmetics, cell biology and 

nanofabrication. 

From the modelling perspective the most straightforward model 

to study packing is the one of hard spheres. With respect to 

theory it is amenable to analytical solutions; from the 

computational viewpoint it is easily implementable and 

computationally inexpensive; experimentally it can be mapped 

into neutral (uncharged) colloids.  

The first Monte Carlo (MC)1 and Molecular Dynamics (MD)2 

simulations focused on such hard-body systems providing 

pioneering insights on their phase behaviour and packing 

ability. More than half a century afterwards and the packing of 

rigid, impenetrable bodies is still in the spotlight of simulation-

based research3-21, with numerous studies focusing on packings 

of non-spherical and highly complex objects.22-36 Systems 

consisting of chains (polymers) fall definitely in this later 

category. Not only is the shape of macromolecules highly 

anisotropic, but it fluctuates over time especially in high-

temperature melts and dilute solutions. Furthermore, at 

equilibrium contour paths can be distinctly different from chain 

to chain. Further contributing parameters to the complexity in 

modelling and simulation of polymeric systems are i) the very 

slow dynamics of long macromolecules due to the topological 

constraints between chains (entanglements)37-39 that lead to 

sluggish motion and ii) the large spectrum of characteristic time 

and length scales that dominate polymer structure, dynamics 

and rheology37, 38.  

In recent years there has been significant progress in the 

synthesis and characterisation of colloidal40, 41 and granular42-45 

polymers. The study of such model realizations offers two 

significant advantages: first, key concepts such as 

entanglements and knots can be visualized due to their 

macroscopic size, and second important factors like molecular 
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weight, polydispersity, chain architecture and stiffness can be 

controlled to a desired level. 

In parallel to experiments, the packing behaviour of athermal 

chains can be studied through continuum (off-lattice) 

simulations. However, due to the very long relaxation times of 

well-entangled chains conventional simulation techniques 

cannot effectively explore the phase space of dense polymers, 

which limits their application to low / intermediate packing 

densities and to short chains (oligomers).   

Solution to this problem has been provided by a Monte Carlo 

scheme, specially designed to model athermal polymer 

packings of long chains even close to the jammed state.46, 47 

This MC protocol is built around the configurational bias 

method48-51 and chain-connectivity-altering moves46, inspired 

by the original end-bridging (EB) and double-bridging (DB) 

algorithms, which have been successfully applied on polymer 

melts in atomistic detail.52, 53 Very extensive MC simulations 

(in the order of billions (109) of steps) of freely-jointed chains 

of tangent hard spheres of uniform size, allowed us to identify 

the jammed state of athermal polymer packings,46, 54 its 

structural characteristics, and the similarities and differences 

with the corresponding state of monomeric analogues.54-56 

Through these simulations it was possible to observe all 

characteristic scaling regimes of the dependence of chain 

dimensions and of the underlying network of entanglements 

(primitive paths) on volume fraction.57-60 Furthermore, it was 

shown that given enough simulation time and once a critical 

packing density is reached, freely-jointed chains of tangent hard 

spheres show a spontaneous, entropy-driven phase transition 

(crystallization)54, 61-64 much as their monomeric athermal 

counterparts do.2, 10, 14, 19, 20, 65-67 According to simulations at all 

packing densities above a concentration threshold ( 0.56ϕ > ) 

random chain packings crystallize into random hexagonal close 

packed (r.h.c.p.) structures consisting of stack-faulted 

alternating layers of face-centered cubic (fcc) or hexagonal 

close-packed (hcp) character with a single stacking direction.54, 

62-64  The ordered morphologies were further characterized by 

the absence of fivefold defects (twinning), for which an  

entropic mechanism seems to be responsible.68 

Accordingly, through computer simulations it has been 

established that at high volume fractions athermal packings of 

linear chains show a spontaneous, entropy-driven 

crystallization like monomeric hard spheres. However, besides 

the fundamental similarities athermal polymer crystallization 

shows unique characteristics which are absent or different 

compared to the phase transition of single (monomeric) hard 

spheres.  First, for freely-jointed chains of tangent hard spheres, 

the density threshold for crystallization ( M

chains 0.56ϕ > ) is 

substantially higher than the melting transition of monomeric 

hard spheres ( M

monomeric 0.545ϕ � ). In other words, there is a 

concentration range, the upper border of which is not fully 

identified, where monatomic hard spheres crystallize but freely-

jointed chains of strictly tangent hard spheres remain 

amorphous.54, 62, 64  In addition, in the tangent limit the 

prevailing ordered morphology for chains is the r.h.c.p. crystal, 

while for monomers a wealth of structures can be observed, 

ranging from single fcc or hcp crystallites to close packed 

stackings with random directions and twinning planes existing 

in abundance at crystalline boundaries. Interestingly, similar 

morphologies were recently found by Ni and Dijikstra69 in MD 

simulations of packings of chains with softer bonds.   

Motivated by the aforementioned modelling studies54, 62-64, 69 in 

the present contribution we analyse, in a systematic fashion 

through extensive Monte Carlo simulations, the effect of bond 

constraints on the ability of freely-jointed linear chains of hard 

spheres of uniform size to crystallize. We investigate the 

dependence of the melting point, of the established ordered 

morphologies and of the rate of the disorder-order transition on 

bond tolerance compared to the tangent limit.  

The manuscript is organized as follows: in section 2 we 

describe the simulation method, the modelled systems and the 

structural descriptor to gauge local structure. Section 3 contains 

the results of the present study, their analysis and interpretation. 

Finally, section 4 summarizes the main findings and 

conclusions.  

   

 

2 Simulation Method 

Polymers are modelled as linear, freely-jointed chains of hard 

spheres with uniform diameter, σ . In contrast to past studies,46, 

47, 54-64 where bonded spheres were strictly tangent ( l σ� , l 

being the bond length) this time bond lengths in the interval 

[ ], dlσ σ +
 
are allowed, where dl is the parameter that controls 

the tolerance in bond lengths (maximum bond gap). Obviously, 

the tangency condition is recovered in the limit 0dl→ . In 

practice, the parameter dl  corresponds to the maximum 

allowed gap in the bond between two adjacent hard spheres 

along the chain backbone. It must be noted that the application 

of bond tolerance does not affect the non-overlapping 

condition: the distance between sphere centres cannot be less 

than σ . 

Simulation cells are cubic with periodic boundary conditions 

applied in all dimensions. Generation and equilibration of the 

polymer chains inside the cells are undertaken by the Monte 

Carlo (MC) scheme described in detail in Ref.46. Not 

surprisingly the performance of the MC protocol for bond gaps 

is significantly higher than in the tangent limit. This trend is 

caused by two factors: i) the configurational bias (CB) pattern 

employed for all local moves (reptation, intermolecular 

reptation, rotation, internal libration) results in trial 

configurations that sample more efficiently the accessible 

volume left by bond gaps and ii) the acceptance rate of chain-

connectivity-altering moves (simplified end-bridging and 

simplified intramolecular end-bridging)46 increases, as the 

number of candidate chains to be bridged rises with bond 

tolerance. This latter factor also lessens the “shuttling” effect 

(forward and reverse transitions that annihilate each other) 

which reduces the equilibration ability of MC algorithms70 

especially at high densities.      

Due to the nature of the employed chain-connectivity-altering 

moves all systems are characterized by polydispersity in 

molecular lengths, which is properly controlled by casting the 

simulations in the semi-grand statistical ensemble.52 As in past 

studies the distribution of chain lengths is uniform in the 

interval [ ](1 ), (1 )N N−∆ +∆ , where N is the average chain length, 

and ∆ is the half-width of the length distribution divided by N. 

For computational expedience and in order to directly compare 

with previous results most simulations are performed on a 

system of 100 chains of N = 12 ( 0.5∆ = ) for a total of 1200 

hard-sphere monomers. In addition, to check the effect of 

molecular length and the reproducibility of the main findings 

two additional systems are simulated: i) 96 chains of N = 50 (

0.5∆ = ) and ii) 48 chains of N = 100 ( 0.5∆ = ) both with 4800 

spheres. 
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Initial polymer packings of N = 12, corresponding to the 

tangent limit ( 0dl→ ), are generated and relaxed at volume 

fractions of 0.5500ϕ = , 0.5525, 0.5550, 0.5575, 0.5600 and 

0.6100. Then, representative amorphous configurations at each 

packing density are selected as starting points for MC 

simulations with bond gaps.  This concentration range is 

selected so as to study the effect of bond tolerance on the 

melting transition with respect to the tangent limit and to the 

monomeric analogues.  

In the first stage, the following values of bond tolerance 

(maximum gap) are employed: dl = 0.0065, 0.0130, 0.0260, 

0.0325, 0.0650 and 0.1300. For each value, MC simulations 

reaching the order of 1012 steps are carried out, a simulation 

length far greater than the ones in our past studies. After 

analysing the phase behaviour of the modelled systems for the 

initial set of dl values, whenever necessary, additional values 

of the bond gap are employed to identify as precisely as 

possible the critical threshold crit ( )dl ϕ  for the onset of 

crystallization (see related discussion in section 3). As in our 

previous simulations46 the tangent limit is practically realized 

by allowing bond tolerances of 
52 10dl −×� or 

810dl −
� . A 

comparison of the local and global properties of polymer 

packings  near and above the melting transition and in the 

vicinity of the MRJ state55 showed no appreciable difference 

between the two tolerance values. Based on this and because a 

bond gap of 
52 10dl −×� is by more than two orders of 

magnitude stricter than the bond fluctuations employed in the 

present work, for all practical purposes this value represents 

here the tangency condition ( 0dl→ ). We should note that the 

range of bond gaps employed here is similar to the ones 

commonly encountered in experimental realizations, see for 

example Refs. 44, 45. 

Local structure is analysed through the Characteristic 

Crystallographic Element (CCE) norm47, 61, 62. The CCE norm 

can accurately quantify the orientational and radial similarity of 

a local environment with respect to a given crystal structure. It 

is based on the identification of the point group symmetry for 

each perfect ordered structure71, 72. By construction, the CCE 

norm19, 20, 47, 54, 56, 60-64, 73 and recent variants74 are able to 

distinguish between different crystal structures appearing 

during disorder-order transitions in general atomic and 

particulate systems. Details about the mathematical formulation 

and practical implementation of the CCE-based descriptor can 

be found elsewhere.61 Given that in hard-sphere packings the 

prevailing ordered morphologies correspond to fcc (or hcp) 

crystals in the present work, as in our past studies, we calculate 

the CCE norm with respect to the fcc and hcp structures as well 

as for the non-crystallographic, fivefold symmetry. Based on 

the value of the corresponding CCE norm a site (sphere 

monomer) can be labelled as hcp-like, fcc-like, fivefold-like or 

amorphous (neither hcp, nor fcc, nor fivefold). By adding the 

fractions of fcc-like ( fcc
s ) and hcp-like ( hcp

s ) sites we can 

calculate the degree of ordering (crystallinity) simply as 
c fcc hcp

s sτ = + . By tracking the evolution of the relevant 

quantities ( fcc
s , hcp

s and cτ ) we can detect a possible onset of 

crystallization (disorder-order transition). At the level of 

monomers we can gauge the ordered sites and thus study in 

detail the nucleation and growth of crystallites19, 20, 54, 62-64, 73.   

System configurations (frames) are recorded every 107 steps 

while the CCE-based analysis is performed every 100 frames. 

For large bond gaps (see related in discussion in section 3) 

additional simulations are conducted with much shorter record 

frequency as crystallization occurs more abruptly the larger the 

bond gap.   

 

 

Figure 1. Evolution of crystallinity, , with MC steps for the N = 12 chain system with varied bond tolerance as calculated from 

the CCE analysis. Upper panel, from left to right: , 0.5525 and 0.5550. Lower panel, from left to right: , 

0.5600 and 0.6100. 
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3 Results 

3.1 Effect of bond gap on crystallization 

As stated in the introduction, present modelling studies are mainly 

motivated by the difference in the phase behaviour between freely-

jointed chains of tangent hard spheres54, 62-64, 69 and of monomeric 

hard spheres19, 20 at and slightly above the melting transition 
M

monomericϕ (see for example Fig. 4 of Ref. 64). Accordingly, we focus 

primarily our attention in the concentration range 

[ ]0.5500,0.5600ϕ∈ with additional simulations conducted at a 

higher volume fraction ( 0.61ϕ = ) for comparison purposes. The 

multiple panels of Fig. 1 show the evolution of crystallinity (
cτ ) as 

a function of MC steps for various values of bond tolerance ( dl ) at 

increasing packing densities as obtained for the N = 12 system. At 

the lowest density ( 0.5500ϕ = ) only the two systems with the 

largest bond gaps ( 0.01300dl =  and 0.0650), show a sharp first-

order, disorder-order transition. Crystallization occurs very early in 

the MC simulation and the transition is very sharp. However, all 

other packings remain amorphous, being characterized by very small 

numbers of hcp and/or fcc sites. As concentration is increased (

0.5525ϕ = ) the chain system with the third largest bond gap (

0.0325dl = ) also crystallizes. Therefore, it is evident that as volume 

fraction increases packings with smaller allowed bond gaps transit to 

the ordered state. Thus, the effect of bond tolerance on the phase 

behaviour of chain packings declines with increasing volume 

fraction. The observed trend is manifestly valid as we reach 

progressively higher densities. For example at 0.56ϕ =
 
bond 

constraints affect crystallization so weakly that all systems, except 

the one corresponding to the tangent limit ( 0dl → ), show a 

spontaneous, disorder-order transition.  

According to the data of Fig. 1 the following additional 

conclusions can be drawn with respect to the dependence of 

crystallization on bond tolerance near the melting transition:  

1) the rate of crystallization (nucleation and growth, measured 

in MC steps) increases as the bond gap widens, 

2) the established degree of ordering (crystallinity) decreases as 

the allowed bond tolerance shrinks, 

3) irrespectively of bond tolerance, the disorder-order 

transition, when it occurs, appears very sharp,  

4) there exists a critical bond gap ( crit ( )dl ϕ ) above (below) 

which athermal chains crystallize (remain amorphous).  

By comparing the trends in Fig. 1, observed at packing 

densities near the melting point, with the one obtained at 

significantly higher volume fraction ( 0.6100ϕ = ), we can 

conclude that the effect of bond tolerance on crystallization is at  

maximum very close to the melting transition and weakens as 

concentration is increased. At sufficiently high volume 

fractions ( 0.5600ϕ > ) the effect is so weak that polymer 

packings show spontaneous disorder-order transition even in 

the tangent limit.  

The rate of crystallization can be quantified by calculating the 

number of MC steps required for the sharp transition. 

Obviously, the stochastic nature of the MC method, especially 

when built around “unphysical” chain-connectivity-altering 

moves like here, prohibits the extraction of “real” dynamical 

information. In spite of this, MC steps can still be used to 

quantify the rate with which a reference system, under specific 

conditions and constraints, reaches the stable phase. Fig. 2 

shows the number of MC steps required to reach the stable 

crystal phase as a function of bond gap at increasing packing 

densities. Chain assemblies characterized by large bond gaps, 

are able to crystallize significantly faster than those with 

smaller tolerance. The trend is systematic and reproducible over 

all studied packing densities. Furthermore, it is not surprising 

that in this concentration range 0.55 0.56ϕ≤ ≤  denser chain 

packings crystallize faster than more dilute ones.  

Fig. 3 presents the dependence of the degree of ordering 

(crystallinity) on packing density with increasing bond gaps. 

First, for the two largest values of bond tolerance ( 0.0650dl =

and 0.1300) it can be seen that chain packings always 

crystallize independently of concentration. The corresponding 

crystallinity of the final morphologies is high: for example for 

0.1300dl =  and 0.56ϕ =  the fraction of ordered sites exceeds

c 0.70τ > . At smaller bond gaps the disorder-order transition 

depends strongly on the applied combination of dl and ϕ : for a 

given bond gap there is a packing density above/below which 

Figure 2. Monte Carlo steps required for the N = 12 system to 

crystallize (in logarithmic scale) as a function of bond tolerance,

, at various packing densities, . Dotted lines connecting 

simulation points serve as guides for the eye.

Figure 3. Degree of ordering (crystallinity), , (in logarithmic 

scale) as a function of packing density, , with varying bond gap, 

, as obtained from MC simulations on the N = 12 chain system. 

Dotted lines connecting simulation points serve as guides for the 

eye.
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chain packings crystallize/remain amorphous. The smaller the 

bond gap, the higher the volume fraction that has to be reached 

for crystallization to take place. Eventually, far from the 

melting point (as established for monomeric hard spheres) 

most, if not all, of the polymer assemblies crystallize  

irrespective of the applied bond gap. Similar conclusions can be 

drawn from Fig. 4 which shows the dependence of crystallinity 

on bond gap with increasing volume fraction. At a given 

packing density a critical value of bond gap exists crit ( )dl ϕ

which, once reached, leads to spontaneous phase transition. The 

bond gap threshold is clearly a decaying function of packing 

density as can be seen in Fig. 4. 

 

 

3.2 Phase diagram of athermal polymer packings 

 

When two successive values of bond tolerance lead to different 

phase behaviour additional simulations are conducted with 

intermediate values so as to identify more precisely the 

threshold value crit ( )dl ϕ . For example, according to Fig. 1 at 

0.5525ϕ =   the N = 12 system remains amorphous for 

0.0260dl =  but crystallizes for 0.0325dl = . Thus, additional 

simulations are conducted in the interval [ ]0.0260,0.0325dl∈  to 

identify as precisely as possible the threshold value that triggers 

crystallization at this volume fraction. By combining all 

available modelling data and by calculating crit ( )dl ϕ , the phase 

diagram of athermal polymer packings as a function of volume 

fraction and bond softness can be formulated, at least for the 

range of parameters ( N , dl  and ϕ ) studied here.  

Fig. 5 shows the threshold bond gap, crit ( )dl ϕ , as a function of 

packing density,  marking the boundaries of different phase 

behaviour: for bond tolerance higher than crit ( )dl ϕ  ( crit ( )dl dl ϕ≥

) the initially amorphous polymer packing shows spontaneous 

crystallization, while for crit ( )dl dl ϕ< it remains amorphous. At 

higher densities (for example at 0.61ϕ = )  bond gaps play no 

role in the phase behaviour of athermal chains. Consequently, 

decreasing bond tolerance in chain packings leads to an 

increase of the melting point for athermal polymers with 

respect to monatomic analogues.   

From the application perspective, at packing densities near the 

phase transition, adjusting bond gaps / tangency can be a 

decisive factor to control the phase behaviour of model 

polymer-based colloidal or granular systems.  

 

3.3 Semi-crystalline morphologies 

 

As stated in the introduction previous modelling studies have 

shown that for dense polymer packings ( 0.58ϕ ≥ ) of tangent 

hard spheres the resulting crystal structures consist of well-

defined, stack-faulted, randomly alternating hcp or fcc layers 

with a single stacking direction (see for example typical 

snapshots in Fig. 2 of Ref. 62 and in Fig. 3 of Ref. 63). Such 

random hexagonal close packed (r.h.c.p.) morphologies are 

commonly encountered in hard and soft colloidal systems75-79. 

In parallel to experiments, simulations on monomeric hard-

spheres have revealed a wide spectrum of distinct ordered 

structures5, 7, 10, 19, 20, 66, 67, 80. Ni and Dijkstra69 in their 

dynamical simulations on hard-sphere chains with fluctuating 

bond lengths have reported polymer crystal morphologies, 

which resemble those encountered in monomeric counterparts. 

Such ordered structures deviate significantly from the r.h.c.p. 

ones formed abundantly in MC simulations with tangent 

spheres. Questions are thus raised on how the employed 

methodology (MC vs. MD) and system size, as opposed to the 

physical parameters (packing density, bond tolerance, and 

inherent contact network), could in principle affect the 

formation of specific ordered structured.   

Figure 5.  Phase diagram of the N = 12 system as a function of 

packing density, , and maximum bond gap, . Threshold value 

denotes the critical bond gap above which polymer 

packing shows spontaneous crystallization at a specific volume 

fraction.  Dotted line connecting simulation points serves as guide 

for the eye. Widths of the one-sided error bars, w, correspond to 

the difference ( ) between successive studied values 

of bond gap ( , ) for which different phase behaviour is 

observed ( ).

Figure 4. Crystallinity, , (in logarithmic scale) as a function of 

bond gap, , at increasing packing densities as obtained from 

MC simulations on the N = 12 chain system. Dotted lines 

connecting simulation points serve as guides for the eye.
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Representative crystal morphologies with varying bond 

tolerance as obtained at the end of the MC simulations at 

volume fractions 0.5575ϕ = (upper panel) and 0.61 (lower 

panel) are shown in Fig. 6.  For the tangent limit ( 0dl→ ) the 

r.h.c.p structure is obtained in perfect agreement with past MC 

simulations on athermal chains of tangent spheres. This is 

clearly demonstrated by the presence of the alternating layers54, 

62-64 of almost exclusive fcc (or hcp) character with a single 

stacking direction. However, as we depart from the tangency 

condition a wealth of distinctly different crystal morphologies 

appears. Primarily, the occurrence of the r.h.c.p morphology 

diminishes with increasing bond gaps. Out of all crystal 

structures the fcc-rich morphology appears to be the prevailing 

one in chains with bond gaps. For example as can be seen in 

Fig. 6 at 0.61ϕ = and 0.0130dl =  all ordered sites are fcc-like 

and account for more than 91% of the total spheres in the 

system. Hcp-rich crystals are also encountered but less 

frequently than fcc-rich ones. Additionally, ordered 

morphologies with mixed hcp/fcc characters are formed with 

random orientation and content. The whole set of polymer 

crystals, established here through MC simulations with allowed 

bond gaps, is very reminiscent of the ones encountered in 

simulations of monomeric analogs5, 7, 10, 19, 20, 66, 67, 79 and in 

MD-based simulations on athermal69 and thermal73 chains with 

flexible bond lengths. Consequently, it is evident that neither 

the employed method nor the size of the system could account 

for the commonness of r.h.c.p-crystals in the tangent limit. For 

the latter case the transition to a more stable (hcp or fcc) crystal 

seems impossible due to one hand on the colossal times 

required due to the hindrance imposed by the tangency 

condition, and on the other hand because twinning and 

corresponding morphologies are suppressed due to entropy 

constraints related to chain conformations.  

 

 

 

3.4 Thermodynamic stability of polymer crystals 

 

For single spheres, the fcc crystal is thermodynamically the 

most stable structure. Its free energy has been found to be, by a 

very small amount, slightly lower that of the hcp crystal and of 

all r.h.c.p. structures.81-83 The thermodynamically stable crystal 

phase for chains of tangent hard spheres is still unknown, 

although the fcc crystal is conjectured to be the one. At 

maximum compactness ( 0.7404ϕ � ) the main contribution to 

the free energy difference �� between hcp and fcc is related to 

the chain conformational entropy which is given by the 

logarithm of the number of self-avoiding random walks on the 

fully occupied hcp and fcc lattices. This number scales with 

chain length � as 
( 1)NA N γµ −

 84, where γ is a universal constant, 

equal for hcp and fcc, and A and µ (the connective constant) are 

lattice specific. Limited numerical evidence indicates that 

( ) ( )
{hcp} {fcc}

N N
A Aµ µ< for all chains lengths, and thus chain 

connectivity further increases the stability of the fcc crystal 

phase with respect to the hcp one. 

 

Accordingly, the frequent occurrence of fcc-rich morphologies 

in MC simulations of athermal packings with bond tolerance is 

not surprising. In parallel, a plethora of different chain crystals 

can also emerge as evident from the snapshots of Fig. 6. This 

crystal polymorphism is in accordance to Ostwald´s rule of 

stages according to which the first ordered structure to be 

established is the least stable one, i.e. the one with the closest 

similarity to the amorphous phase. Successive crystal-crystal 

transformations would eventually lead to the most stable 

structure.85 While valid for a range of physical systems86, 87 the 

multi-stage phase rule is not universal nor theoretically 

founded, lacking also microscopic features incorporated in 

recent models.88  

It is interesting to explore whether present MC simulations 

could provide insights with respect to the concept of multi-

stage phase transition and of structural perfection in athermal 

polymer packings. To this end we study how the individual hcp 

(
hcps ) and fcc (

fccs ) fractions evolve with time (MC steps). A 

possible change in their ratio, or evidently in their sum (
cτ ), 

Figure 6. System snapshots as obtained in the end of Monte Carlo simulations. Upper panel: , from left to right: , 

0.0260, 0.0325, 0.0650 and 0.130. Lower panel: , from left to right: (tangent limit), 0.0130, 0.0325, 0.0650 and 0.130. 

Spheres are color-coded according to the CCE-norm values: red and blue colours correspond to sites with fcc and hcp similarity, 

respectively. Amorphous sites are shown in yellow with reduced sphere dimensions (in a ratio of 2:5) for visualization purposes. Image 

created with the VMD software. 
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could be a strong indication of a possible crystal-crystal 

transformation. Such an argument can be supported through 

visual inspection of the corresponding system configurations. 

Figs. 7 and 8 show how the hcp and fcc fractions evolve with 

MC steps for the N = 12 system at 0.5575ϕ =  ( 0.0325dl = ) and 

at 0.61ϕ =  ( 0.0130dl = ), respectively. At 0.5575ϕ =  (

0.0325dl = ) the initial disorder-order transition, which occurs 

very early in both cases, leads the system to a semi-crystalline 

morphology, which persists for a significant simulation period, 

where the hcp and fcc populations are comparable. However at 

approximately 
1027 10× MC steps, a second, equally-sharp 

transition takes place. As a consequence the fraction of hcp-like 

sites increases appreciably at the expense of the fcc population, 

which leads to a small net increase in total crystallinity (as can 

be verified by the curve in lower left panel of Fig. 1).  

According to the system snapshots, shown in the right panel of 

Fig. 7, the ordered chain packing transits from a mixed, 

randomly-oriented hcp/fcc crystal to an hcp-abundant one with 

very few clusters of fcc sites. Similar trends are observed in 

Fig. 8, for the combination of 0.61ϕ =  and 0.0130dl = . 

However, here the crystal-crystal transition is more drastic: 

first, there is a substantial increase in crystallinity (this can be 

also deduced from the corresponding curve in the lower right 

panel of Fig. 1), and second in the resulting stable crystal there 

are no traces of hcp-like sites. According to the systems 

snapshots in the right panel of Fig. 8 the initial fcc-rich 

morphology, with very well-defined fcc regions being bounded 

by hcp layers, is eventually transformed into an almost perfect, 

single fcc crystal (
c 0.91τ � , 

fcc 0.91s � ).  Similar crystal – 

crystal transitions are also observed for other chain packings 

with bond tolerance (not shown here). In some cases such stage 

transitions are accompanied by an increase in the degree of 

ordering while in some others, there is no detectable change in 
cτ  but only in the relative hcp and fcc fractions.  

In contrast, athermal polymers in the tangent limit remain in the 

r.h.c.p ordered state without showing any further 

transformations to a thermodynamically more stable crystal 

morphology (mainly the hcp or the fcc crystals) for the whole 

simulation time. It should be noted that the total duration of a 

MC simulations exceeds by at least two to three orders of 

magnitude the time required for crystallization.        

 

3.5 Crystallization of entangled athermal chains 

 

Due to computational constraints the majority of the 

simulations are carried out for the N = 12 system. These relative 

short chains (oligomers) are not fully representative of 

polymeric behaviour. This is mainly due to the fact that chains 

are so short that topological constraints between chains 

(physical entanglements) are rare. Secondly, in oligomeric 

species the population of chain ends is elevated compared to the 

one of internal monomers. This, in turn, affects the applied 

bond constraints: in the N = 12 system approximately 16% of 

the sphere population corresponds to chain ends. If we consider 

the N = 50 and 100 systems this fraction drops to significantly 

lower levels: 4% and 2%, respectively. 

The results presented in the previous sections are expected to be 

qualitatively valid independently of the average molecular 

length, since the latter should affect primarily the rate of 

crystallization and to a much lesser degree the established 

crystallinity rather than the general trends.  

Figure 7. Left: Evolution of the fraction of sites with hcp ( ) and 

fcc  ( ) similarity as a function of MC steps as obtained from MC 

simulations on the N = 12 system at and . 

Right: System configurations at (A)  and (B) MC 

steps. Spheres are color-coded according to the pattern of Fig. 6.

Figure 8. Same as in Fig. 7 but at and .
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In order to support the aforementioned statements we embark 

on MC simulations with significantly longer chains than in our 

past works:54, 62-64 N = 50 and 100 (with a total of 4800 hard 

spheres) at packing densities of 0.56ϕ = , 0.58, 0.60 and 0.61 

both in the tangent limit and with varying bond gaps. Regular 

simulations are conducted starting from initial amorphous 

(random) chain configurations. In parallel, crystals 

corresponding to the tangent limit serve as initial configurations 

for successive MC simulations with increasing bond tolerance. 

Fig. 9 shows the evolution of the degree of ordering versus MC 

steps for the N = 50 and 100 systems at 0.56ϕ = in the tangent 

limit ( 0dl→ ) and for the largest allowed bond gap (

0.1300dl = ). 

The qualitative trends observed for the oligomeric system (N = 

12) are fully confirmed also by the significantly longer N = 50 

and 100 systems. In the tangent limit, both systems remain 

amorphous with a very small, almost negligible, fraction of 

ordered sites; in agreement with the trends observed for the N = 

12 and 24 systems as shown here (Fig. 1) and in past studies62-

64. In sharp contrast, once we increase the bond gap (

0.1300dl = ) both chain assemblies transit very rapidly to the 

ordered state. The crystallization rate appears to be unaffected 

by the average chain length and is slower than the one observed 

for the N = 12 system. This trend is expected given the different 

system size since more MC steps are required to sample the 

extended sphere sample. The right panel of Fig. 9 hosts 

snapshots of the ordered morphologies as obtained at the end of 

the MC simulations for bond gaps. For N = 50 the crystal is 

predominately of fcc character interrupted by two tilted hcp-

like layers. For N = 100 the presence of a twinned fcc crystal 

bounded by planes of hcp similarity can be clearly identified, 

an ordered morphology which is very reminiscent of 

corresponding ones observed for monomeric analogues10.  

Fig. 10 shows the evolution of crystallinity with MC steps for 

the N = 50 and 100 systems at  0.58ϕ = , initially in the tangent 

limit ( 0dl→ ). At this volume fraction long chains crystallize 

as oligomers do. In fact, for tangent spheres the longer chain (N 

= 100) shows slower ordering rate than the shorter one (N =50), 

characterized by the same total number of monomers. This 

behaviour is in contrast with the one observed at 0.56ϕ =  for 

bond gaps (Fig. 9) suggesting that by allowing tolerance in 

bond lengths the effect of chain length on crystal nucleation and 

growth becomes significantly weaker if not non-existent.  

As can be seen in the right panel of Fig. 10 both systems, in the 

tangent limit, result in polymer crystals of r.h.c.p morphology 

where the thickness of the pure fcc (or hcp) components can 

reach 5-6 sequential layers. Once the chain assembly reaches 

the stable crystal phase, additional simulations are carried out 

increasing the allowed bond gap from 
52 10dl −= × to 0.1300. 

The corresponding curves are added in Fig. 10 and thus the 

effect of bond gap can be directly compared with the behaviour 

Figure 9. Left panel: Degree of ordering, , as a function of MC 

steps for the N = 50 and 100 systems at  in the tangent 

limit (solid lines) and for (dashed lines).  Right panel: 

System configurations at the end of MC simulations for 

. Spheres are color-coded as in Fig. 6.  

Figure 10. Left panel: Crystallinity as a function of MC steps for the N = 50 and 100 systems at  Simulation 

data in the tangent limit ( ) are shown with solid lines. At MC steps, as marked by the vertical 

dotted line, (ordered ) configurations with tangent spheres serve as initial configurations for MC simulations with a 

bond gap of (dashed lines). Right panel: ordered chain configurations as obtained in the end of 

simulations. Spheres are color-coded according to the pattern of Fig. 6.  
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in the tangent limit. First, once bonds are allowed to fluctuate a 

substantial increase is observed in the degree of ordering: from 
c 0.57τ �  for tangent bonds to 0.87 for 0.1300dl = . The 

increase in crystallinity occurs so rapidly that the transition 

cannot be captured with the current record frequency in the MC 

trajectory. Second, the behaviour between the two systems (N = 

50 and 100) is practically indistinguishable once bond tolerance 

of this amplitude is allowed. Finally, with respect to the 

established crystals, bond gaps lead to perfection of the 

established r.h.c.p morphologies as the majority of sites, 

previously characterized by disordered local environment, are 

now incorporated into the hcp/fcc layers. The morphology of 

the polymer crystal, as obtained in the tangent limit, remains 

basically unaltered, however the size of the ordered domain 

grows significantly.  

 

3.6 The role of bond tangency and bond gap in athermal 

chain crystallization  

 

In dense chain packings the local environment at the level of 

sphere monomers undergoes significant re-arrangements in 

order to maximize the local density or equivalently to reduce 

the unoccupied local volume. This trend is obvious in the 

bending and torsion angle distributions which develop clear and 

sharp maxima corresponding to characteristic sphere 

arrangements.56 For example the most prominent bending 

angle, that at 60o, practically corresponds to an equilateral 

triangle which is the locally densest possible conformation in 

successive sphere triplets along the chain backbone. Likewise, 

with respect to bond lengths, tangency ( 0dl→ ) maximizes the 

occupied volume between any two spheres, while any bond 

length tolerance leads to inter-sphere gaps ( 0dl > ) which 

decrease local density. However, the tendency of chain 

assemblies to maximize their local density is opposed by the 

tendency of athermal chains to crystallize. In other words the 

inclination towards maximum local packing in the metastable 

branch, which leads to the MRJ state, competes against the 

entropically-favored, ordered space filling that leads to the 

hcp/fcc crystal phase. This competition is not exclusive to chain 

packings but rather a common characteristic shared with 

monomeric analogues. Fig. 11 shows the bond length 

distribution for the N = 12 system at 0.5500ϕ = with 

0.0520dl = and 0.0650 both in the initial amorphous (early in 

the simulation) and in the final crystal (in the end of the 

simulation) phases. We should remind here that there is no 

potential dependent on bond length, except from the condition 

that it must lie in the allowed range [ , ]dlσ σ + . The curves of 

Fig. 11 reveal that as the system transits to the crystal phase the 

distribution of bond lengths becomes more uniform and its 

mean shifts to a larger value. The change in bond lengths is 

significant especially if we take into account that in the ordered 

phase more than half of the sphere population remain 

amorphous, thus not requiring structural re-arrangements with 

respect to bond distances. Crystallization clearly proceeds by 

forcing the bonded atoms around a given, reference one to 

move to greater distances compared to tangency. In other 

words, the local environment becomes more dilute and more 

spatially homogeneous and isotropic, so that the spheres around 

the reference one adopt farther positions but at the same time 

more symmetric ones in the crystallographic sense. In fact this 

(localized) push-off of neighbours leads to the local 

environment being orientationally and radially more similar to 

the fcc (or hcp) structures.    

Nevertheless, bond constraints in chain packings, which are 

absent in monatomic systems, add some complication to the 

picture. Not surprisingly, the simulation results just presented 

show that the influence of bond constraints is strongest in the 

case of zero bond tolerance (tangency).  

To understand the role of tangency in athermal chain 

crystallization we will focus on the effect of the inherent 

contact network (as imposed by the tangency condition) on the 

formation of a crystallographically perfect hcp structure 

(identical arguments can be employed for the fcc crystal with 

the corresponding crystallographic operations and elements). In 

the following discussion we consider the limit of linear long 

chains where the population of chains ends is insignificant 

compared to internal monomers so that any sphere is effectively 

bonded to two other monomers.  

Figure 12. Crystallographically perfect hexagonal close-packed 

(hcp) structure with alternating ABA stacks. Reference sphere is 

coloured in red, neighbour spheres are color-coded according to 

the stack they belong. 

Figure 11. Distribution of bond lengths for the N = 12 system at 

with maximum bond gaps being set at 

(black color) and 0.0650 (red color). Lines correspond to the initial 

amorphous packing early in the simulation, while scattered open 

symbols correspond to the semicrystal phase in the end of the 

simulation. and 0.48 for and 0.0650, 

respectively. 
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The first coordination shell around a reference sphere (marked 

in red) in the hcp structure with the ABA alternating stacks is 

shown in Fig. 12 with spheres being coloured according to the 

stack they belong to. The tangency condition dictates that the 

reference sphere be in contact with two spheres that belong to 

the same chain and, automatically, to the coordination shell. 

Consequently, if a perfect hcp crystal is to be formed, the 

number of possible connectivity patterns for the tangent bonds 

is limited. Different cases can be identified depending on which 

planes are spanned by the bonds between the reference sphere 

and its two tangent neighbors along the chain. Fig. 13 shows all 

distinct possibilities (not counting others that are just rotated or 

reflected versions of those shown). In case I) both tangent 

spheres are located in the upper A layer; in II) one is in the 

upper A, the other in the lower A layer; in III) both are in the B 

layer, and in IV) one is in the A, the other in the B layer. For 

each of these possibilities we can further identify sub-cases 

depending on the bending angle formed by the bond vectors. 

For example the subpatterns of case III, from left to right, are 

characterized by bending angles of 180, 60 and 120o, 

respectively. Based on the above, for the formation of a 

crystallographically perfect hcp environment in the tangent 

limit, the following conditions must be fulfilled: in cases I, II 

and III a total of 6 spheres should be tangent to the reference 

sphere leading to a coordination number of (at least) 6. In case 

IV the corresponding kissing number increases to 12 as all 

spheres in the ABA stacks must be tangent to the reference 

sphere.  

Thus, it is evident that the tangency condition imposes spatial 

constraints for the formation of the hcp (and similarly of the 

fcc) structure which, if fulfilled, should lead to a significant 

increase in the local density. In fact, case IV leads to the 

perfect, close-packed hcp crystal with a coordination number of 

12 and of the maximum possible packing density ( � 0.7404). It 

is clear that the formation of such ordered and efficiently 

packed structure with a density far above the bulk density is 

very unlikely at intermediate concentrations, especially in the 

vicinity of the melting point. 

Above melting for an amorphous packing the critical condition 

for the formation of crystallites is the crystallographic 

symmetry fulfilment. In the case of tangent bonds, if it is to be 

obeyed for the hcp and fcc structures, this condition leads to 

(locally) densely packed contact networks with no fewer than 6 

spheres. Furthermore, ordered structures following especially 

the pattern of case IV with 12 contact neighbors are 

encountered very rarely if at all at intermediate packing 

densities.    

As concentration increases, the effect of tangency condition, 

described above, decreases because monomers lie closer and 

the contact network becomes progressively richer. Thus, it is 

much easier to find (no less than) six monomers around a 

reference sphere that fulfill the geometric arrangements of cases 

I – III. Case IV with its kissing number of 12 should still 

remain the most demanding connectivity pattern and thus the 

least frequently encountered one.  

Once a critical packing density is reached the average contact 

network becomes sufficiently populated so that the tangency 

condition does not affect anymore chain crystallization. 

According to our simulation data for the N = 12, 24, 50 and 100 

systems this density lies in the range 0.56 0.58ϕ< ≤ . 

The analogous effect, when bond gaps are allowed, can be 

readily understood as a relaxation of the tangency condition: 

the geometric arguments presented in Fig. 12 do not require 

kissing numbers of 6 or 12 but rather symmetrically placed 

monomers within a tolerance of dl . The higher the value of dl

the easier for the neighbours around a reference sphere to adopt 

proper configurations in orientational and radial terms. 

Furthermore, since the two bonds can in principle possess 

different lengths (
1dl and 2dl ), case IV is significantly relaxed  

as 
1dl dictates for example the symmetry positions in plane A 

and 
2dl  in plane B without any cross-correlation.   

Accordingly, it is not surprising that at all packing densities the 

larger the allowed bond gap the easier (and the faster) the chain 

assembly transits to the ordered state. Additionally, this further 

explains the crystal perfection observed (Fig. 10) once we allow 

bond gaps in a crystal originally formed under the tangency 

condition: the existing crystallites remain unaffected but more 

sites are able to form ordered structures due to the allowed 

bond gaps.  

We should note that the simple geometric arguments we have 

presented and the corresponding condition on the contact 

network (mainly to consist of 6 or 12 spheres depending on the 

case) for the tangent limit correspond to the perfect hcp crystal. 

In practice, non-ideal crystals are formed as the local 

environment around each site in an originally amorphous 

medium is distorted compared to the ideal structure. Still, such 

simple arguments remain manifestly valid: monomers which 

are tangent to the reference sphere will greatly reduce the 

degree of the hcp/fcc similarity except if the rest of neighbours 

are also very close to the reference sphere.  

Figure 13.  Possible connectivity combinations in an hcp structure 

subject to tangency condition. Bonded neighbours are shown in 

filled circles. Empty circles with dashed outline indicate candidate 

sphere positions for the formation of perfect hcp structure.  Cases 

I, II and IV are shown in side view while case III in top view. Not all 

spheres in the ABA stacks are shown for better clarity. All depicted 

cases correspond to the same hcp crystal of Fig. 12. For each case 

different connectivity patterns are dictated by the bending angle 

between the bond vectors.   
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Finally, with respect to oligomeric systems a brief comment on 

the effect of chain ends on crystallization is in order. If the 

reference sphere is a chain end then the tangency condition is 

limited to a single bond. The single tangency condition does not 

affect cases I-III, at least with respect to the formation of a 

perfect hcp crystal. Instead, it eliminates the most 

geometrically-demanding case (IV). Furthermore, in all cases it 

leads to a reduced crystallographic error (CCE norm) in the 

calculation of a distorted local structure. Thus, crystal 

nucleation is expected to occur easier at chain ends rather than 

in internal hard-sphere monomers. From the technical 

perspective, the combination of chain-connectivity-altering 

moves with localized ones, that displace chain ends (like 

reptation or rotation), constantly creates new crystallization 

pathways in the course of a MC simulation. A chain-

connectivity-altering move within a step can change the identity 

of a sphere from internal mer to chain end, while successive 

localized moves can further displace the sphere and its 

neighboring atoms, as needed to create an hcp- or fcc-like local 

structure. The complete set of possible variations of a perfect 

hcp environment for linear chains in the tangent limit or in the 

presence of bond gaps can be found in Fig. 14. The difference 

in the local density imposed by the tangency condition and the 

corresponding contact network (as shown in Fig. 13 and 

analysed in related discussion) with respect to the general, 

constraint-free hcp structure is pretty evident.  

 

 

 

 

4 Conclusions 

We have presented results from extensive MC simulations on 

athermal polymer packing with tangent bonds and with bond 

tolerance. In agreement with past studies54, 62-64, 69 we find that 

allowing gaps in bonds has a profound effect on the phase 

behaviour of chain assemblies in the close vicinity of the 

melting transition (of monatomic hard spheres). The smaller the 

bond tolerance, the more difficult for the chains to crystallize 

and the lower the disorder-order transition rate. Furthermore, 

the established crystal morphologies are affected by bond gaps: 

in the tangent limit the resulting structure is the random 

hexagonal close packed (rhcp) crystal, free of fivefold defects. 

With increasing bond tolerance chains can transit to 

thermodynamically more stable crystals, mainly the hcp and fcc 

ones. Based on present simulation data the phase diagram of 

athermal polymers can be established as a function of packing 

density and of bond tolerance.   

Extensions to systems with longer and entangled chains fully 

confirmed findings obtained from oligomers. Crystal perfection 

can be observed when we allow bond gaps in r.h.c.p-like 

morphologies in the tangent limit.  

Simple geometric arguments, related to the connectivity 

patterns in the tangent limit and in the presence of bond gaps 

can be used to explain the effect of bond constraints on the 

phase behaviour of chain packings. It is concluded that the 

tangency condition requires the presence of a (local) contact 

network with at least 6 kissing sites. Practically, tangency 

results in a strict radial condition according to which the 

spheres must be symmetrically placed and densely packed. The 

latter is not favoured at intermediate concentrations. As we 

increase packing density the effect of tangency is reduced 

because the contact network becomes richer (the inter-sphere 

distances are reduced).  

The proposed geometric argument is not limited to polymeric 

systems; it can be employed to explain the phase behaviour of 

any atomic or particulate system with an inherent contact 

network, or with explicit holonomic constraints.  

From the practical perspective, insights can be gained on how 

the phase behaviour and packing ability of synthesized granular 

and colloidal polymers can be manipulated by controlling the 

inherent bond network; in branched polymers, in blends of 

chains and monomers and in chains with specific rigid bond 

constraints fixl ( fixl σ> ). The latter case is expected to have the 

opposite effect of the tangency condition: at high packing 

densities the presence of nano-voids, that cannot be filled, 

could annihilate crystallization as tangency does at lower 

packing densities. 

In the light of the spatial constraints described above it is 

expected that confinement (for example in the form of 

impenetrable flat plates) should significantly affect the 

crystallization of chain molecules in the vicinity of walls due to 

enhanced concentration which in principle should partially 

reduce or even eliminate the effect of bond constraints.  

Based on the above, significant differences are expected in the 

crystal nucleation and growth of highly non-linear polymers 

(for example with short and long branches or with star chains) 

with respect to linear counterparts. Results from systematic 

simulation studies on such systems and of their blends in the 

bulk and under confinement will be presented in future studies.   
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Figure 14. Variations of crystallographically perfect hexagonal 

close packed (hcp) structures. From left to right: a) coordination  

number of 12 with atoms in planes A and B being tangent to 

reference atom (case IV in Fig. 13), b) coordination number of 6 

with atoms in planes A being tangent to reference atom (cases I 

and II in Fig. 13), c) coordination number of 6 with atoms in plane 

B being tangent to the reference atom (case III in Fig. 13). 

Variations a)-c) imposed by the tangency condition can be directly 

compared with the general hcp crystal structure in the presence of 

bond gaps (right most panel).
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† Throughout the manuscript, time, rather than having a physical 

meaning, corresponds to number of Monte Carlo steps.  
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Textual Abstract  

We analyze the effect of bond tangency and of bond gaps on the crystallization of chains 

of hard spheres. 
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