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Abstract 
 
The self-assembly of hard polyhedral particles confined to a flat interface is studied using Monte Carlo 
simulations. The particles are pinned to the interface by restricting their movement in the direction 
perpendicular to it while allowing their free rotations. The six different polyhedral shapes studied in 
this work are selected from a family of truncated cubes defined by a truncation parameter, s, which 
varies from cubes (s = 0) via cuboctahedra (s = 0.5) to octahedra (s = 1). Our results suggest that 
shapes with small values of s show square-like behavior whereas shapes with large values of s tend to 
show more disc-like behavior. At an intermediate value of s = 0.4, the phase behavior of the system 
shows both square-like and disc-like features. The results are also compared with the phase behavior of 
3D bulk polyhedra and of 2D rounded hard squares. Both comparisons reveal key similarities in the 
number and sequence of mesophases and solid phases observed. These insights on 2D entropic self-
assembly of polyhedral particles is a first step toward understanding the self-assembly of particles at 
fluid-fluid interfaces, which is driven by a complex interplay of entropic and enthalpic forces. A first-
order analysis of the particle-surface energies associated with a fluid-fluid interface indicate that such 
enthalpic interactions will be particularly important in determining particle orientation behavior at low 
to intermediate concentrations. 
 

1.  Introduction 
 

At present, a major focus in material science is the use of polyhedral colloidal nanoparticles as 
versatile building blocks to design and fabricate novel materials with targeted emergent properties. 
Remarkable strides have been made in experimental techniques1-6 to synthesize these building blocks 
with different sizes, shapes, compositions and patterns. Understanding the relationship between 
particle shape and structural order is crucial for materials design because of the dependence of physical 
properties on the structure. This has fueled many theoretical7,8 and simulation studies9-21 of polyhedral 
particles to map out their phase behavior. These systems often undergo order-disorder phase transitions 
involving changes in both translational and orientational degrees of freedom and can lead to novel 
mesophases. A mesophase is a partially ordered phase whose properties are intermediate between those 
of disordered liquids and ordered crystals, such as liquid crystals, rotator plastic crystals, and 
quasicrystals. 
 
Some of the techniques to assemble polyhedral nanoparticles involve the use of fluid interfaces as 
templates. The idea of using fluid interfaces was first explored for micron-sized particles by 
Pickering22 and Ramsden23 when they investigate paraffin water emulsions with solid particles of 
various oxides, salts, and clays. They found that these colloids generate a resistant film at the paraffin-
water interface inhibiting the coalescence of the emulsion drops. These so-called Pickering emulsions 
are formed by the self-assembly of colloidal particles at fluid-fluid interfaces24. During these past 
years, several studies25-37 have focused on using this directed self-assembly technique to synthesize 
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 2 

two-dimensional (2D) superstructures of anisotropic particles. These quasi-2D superstructures provide 
a valuable experimental testbed to study extended electronic properties and have broad technological 
potential in applications involving thin-film optical and electronic devices29,30,38,39. 
 
To establish a robust framework to control the self-assembly of nanoparticles at fluid interfaces, a 
fundamental understanding of the interplay between entropic and enthalpic driving forces is critical. 
For this purpose, it is instructive to split the study into various complementary steps. The first step 
would involve simulating a model that isolates entropic effects only. A subsequent step would involve 
studying a model that also incorporates enthalpic effects like interfacial particle-fluid interactions to 
assess whether or how specific interactions reinforce or oppose entropic trends. In this work, we focus 
on the first-step entropic model where nanoparticles are described as perfect, monodisperse, hard 
polyhedral shapes so that their preferential packing is only dictated by excluded volume interactions. 
In our model, the particles’ centers of mass are pinned to a flat interface such that they cannot translate 
in a direction perpendicular to that interface, but they are allowed to translate on the surface and rotate 
freely. The lack of translational freedom in one direction restricts the system of 3D particles to pack in 
a quasi-2D space and hence we refer to this assembly as 2D confined self-assembly. We use this model 
to simulate the phase behavior of several shapes belonging to a family of truncated cubes as 
characterized in ref. 17. Specifically, the shapes studied are cubes, truncated cubes (TCs), truncated 
cubes with truncation parameter s=0.4 (TC4s), cuboctahedrons (COs), truncated octahedrons (TOs) 
and octahedrons (Octs). These choices are motivated by both their relevance to experimental 
studies2,3,29,30 and the availability of reference simulation results for the 3D entropic self-assembly17. 
Our work is also related to previous simulation studies on the phase behavior of true 2D systems, in 
particular, of rounded hard squares 40, where particular cases bear some shape-similarity with our 
shapes when projected in 2D. The key difference between this work and that of ref. 40 is that the 
shapes studied here are fully three-dimensional (e.g., cubes rather than squares). 
 
By way of background, in Section 2 we explain the methodology used to outline the phase behavior of 
each polyhedron, along with the relevant order parameters used to distinguish different phases. In 
Section 3, we report the results for the different shapes studied in this work along with the comparisons 
with the 3D bulk phase behavior and the 2D phase behavior of rounded hard squares40. Finally, in 
Section 4 we provide some concluding remarks. 
 

2.  Methodology 
 

To confine the self-assembly of the particles in 2D, we fix the z-coordinate of the center of mass of 
each particle and only allow translations in the x and y direction. We perform extensive expansion and 
compression Monte Carlo (MC) runs in the isothermal-isobaric NPT ensemble (N is number of 
particles) with standard periodic boundary conditions to map out the equation of state (EoS) for each 
shape. In our simulations, we assume the particles interact via hard core potential, which forbids 
particles from overlapping. Each pressure step of expansion/compression involved a run of 3 × 106 MC 
cycles in total, with the first 2 × 106 MC cycles used for equilibration and the latter 106 MC cycles used 
for production. Each MC cycle consists of an average of N translational, N rotational, N/10 flip and 1 
area change move attempts. Flip moves attempt to rotate a chosen particle to a random orientation in 
the plane perpendicular to its present orientation. As indicated before, translational moves are only 
allowed in x and y direction. At high densities, area moves are allowed to also change the angle 
between the box axes to relieve internal stresses and avoid the formation of artificial phases due to a 
fixed square box symmetry. All trial moves are accepted according to the Metropolis criterion41, which 
requires ruling out overlaps between any two particles (via the separating axes theorem42). The size of 
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 3 

the move perturbations is adjusted so as to get acceptance probability values of 0.4, 0.4 and 0.2 for the 
translation, rotation and volume moves, respectively. 
 
The formation of ordered phases is detected using several global order parameters. The bond order 
parameters ψ4 and ψ6 are used to detect four-fold and six-fold angular order, respectively. For each 
particle, identified by j, we define a complex number, the local n-fold bond orientational order φn(rj):  

ϕ
n
(r

j
) =

1
n

j

exp(inθ
jk

)
k=1

n
j

∑    (1) 

for n = 4 and 6. In the above equation, θjk is the angle made by bond between particle j and its nearest 
neighbor k with respect to an arbitrary axis, and nj is the number of nearest neighbors of particle j. For 
φ6(rj), nj is calculated using Voronoi tessellation, while for φ4(rj) the four closest neighbors of each 
particle are used. The magnitude of φn(rj), estimates the value of local n-fold bond orientational order, 

ϕ
n

j

 

for particle j. The global bond orientational order, ψn for N particles is the magnitude of the average 
of φn(rj) as defined below 

ψ
n
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∑    (2) 

The global particle orientational order in the system is determined via the P4 cubatic order parameter 
defined as43  
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where, ui is the unit vector along a relevant particle axis and n is a director unit vector which 
maximizes P4 (see details in  ref. 9). The spatial range of orientational order is quantified using the 
orientational distribution function I4(r)12, defined as 

I
4
(r) =

1
8N
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(0) ⋅u
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(r)]2 + 3   (4) 

where the average is over all particle pairs and all nine combinations of the axes. Translational order is 
detected by analyzing the behavior of the radial distribution function g(r), the structure factor, S(k), 
defined as 

 S(k) =
1
N

cos(k ⋅r
i
)
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+ sin(k ⋅r
i
)

i=1

N

∑










2

 ,      (5) 

and the bond orientational correlation function given by  
gk(r) = < φk(0)φk(r)>       (6) 

where φk(r) is the k-fold local bond orientational order at position r . 
  

The regions of phase stability for a given system are outlined by mapping out the EoS via compression 
and expansion runs. The compression runs were started using a low density isotropic state with 
negligible translational and orientational order, and continued until attaining the high-density 
crystalline phase. As discussed in ref. 44, the crystal phase for 2D systems lacks true long-range 
translational order (unlike 3D systems), which means that the translational correlations of the crystal 
phase decay algebraically to zero. However, the system sizes studied here are not large enough to 
observe this decaying behavior. The resulting phase is then used as a starting point for expansion runs. 
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To detect the points where phase transitions occur, we looked for not only breaks and inflections points 
in the EoS curves, but also for spots where fluctuations of bond order parameters, defined as  

χ
n

= N ψ
n

2 − ψ
n

2( )        (7) 

diverge or have larger peaks45. The latter has been found to be less sensitive to finite size effects than 
the former40,46.  Since the EoS and transition points found by compression and expansion runs 
exhibited little hysteresis and we are only interested in outlining approximate boundaries, we did not 
perform complementary (and costly) free energy calculations.  
 
We use conventional reduced units to report our results for the phase behavior of different shapes. The 
truncation parameter,17 s for cubes, TCs, TC4s, COs, TOs, and Octs is 0, (2-√2)/2, 0.4, 1/2, 2/3 and 1 
respectively. The reduced pressure, P* is defined as P* = Pa

2/(kBT) where 2a is the diagonal of the 
(imaginary) cube from which the given shape is cut. kB is Boltzmann constant and T is absolute 
temperature. The reduced number density is defined as η = Na

2/A, where A is the total area of the 
system. We report our results in normalized reduced number density, η*= η/ η

crys where ηcrys is the 
reduced number density of a crystal phase for N = 1600 particles at a very high pressure, namely, P* = 
500 (ηcrys essentially correspond to the densest packing state). 
 

3.  Results 
 

3.1  Cubes (s = 0) and TCs (s = 0.293)   

 

For cubes, most simulations entailed a system size of N = 1600 particles. The EoS results are shown in 
Fig.1 including data for a smaller N = 400 particle system for comparison. The EoS for the small and 
large systems from expansion runs matches well for the entire range of densities. We also observed a 
similar trend for the compression runs of the same system (not shown). At low concentrations, all the 
order parameters have values close to zero, which is characteristic of the isotropic phase. Around η* ≈ 
0.55, the values of ψ4 and P4 start increasing with pressure while the value of ψ6 stays close to zero. At 
η* ≈ 0.9, ψ4 and P4 reach their maximum values, which are consistent with a crystal with square order. 
A similar isotropic to square phase transition is also observed for a larger system size with N =3600 
and has also been observed before in hard squares47 and rounded hard squares with small corner to 
length rounding ratios40. In the phase behavior of hard squares, ref. 47 shows that the system goes from 
isotropic to square phase via an intermediate phase referred to as tetratic phase. As described in ref. 40 
and ref. 47, the tetratic phase has significant particle orientational and four-fold bond orientational 
order, but g(r) shows short-range positional ordering (no peaks at large distances)  and the structure 
factor S(k) exhibits diffusive peaks with four-fold symmetry. These tetratic-like properties are 
observed in our case for a region intermediate between the isotropic and square phases. As shown in 
Fig. 1. for 0.6 < η* < 0.7, one observes that 0.4 < ψ4 < 0.8, and 0.4 < P4 < 0.45 whiled the coupling 
between particle orientations and (nearest neighbor) bond orientations also increases rapidly as 
detected by the cross parameter ψ4P4,. As shown in Fig. 2, at these conditions S(k) exhibits diffuse 
peaks with four fold symmetry  and g(r) shows short-range ordering consistent with tetratic-like 
behavior. For comparison, we also show in Fig. 2 plots of the structure factor plot and g(r) for the 
square phase. The lack of any translational degrees of freedom in z-direction in our model renders the 
behavior of hard cubes similar to that of hard squares. We also compare this self-assembly of cubes 
confined in 2D to the self-assembly of cubes in the bulk in 3D12,17. Besides the expected differences in 
the symmetry of the densest packings (square in 2D and cubic in 3D), we also find that at least for the 
system sizes studied here cubes undergo a continuous phase transition from isotropic to square phase 
which differs from the first order phase transition from isotropic to simple cubic phase observed in 
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bulk 3D self-assembly. The pseudo 2D phase behavior of TCs is very similar to that of cubes and is 
described in the supplementary material48. 
 

3.2  TC4s (s = 0.4) 

 

As shown in Fig. 3, a system of N = 1600 T4Cs transitions from isotropic to square phase via two 
intermediate mesophases. Firstly, the system undergoes a transition from isotropic to a phase with 
partial six fold bond orientational order and no particle orientational order, which, on further increasing 
the pressure, loses its six fold symmetry and gains both four fold bond orientational order and particle 
orientational order. Further compression of the system results in a crystalline square phase. We observe 
a similar phase behavior for a larger system sizes with N = 3600 (results not shown). To better 
understand the two intermediate phases, we first look at the phase with ψ6 ≈ 0.45 observed for 0.65 < 
η* < 0.69 and find that its S(k) shows diffuse peaks with six-fold symmetry (see Fig. 4b). The 
corresponding correlation function g6(r) (Fig. 5) shows long-range partial hexatic order whereas g(r) 
shows a quick decay of the peak amplitudes with distance, indicative of short-range translational order. 
These properties are consistent with those of the hexatic phase observed in the case of hard discs. We 
note, however, that hexatic character could only be unambiguously determined with a scaling analysis 
involving much larger system sizes than those used here, a task that lies beyond the scope of this work. 
For the other intermediate phase observed in 0.71 < η* < 0.76, S(k) exhibits diffuse four-fold  peaks,  
g6(r) and I4(r) reveal long-range partial tetratic bond orientational and particle orientational order, and 
g(r) indicates a short-range translational order (see Figs. 4 and 5). This intermediate phase has similar 
properties to those of the transitional phase observed before in cubes and TCs when the system 
transitions from isotropic to square phase. The absence of breaks in order parameters and η* vs. 
pressure as the system transitions between phases suggests that the transitions are continuous. 
Interestingly, similar to the phases observed here for TC4s confined in 2D, the bulk self-assembly of 
TC4s in 3D also exhibits an intermediate mesophase with six-fold symmetry and a densest packing 
phase with a different symmetry.17  
  
3.3   COs (s = 0.5) 
 
The EoS for N =1600 COs is shown in Fig. 6. The system undergoes a phase transition from isotropic 
to a hexagonal rotator phase characterized by high six-fold bond orientational order and negligible 
particle orientational order. This transition is accompanied by discontinuities in the values of η* and 
ψ6, suggesting that the transition would be first order. The hexagonal rotator phase in the range of 0.67 
< η* < 0.77 shows sharp S(k) peaks of hexagonal symmetry which is in line with the solid-like 
positional ordering (peaks persisting to large distances) behavior detected in g(r) (see Fig. 7). By 
further increasing the density, the system transitions from a hexagonal rotator phase to a crystal phase 
having high particle orientational order and a distorted translational symmetry. The g(r) of the crystal 
phase has a solid like behavior as shown in Fig. 7 but the S(k) plot shows that system has neither fully 

six-fold nor four-fold symmetry. To better understand this crystal phase, we calculate ϕ
4
j
 and ϕ

6
j
 for 

each particle and show in Fig. 10 a snapshot of the system at P*=59.4 by coloring the particles based 

on their (local) values of ϕ
4
j
 and ϕ

6
j
 [as per Eq. (1)]. The system has mainly hexagonal-like character 

which is consistent with a high global ψ6 ~0.85, but also has layers of four-fold symmetry, indicating 
some localized interlocking between phases with six fold and four fold symmetry. A similar 
interlocking between phases has also been observed in the simulated crystal phase of COs assembling 
in 3D17. Also, COs in 3D exhibit isotropic, hexagonal rotator phase and a crystal phase with a distorted 
lattice upon compression, a sequence of phases that is loosely “equivalent” to that we observed in 2D. 
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3.4 TOs (s = 2/3) 

 

The phase behavior of TOs for a system of N = 1600 particles is shown in Fig. 9. As can be observed, 
the EoS for N=400 and N=1600 agree very well and reveal two phase transitions. The first one, 
observed at η* ≈ 0.6, is the transformation from an isotropic phase to hexagonal rotator phase 
characterized by a large increase in ψ6. The second transition observed at η* ≈ 0.83 is the 
transformation from hexagonal rotator phase to rhombic phase, that latter characterized by large values 
of ψ4, ψ6 and P4. Figure 10 shows representative snapshots of both hexagonal rotator phase and 
rhombic phase including the corresponding structure factors. The difference in hexagonal rotator phase 
and rhombic phase can also be observed by plotting the distributions of angles, α, made by the vector 
joining an ith  particle and its closest neighbor with the vector joining an ith  particle and its next five 
closest neighbors (where neighbors are identified via Voronoi tessellation). As expected, for the 
hexagonal rotator phase this angular distribution peaks at 60, 120 and 180 degrees. In contrast, for the 
rhombic phase we see 5 peaks at around 55, 70, 110, 125 and 180 degrees. The discontinuities in order 
parameters and η* for the two phase transitions suggest that they are both first order.  
 
The phases observed for this case are similar to the 2D phases observed for rounded hard squares with 
high corner to length rounding ratios40. Similar to the confined case studied here, a transition akin to 
isotropic-to-rotator phase is also observed in the self-assembly of TOs in 3D12,17, but unlike our 
observation of particles abruptly aligning to transform from rotator phase to rhombic phase, a 
continuous transition from orientationally disordered rotator phase to bcc phase is observed in 3D. 
 

3.5 Octs (s = 1) 

 

The phase behavior of Octs for N =1600 particles is shown in Fig. 11. The discontinuity in the order 
parameter values of ψ4, ψ6 and P4 and η* around η* ≈ 0.67 suggests that the system transforms into a 
hexagonal crystal phase via a first-order transition. A representative snapshot of the hexagonal crystal 
phase along with its corresponding structure factor and radial distribution function are shown in Fig. 
12. We observe sharp S(k) peaks with six-fold symmetry for the hexagonal crystal phase, consistent 
with the solid-like behavior detected in g(r). Over a short density range before η* ≈ 0.67 the system 
has no particle orientational order (low P4 values) but has non negligible values of ψ4 and ψ6, which we 
associate with a novel mesophase that we’ll denote as a “dimorphic” rotator. The same phase is 
observed in expansion and compression runs for N = 3600 particles. As shown in Fig.12 for N = 3600 
particles, the structure factor plot of this mesophase reveals diffuse peaks with no clear symmetry 
while g(r) shows small but persistent peak at long distances. To try to further characterize the structure 
of this phase, we visually analyzed sample configurations by coloring the particles based on their 

individual values of ϕ
4
j  and ϕ

6
j  [see Eq. (1)]. As Figure 13 shows, this mesophase has a grainy 

character where two kinds of “grains” intermingle (hence the name dimorphic): some are patches of 
particles having high six-fold symmetry and low four-fold symmetry, while others are patches of 
particles having high four-fold and low six-fold symmetry. While this dimorphic phase bears some 
similarity to the so-called polycrystalline phase detected for a small range of concentrations and 
roundedness parameter in rounded squares40, it seems to have less translational order. 
 

3.6 General trends of behavior 

 

Figure 14 summarizes the phase behavior for all the shapes studied here. As the value of s is increased, 
the range of densities at which a phase with six-fold symmetry is stable increases and the reverse trend 
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ensues for a phase with four-fold symmetry. Based on this approximate trend, one would expect that 
the two-body potential of mean force (PMF) of the different shapes may reveal some signs for a 
stronger disc-like behavior with increasing s. Hence, we estimate one-dimensional and two-
dimensional PMFs at different values of s using the procedure mentioned in ref. 48. As expected, the 
one-dimensional PMF(r) shape (Fig. S3 in the supplementary material48) has a more compact repulsive 
tail and shorter range (i.e., more disc-like character)  for shapes with larger  s, although this trend is 
somewhat reversed between COs and Octs. The PMF(r) shape of Octs for larger values of r ( >1.15) is 
intermediate between those for COs and TCs, which would be consistent with an intermediate 
proclivity toward disk-like and square-like behavior as embodied by the novel dimorphic phase formed 
by Octs. The two-dimensional PMF(x,y) (Fig. S4 in the supplementary material48) allows visualization 
of the asymmetry in the effective two-particle interactions along their relative (in-plane) orientations. 
For any such orientation, the value of  βPMF(x,y) decays faster over distance from large repulsion 
(βPMF(x,y)  ≥  5) to no repulsion   for shapes with larger  s, which is consistent with the trends seen in 
PMF(r). Also, the TOs’ PMF(x,y) has a marked circular-like symmetry which is consistent with the  
hexagonal rotator phase that was detected for a wide range of densities. 
 
Besides summarizing the wide variety of phases we observe for different values of s, Figure 14 also 
gives a sense for how such phases are related across shapes and provides some clues as to how 
different phase types could be interpolated (for shapes whose s we did not simulate).  We observe that 
for each phase observed in our quasi 2D systems, a counter part is almost always identifiable in the 3D 
bulk phase behavior from ref. 17, in particular, the number and sequence of mesophases and solid 
phases match well for the systems simulated. Of course that lattice symmetries in the mesophases and 
crystal phases are necessarily different between the 3D and quasi-2D systems; further, the character of 
the phase transitions (first-order or continuous) either did not always corresponds or could not be 
unambiguously determined in our systems. Table 1 shows the approximate phase correspondences 
(ignoring the isotropic phase). The only mesophase that appears to have no counterpart in the 3D case 
is the dimorphic mesophase we found in Octs.  
 
The phase behavior of our systems also has some similarities with that of rounded squares. Arguably, 
the degree of truncation embodied by each shape could potentially be mapped to an effective degree of 
square roundedness, corresponding perhaps to the average projection of the shape onto the 2D pinning 
plane or to some key similarity in their PMFs. However, such a mapping would be flawed, since such 
a roundedness parameter would depend on concentration (unless a fixed particle orientation with 
respect to the interface could be assumed) for a given particle shape. Nonetheless we observe some 
correlation between the corner-rounding-to-length ratio, ζ (a parameter used to characterize the 
roundness of particles in ref. 40) and a parameter, λshape for our 3D shapes, defined as 

λ
shape

=
a

cube
− a

shape

a
cube

− a
sphere

     (8)  

where ashape, acube and asphere  is the asphericity of a given shape, cube and sphere respectively, which is 
defined as the ratio of circumdiameter σout to indiameter σin.

11 (for TC4 σout  is the largest 
circumscribing diameter). The asphericity values for all the shapes are the same as the ‘range’ of the 
PMF (i.e., the smallest reduced distance r/σin for which PMF(r) = 0, see Fig. S3 of supplementary 
material48). To compare our results with those for rounded hard squares, the parameter λshape is a better 
metric than the truncation parameter s, as the degree of roundness increases with  λshape. Table 1 also 
shows a comparison of phase behavior for some comparable values of λshape and ζ.  At larger values of 
λshape and ζ, both types of systems show more disc-like behavior whereas at smaller values of λshape and 
ζ, the systems exhibit square-like phase behavior. However, this trend does not hold true for Octs, 
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which have the same λshape as cubes, but their phase behaviors are entirely different. This could be 
explained by the fact that although PMF(r) of Octs and cubes decay to zero at the same value of r, 
their shapes are significantly different. We also observe a marked similarity in the phase behavior for 
some values of λshape, like for the λshape = 0 and ζ =0 cases, where both systems go from isotropic to a 
tetratic phase and then to a square phase. Also, when both λshape and ζ have a value close to 0.6, the 
systems undergo a transition from isotropic to hexagonal rotator phase followed by a transition to a 
rhombic phase. 
 
3.7 Exploring the Contributions of Interfacial Energy 

 
In our simulations, particles were restricted to translation over a 2D interface while allowing free 
rotations. However, surface forces strong enough to pin the z-coordinate of the center of mass of a 
particle may also bias the system toward some preferential orientations.  For particles at the interface 
between fluids 1 and 2, the interfacial energy originating from the interactions between particle and 
fluid 1, particle and fluid 2, and between the two fluids will have an important effect on particle 
rotational behavior. To estimate such effects, we apply a continuum model used in refs. 30 and 31 to 
obtain the interfacial energy of a single particle at fluid 1/fluid 2 interface based on the properties of 
two fluids and a particle. For a given experimentally measured contact angle, θi corresponding to the 
three-phase contact between facet of type i (i = 1,2 for {100} and {111} facets respectively), fluid 1 
and fluid 2, the model obtains the interfacial energy landscape based on the different polar angles (δ), 
azimuthal angles (ω), and immersion depths (z), of a particle relative to the fluid-fluid interface. The 
details for the estimation of interfacial energy F are provided in supplementary material48.  
 
For concreteness, we apply first the above model to a cubic particle with σout  ≈ 3 nm  on a toluene air 
interface (which is commonly used for interface-mediated particle self-assembly.31,49,50). The effect of 
particle size on interfacial interactions is discussed later. Figure S5 in the supplementary material48 
shows the variation of interfacial energy, Fmin(z), minimized with respect to polar and azimuthal 
angles, as a function of immersion depth for different contact angles. The minimum in Fmin(z) occurs at 
z = zopt. The interfacial energy barriers required to allow “vertical” translations (along the z-axis) are 
the highest for cos(θ1) = 0, with zopt  corresponding to the particle center of mass being coplanar with 
the toluene-air interface; energy barriers for motion are moderate (with a value of ~ 30kBT relative to 
the fully immersed state but less than 5 kBT for fluctuation of ±10% the circumradius around zopt) 
indicating that pinning at zopt would be a reasonable approximation. On increasing cos(θ1), there is a 
decrease in the interfacial energy required for z-direction translations. A similar behavior is seen for 
other shapes, indicating that the assumption of fixed center-of-mass immersion length is most justified 
for values of cos(θi) close to 0. For the choice of cos(θ1) =  cos(θ2) = 0, we further obtain a metric 
denoted by ∆Forient, intended to quantify how easily the particles can explore their orientational space. 
∆Forient is the difference between the interfacial energy of a configuration at a given polar and 
azimuthal angles and that of the minimum energy configuration, having all the same zopt found before. 
Figure S6 in the supplementary material48 shows ∆Forient as a function of polar and azimuthal angles 
for different shapes with sizes chosen to have the same surface area of 18 nm2 as the 3nm cube. 
Therefrom, we obtain the scalar metric, Porient, defined as the percentage of angular phase space with 
∆Forient <= 5kBT. 48 The values of Porient  are 46, 64, 53, 15, 73 and 13% for cube, TC, TC4, CO, TO 
and Oct, respectively, showing that the extent of orientational bias towards the most stable (minimum-
Fmin) configuration  is higher for shapes like Oct and CO and milder for TO and TC4. Also 
importantly, because of the particle rotational symmetry (number of rotations reproducing the same 
orientation), the most favorable orientation is always degenerate, indicating that particles could also 
dynamically rotate to access those states. We also observe that the most stable orientations (marked by 
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white portions in Fig. S6) strongly depend on particle shape. For a cube, the normal of one of the 
{110} facets parallel to the z-axis is the preferred orientation. Going from cubes to COs, the preferred 
orientation shifts to one where the normal of a {111} facet is parallel to the interface normal. On 
further increasing the truncation parameter, the preferred orientation for TO and Oct corresponds to 
that in which the normal of a {100} facet is parallel to the interface normal. Although both TO and Oct 
have the same most stable orientation, TO can explore orientations more freely than octahedra as 
observed in Fig. S6. This could be explained by the fact that TO (with ashape = 1.291) has smaller 
asphericity than Oct (ashape = 1.732). 
 
The above analysis depends on the size/surface area of the particle since both ∆Fmin  and ∆Forient are 

~σin
2. An n-fold increase in particle surface area would increase by a factor of n the interfacial energy 

required for both rotations and vertical translations. For these sizes, the interplay between orientational 
biasing fluid particle forces and entropic forces will depend on the concentration of the particles. To 
gain some insights into this interplay, we revisit the purely entropic case to see how concentration 
affects the extent of particle alignment with respect to the interface by measuring the order parameter 
Psurf  defined as  

P
surf

=
1

8N
(35cos4 Ω

i
− 30cos2 Ω

i
+ 3)

i

∑    (9) 

where, Ωi is the angle between interfacial normal and one of the three {100} particle axes whose dot 
product with the interfacial normal is maximum. Psurf  ranges from -0.42 to 1.0 and is ~ 0 for random 
orientations and unity for parallel alignment with the interface. Figure 15 shows Psurf as a function  of 
η* for different shapes. At low η*, Psurf ~0 regardless of shape, indicating random alignment of 
particles relative to the interface. Small values of Psurf also correlate with the smaller values of PMF(r) 
for large inter-particle distances (associated with small η*), which signal negligible inter-particle 
entropic forces. At these conditions the addition of enthalpic interfacial energy will strongly bias the 
orientations towards those of minimum interfacial energy. But at high η* near the densest packing 
phase, the absolute value of Psurf is large signifying that the particles adopt particular orientations 
relative to the interface that maximize packing entropy. The strength of these entropic forces is also 
evident from the shape of PMF where for small interparticle distances r,  PMF(r) becomes very large. 

Since *2 1)( ηηησ =≈ crys

inr , we can estimate from Fig. S3 that to have PMF>5kBT one would need 

r/σin < 1.1 and thus for η*>0.8 entropic forces should override any energetic orientational bias, so that 
the “entropic” solid phases we found would also correspond to the equilibrium states. Experimentally, 
reported instances refer to near closed-packed structures (η*>0.8) whose symmetries are consistent 
with those found in our model, e.g., for the PbSe nanocubes of ref. 30, square symmetry is observed at 
high concentrations, consistent with Fig. 1. Finally, Fig. 15 (right panel) also indicates that the single-
particle lowest surface-energy orientation need not agree with that of particles in the densest packed 
solid, indicating that assuming a fixed particle orientation (relative to the interface) for all η* would not 
generally be a suitable approximation. 
 
In sum, while contact angles and particle sizes can be selected to approach the 2D freely rotating 
scenario simulated in this paper, interfacial energies will generally introduce non-trivial biases which 
may lead to different phase behaviors, particularly at low to intermediate densities. It is important to 
note that this analysis is based on a simple model that ignores the effects of interface deformations, line 
tension, fluid-facet-specific interactions, and interparticle enthalpic interactions (which may facilitate 
or restrict particle rotations and translations).   
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4.  Conclusions and Discussion 
 
In this work, we have simulated the confined 2D phase behavior of 6 different shapes, from cubes to 
octahedra, which belong to a family of truncated cubes often encountered in nanoparticle synthesis. 
The phase behavior of different shapes shows diversity in the type of mesophases and crystalline 
phases that form as concentration increases. Shapes with small values of s (cubes and TCs) shows a 
square-like behavior, where upon compression a tetratic-like phase is first observed, followed by a 
square phase. On the other hand, shapes with large values of s (COs, TOs and Octs) show phases with 
a disc-like character, where upon compression form a rotator phase followed by a crystal phase with 
both rotator and crystal phases exhibiting an increasing (decreasing) extent of hexagonal (square) 
symmetry as s increases. Interestingly, for Octs a mesophase with patches of six-fold and four-fold 
symmetry is observed for a small range of densities before it transitions to a hexagonal crystal. For the 
intermediate value of s  = 0.4 (TC4s), we observe both square-like and disc-like packing in the phase 
behavior. Indeed, TC4s undergo a transition from isotropic to hexatic-like phase followed by a tetratic-
like phase, which finally transforms into a square phase. While breaks or inflexion points in order 
parameters and number density along an equation of state are suggestive of the potential character the 
phase transitions involved, further finite-size scaling studies will be required to clarify the exact nature 
of these transitions.  
 
The present work constitutes a first step towards the goal of fundamentally understanding the self-
assembly of polyhedral nanoparticles at fluid-fluid interfaces. The phase behavior obtained here for 
purely entropic self-assembly provides a baseline for later comparisons; e.g., to understand additional 
entropic effects like those related to size and shape polydispersity (ubiquitous in experimental systems) 
and to facilitate the partial decoupling of effects brought about by the addition of enthalpic 
interactions. Despite the simplicity of the entropic model, some of the phases and mesophases 
observed here have been observed in various experiments29-38 (and in our ongoing work), and while a 
direct comparison is still not possible, this concurrence nonetheless illustrates that mesophasic 
behavior is ubiquitous in experiments and it can occur across different types of particle interactions, 
potentially foretelling the preponderance of steric effects on structure. Furthermore, the entropic phase 
behavior found here may also prove to provide best-case scenarios for ordered assembly, which future 
experiments may aim to approach. 
 
As discussed in Sec. 3.7, the adsorption energy of a particle on a fluid-fluid interface is an important 
contributor to the particle orientational behavior. For a single particle, the interfacial energy landscape 
can be modeled by using a Pieranski potential.24 The authors of ref. 31 studied the interfacial self-
assembly of hexagonal bipyramid and bifrustum shaped particles into 2D superstructures by 
performing MC simulations where the immersion depth and the polar angle of a particle were set 
according to the values estimated for the equilibrium adsorption configurations. Such constraints could 
be relaxed in future studies to more faithfully describe the role of metastable particle orientations. 
Furthermore, enthalpic particle-particle interactions can be incorporated to reflect ligand-mediated 
interactions present in some experimental systems, which could crucially affect the assembly behavior. 
Work along these lines is already under way.   
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TABLES 

 

Table 1. Summary of phase behavior and comparisons to 3D bulk systems and 2D rounded squares. sc 
= simple cubic, dsc = distorted sc, MI = monointerlocking, bct = body-centered tetragonal, dbct = 
distorted bct. The comparison between our quasi-2D systems and 2D rounded squares are made at 
similar values of λshape and ζ. 
 

Shape λshape Quasi-2D case 3D bulk case [11] 2D rounded squares [40] 

ζ Phases 

Cubes 0.0 Tetratic-like 
square 

Cubic mesophase* 
sc 

0.0 Tetratic-like 
Square 

TCs 0.35 Tetratic-like 
Square 

sc 
dsc (C1) 

0.33 Polycrystalline 
Rhombic 

TC4s 0.41 Hexatic-like rotator 
Tetratic-like 

Square 

Plastic hcp 
dsc (C0) 
MI dsc 

0.4 Hexagonal rotator 
Rhombic 

COs 0.43 Hexagonal rotator 
Distorted hexagonal 

Plastic bct 
dbct0 

0.45 Hexagonal rotator 
Rhombic 

 TOs 0.60 Hexagonal rotator 
Rhombic 

Plastic bct** 
dbct1 

0.59 Hexagonal rotator 
Rhombic 

Octs 0.0 Dimorphic rotator 
Hexagonal crystal 

- 
Minkowski crystal 

0.0 Tetratic-like 
Square 

*) For a narrow range of densities near the ordering transition, the particles in the cubic phase have 
liquid-like mobilities which could be associated with mesophasic behavior12,13. 
**) Rotator phase behavior for TOs has been detected in refs. 12 and 21 although it continuously 
transitions into a crystalline phase as density increases. 
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FIGURES  

 
 

Fig. 1 Equation of state for 1600 cubes obtained by expansion runs. (Top Panel) The pressure P*, bond 
orientational order parameters ψ4 and ψ6, and orientational order parameter P4 as a function of reduced 
number density η*. For comparison, the equation of state curve obtained from the system of N = 400 
particles is also shown. (Bottom Panel) Cross order parameters ψ4P4 and ψ6P4 and susceptibilities of 
the bond order parameters χ4 and χ6 as a function of η*. The value of ηcrys is estimated as 0.745.  
 

 
Fig. 2 (Top Panel) Representative snapshots and corresponding structure factors for a system of 
N=3600 cubes at (left) P*= 6.6 (tetratic-like phase) and (right) P* = 24.0 (square phase). (Bottom 
Panel) The radial distribution function for a system of N = 3600 cubes at the same two pressures. 
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Fig. 3 Equation of state for 1600 TC4s obtained by expansion runs. Legend as in Fig. 1. The value of 
η

crys is estimated as 0.745. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4  Snapshots and corresponding structure factors for N = 3600 TC4s at (a) P*= 6.0 (isotropic 
phase), (b) P* =8.4 (hexatic-like phase), (c) P* = 10.8 (tetratic-like phase) and (d) P* = 24.0 (square 
phase).  

a b 

c d 
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Fig. 5 Correlation functions for the system of N = 3600 TC4s. (Top Panel) The radial distribution 
function g(r) at P* = 8.4 (hexatic-like phase), 10.8 (tetratic-like phase) and 24 (square phase) are 
shown. (Bottom Panel) The bond order correlation functions, g6(r) and g4(r), and orientational 
correlation function, I4(r) at P* = 8.4 and 10.8 are shown.  

g(
r)
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g 4
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 g
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Fig. 6 Equation of state for 1600 COs obtained by expansion runs. Legend as in Fig. 1. The value of 
η

crys is estimated as 0.745. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 (Top Panel) Representative snapshots and corresponding structure factors for a system of 
N=3600 COs at (left) P*= 14.1(hexagonal rotator phase) and (right) P* = 59.4 (distorted crystal 
phase). (Bottom Panel) The radial distribution function for a system of N = 3600 COs at the same two 
pressures. 
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Fig. 8 Snapshot of the distorted crystal phase for the system of N = 3600 COs at P*=59.4. (Top Panel) 

Particles are colored with respect to the local value of ϕ
4
j . (Bottom Panel) Particles are colored with 

respect to the local value of ϕ
6
j . 
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 17

 
Fig. 9 Equation of state for 1600 TOs obtained by expansion runs. Legend as in Fig. 1. The value of 
η

crys is estimated as 1.05. 
 

 
Fig. 10 (Top Panel) Representative snapshots and corresponding structure factors for a system of 
N=1600 TOs at (left) P*= 21 (hexagonal rotator phase) and (right) P* = 72 (rhombic phase). (Bottom 
Panel) Probability density function of angle, α for a system of N = 1600 TOs at the same two pressures. 
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Fig. 11 Equation of state for 1600 Octs obtained by expansion runs. Legend as in Fig. 1. The value of 
η

crys is estimated as 2.247. 
 

 
Fig. 12 (Top Panel) Representative snapshots and corresponding structure factors for a system of 
N=3600 Octs at (left) P*= 29.75 (mixed phase) and (right) P* = 77.5(hexagonal crystal phase). 
(Bottom Panel) The radial distribution function for a system of N = 3600 Octs at the same two 
pressures. 
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Fig. 13 Snapshot of the phase observed at P*= 29.75 for the system of N = 3600 Octs. (Top Panel) 

Particles are colored with respect to the local value of ϕ
4
j . (Bottom Panel) Particles are colored with 

respect to the local value of ϕ
6
j . 
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Fig. 14  Concentration vs. truncation parameter phase diagram for different shapes obtained from MC 
expansion runs for  systems with N = 1600 particles.  
 
 

 
 

Fig. 15 Left panel: Orientational order relative to the interface, Psurf, as a function of η* for different 
shapes. The values of Psurf corresponding to the single-particle most stable orientation at cosθ1 =  cosθ2 

= 0.0 are -0.41, -0.43, -0.42, -0.39, 1.0 and 1.0 for cube, TC, TC4, CO, TO and Oct respectively. Right 
panel: Snapshots showing the orientation of a particle orientation relative to the interface (horizontal 
line) for a cube (a), TC (b), TC4 (c), CO (d), TO (e), and Oct (f); in each case the top snapshot is for 
the densest packed state obtained from the entropic model and the bottom snapshot is for the most 
stable orientation with cosθ1 =  cosθ2 = 0.0 obtained from the single-particle interfacial model ({100} 
facets are colored red and {111} facets are green). 
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