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We provide theoretical description of the dynamics of a liquid film perturbed by a nano-object. Our analysis is based on the

general dispersion relation for surface perturbations which is valid for films of arbitrary thickness. In the case of thin liquid films

the lubrication approximation is retrieved. The relevant time scales are derived and related to the characteristic length scales

present in the system. We show that the multi length-scale character of the interfacial deformation is reflected in a wide range

of the time scales describing the dynamics of the liquid film. In the case of relaxation under the action of a time-independent

perturbation the analytical approximations to the interface evolution are obtained in several time regimes. The case of a general

time-dependent perturbation is studied within the point-force approximation which allows to determine the universal aspects

of liquid film dynamics. This method is also used to describe the response of the liquid film to a periodic perturbation which

simulates the dynamic mode of the tip of atomic force microscope. It is shown that proper consideration of the thickness of the

film leads to results which significantly differ from those obtained within the lubrication approximation even for relatively thin

films.

1 Introduction

A substantial progress in experimental techniques devoted to

the sub-micrometer measurements of liquid interfaces and

solid surfaces has been taking place during the recent 20

years1–3. The atomic force microscope (AFM) plays a promi-

nent role2–4 in this field of research. It has been widely used in

the study of surface properties of various materials including

crystals, glasses, liquids, visco-elastic substances like poly-

mers and lipid membranes, and colloidal particles2,5,6. De-

spite a growing number of applications of the AFM–related

techniques there still exist difficulties with reliable control

of the experimental conditions. A relevant issue concerns

the spontaneous formation of a bridge between the AFM tip

and the liquid layer located on top of the analysed solid sur-

face2–4,7–9. This process can be triggered either by the cap-

illary condensation2,3,10,11 or by uncontrollable contact be-

tween the AFM tip and the liquid film2,12–15. The capillary

condensation takes place in the ambient atmosphere, and - on

the mesoscopic level of description - can be related to to the

effective interaction of the liquid–gas interface with the tip and

the substrate. On the other hand, the physical contact between

the tip and the liquid film can be caused by both too large

deflection of the AFM cantilever and the deformation of the

liquid–gas interface caused by the long-range attractive forces
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(e.g. of van der Waals type). The motion of the cantilever

can be controlled by increasing its spring constant or using

the feedback mechanisms2. It is, however, much more dif-

ficult to control the deformation of the liquid interface. This

aspect of the formation of capillary bridges has attracted much

attention in recent years12–20. In particular, the minimum dis-

tance between the tip and the liquid–gas interface such that the

liquid bridge is still absent has been analysed in several stud-

ies,12–15,19,21 usually from the point of view of the equilibrium

configurations of the interface. Recently Ledesma-Alonso et

al. presented a detailed analysis20 of the response of a thin

liquid film to a periodically-varying perturbation which can

be considered as a model of the interaction between a liq-

uid film and the oscillating AFM tip working in the dynamic

mode22. The authors show that the jump-to-contact event de-

pends not only on the instantaneous distance between the tip

and the liquid–gas interface but also on the frequency and the

amplitude of tip oscillations. However, their analysis has been

exclusively based on the thin liquid film (TLF) approximation,

which has limited range of applications, e.g., with respect to

micrometer-sized droplets.

In this paper we present a general theoretical and numerical

study of the dynamics of a liquid film of arbitrary thickness

perturbed by a nanosize object. We consider both the dynam-

ics of the interface relaxing towards its equilibrium config-

uration and the interfacial dynamics resulting from periodic

perturbations. In particular, we discuss the significance of dif-

ferent time scales appearing in the problem, and relate them
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to the appropriate length scales in the system. We investigate

the general form of the dispersion relation of the interface per-

turbations which is valid for arbitrary thickness of the liquid

film, and its asymptotic forms for very thick and very thin

films. In particular, we investigate how the predictions of the

asymptotic TLF theory deviate from the predictions based on

the general approach as function of the film thickness and dif-

ferent time scales characterizing the perturbations. Also, we

determine the regimes of time and length scales in which the

predictions stemming from the TLF approximation turn out to

be reliable.

2 Theory

2.1 Model

We consider a liquid film of infinite horizontal extent and

thickness H. This uniform configuration is perturbed by a

rigid sphere with radius R whose center is located at distance

D from the unperturbed liquid–gas interface, see Fig. 1. In

general, this distance may vary in time in a prescribed way

given by D(t). The deformation of the liquid–gas interface

induced by the sphere is denoted by ζ (r, t), where r = (x,y)
denotes the horizontal coordinates.

The interaction between the sphere and the film is described

by the effective interface potential23–25 w(r, l(r, t)), where the

distance l(r, t) = D(t)− ζ (r, t) characterizes the relative po-

sition of the interface with respect to the actual position of

the sphere, see Fig. 1. The corresponding disjoining pressure

Π(r, t) is related to the effective potential w24,25 via

Π(r, t) =−
∂w(r, ℓ)

∂ℓ

∣

∣

∣

∣

ℓ=D(t)−ζ (r,t)

. (1)

Our analysis is focused on the attractive van der Waals interac-

tions. Within the mean field theory (MFT) the disjoining pres-

sure induced by the van der Waals interactions between the

atoms of the sphere with its centre located at r = 0,z = H+D,

and the atoms of the liquid film has the following form12

Πp(r, t) =−
4HplR

3

3π

[

(D(t)− ζ (r, t))2 + r2 −R2
]−3

, (2)

where Hpl is the corresponding Hamaker constant, and r = |r|
measures the radial distance from the symmetry axis. Nega-

tive values of the disjoining pressure reflect the attraction be-

tween the sphere and the liquid–gas interface. Obviously, the

above form of the disjoining pressure does not take into ac-

count thermal fluctuations. To include them one has to go

beyond the MFT, e.g., with the help of renormalization group

theory26 which leads to a modified version of Eq.(2)27. Our

analysis is restricted to the mean field theory. In the case of

thin liquid films the effective interface potential between the

substrate–liquid and liquid–gas interfaces should be included

into the general framework. The corresponding disjoining

pressure Πw(ζ (r)) has the following form

Πw(r, t) =
Hsl

6π

[

1

(H + ζ (r, t))3
−

1

H3

]

, (3)

where Hsl is the relevant Hamaker constant. For ζ/H ≪ 1 one

can use the linearised form of Πw
15

Πw(r, t) =−
Hsl

2πH4
ζ (r, t) . (4)

Also in this case, negative value of the disjoining pressure cor-

respond to attraction between the substrate–liquid and liquid–

gas interfaces.

Fig. 1 A schematic plot of the system. The dashed line represents

the reference level of the liquid–gas interface far away from the

perturbed region. It corresponds to thickness H of uniform layer.

In this article we are mostly interested in dynamic response

of liquid film to an external perturbation. However, for com-

pleteness, in the next subsection we present a short discussion

of the relevant equilibrium properties of the liquid-gas inter-

face induced by static perturbations.

2.2 Equilibrium profiles of the liquid–gas interface

In equilibrium, the shape of the liquid–gas interface interact-

ing with a planar substrate and a sphere, see Fig. 1, is governed

by the generalized Young-Laplace equation12–15

2κγ +Πp = Πw −∆ρ gζ , (5)

where κ is the mean curvature of the interface, γ is the co-

efficient of the liquid–gas surface tension, g is the gravita-

tional acceleration, and ∆ρ = ρl −ρg is the difference between

the liquid and gas mass densities. The problem has cylindri-

cal symmetry and therefore we write the mean curvature as a

function of the radial distance r = |r|

2κ =−
1

r

∂

∂ r



r
∂ζ

∂ r

{

(

∂ζ

∂ r

)2

+ 1

}−1


 (6)
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which for smooth interfacial configurations |∂ζ/∂ r|≪ 112–15,

becomes

2κ ≈−
∂ 2ζ

∂ r2
−

1

r

∂ζ

∂ r
. (7)

This leads to the following equation for the interfacial profile

−
∂ 2ζ

∂ r2
−

1

r

∂ζ

∂ r
+ ζ

(

1

λ 2
c

+
1

λ 2
w

)

= (8)

4HplR
3

3γπ

[

(D− ζ )2 + r2 −R2
]−3

,

which depends on the capillary length λc =
√

γ/(∆ρg) and

the length scale λw =
√

2πγH4/Hls related to the effec-

tive substrate–liquid interaction. In our analysis this interac-

tion plays similar role to the gravitational potential and both

lengths can be incorporated into the effective capillary length

λ =
(

λ−2
c +λ−2

w

)−1/2 15. For the Hamaker constants of the

order of 10−19 J28 and the surface tension coefficient of the

order of 10 mJ/m2 one obtains λw ∼ H2 109 m−1. Thus for

realistic value of the capillary length λc ≈ 10−3 m the effect of

the substrate–liquid interaction can be neglected for H & 10−6

m. On the other hand for much thinner films the effective cap-

illary length is determined solely by the length scale λw.

Equation(8) is accompanied by two boundary conditions

∂ζ

∂ r

∣

∣

∣

∣

r=0

= 0 , (9)

ζ (r) = 0 for r → ∞ (10)

which reflect the cylindrical symmetry of the system and make

the distortion of the locally perturbed interface to vanish at in-

finity. Actually, the asymptotic analysis14 of Eq.(8) estimates

the linear size of this distorted region to be of the order of the

effective capillary length. Eq.(8) can be solved numerically

with the help of the shooting method. Using the dimension-

less variables r′ = r/R, D′ = D/R, H ′ = H/R, and ζ ′ = ζ/R,

Eq.(8) takes the form

−
∂ 2ζ ′

∂ r′2
−

1

r′
∂ζ ′

∂ r′
+ B̃oζ ′ =−Π′

p , (11)

where

Π′
p(r

′) =−
Ha

[(D′− ζ ′(r′))2 + r′2 − 1]3
(12)

is the dimensionless disjoining pressure, Ha = 4Hpl/(3γπR2),
and B̃o = R2/λ 2 is the effective Bond number which depends

on H via λw. For Hpl = Hsl the effective Bond number can be

written as

B̃o = Bo +
3Ha

8H ′4
, (13)

where Bo = R2/λ 2
c . Later on we shall use the values Ha =

10−3 and Bo = 10−10, which correspond to the radius of the

sphere of the order of tens of nanometres.

A detailed analysis of the solutions of Eq.(11) has already

been presented in the literature12,13,15. In particular, Ledesma-

Alonso et al.12,13 have determined the minimum value Dmin

for which the capillary bridge is still absent. This distance de-

pends on Ha but is almost insensitive to changes of B̃o. The

equilibrium profiles of the liquid–gas interface obtained nu-

merically from Eq.(11) for Ha = 10−3, B̃o = 10−10 and differ-

ent values of the distance D′ are shown on Fig.2. In this case

one has D′
min ≈ 1.168.

0

0.02

0.04

0.06

10−2 100 102 104 106
ζ
/R

r/R

D = 1.10Dmin

D = 1.05Dmin

D = 1.01Dmin

D = 1.00Dmin

Fig. 2 Numerical solutions of Eq.(11) for B̃o = 10−10 , Ha = 10−3 ,

and different values of the distance D. The scale of the horizontal

axes is logarithmic.

From Eq.(12) one can deduce that the deformation of the

interface has negligible impact on the values of the disjoining

pressure if ζ/ε ≪ 1, where ε = D−R is the separation be-

tween the surface of the tip and the non-perturbed position of

the liquid–gas interface. In such case Eq.(11) reduces to

−
∂ 2ζ ′

∂ r′2
−

1

r′
∂ζ ′

∂ r′
+ B̃oζ ′ =

Ha

[d′2 + r′2]3
, (14)

where d′2 = D′2 − 1. The geometrical interpretation of the

quantity d = d′R is presented in Fig.1. Approximate analytical

solutions to Eq.(14) can be found by considering its asymp-

totic forms for r′ ∼ 1 and r′ ∼ B̃
−1/2
o and matching them in the

intermediate region14. This procedure gives

ζ ′(r′) =
Ha

4d′4

{

1

2
ln

(

r′2

d′2 + r′2

)

+
1

2

d′2

d′2 + r′2
+

+K0

(

B̃
1/2
o r′

)

}

, (15)

where K0 denotes the zeroth–order modified Bessel function

of the second kind. These analytical solutions are presented in

Fig. 3 for the same values of D as in Fig. 2.

One concludes that the exact solutions can be represented

by the approximate expressions in Eq.(15) only for D &
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0
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0.03

10−2 100 102 104 106

ζ
/R

r/R

D = 1.10Dmin

D = 1.05Dmin

D = 1.01Dmin

D = 1.00Dmin

Fig. 3 Approximate analytical solutions of Eq.(14) for B̃o = 10−10,

Ha = 10−3, and different values of the distance D. The scale of the

horizontal axes is logarithmic.

1.1Dmin. For smaller values of D, the relative difference be-

tween the exact and approximate solutions increases signifi-

cantly, up to about 50% for D approaching Dmin.

One important consequence of a small value of the Bond

number is that the shape of the liquid–gas interface is directly

influenced by the disjoining pressure only in a relatively small

region corresponding to r . d. Outside this region the inter-

face deformation is independent of the actual disjoining pres-

sure distribution and depends only on the total force exerted on

the interface. Similar observation have already been presented

by Chan et al.18 in the context of the dynamic deformation

of droplets and bubbles. Figure 4 shows profiles - obtained

both numerically (N) and analytically (A) - normalized by the

dimensionless total force

F ′ =
F

2πγR
=−

∫ ∞

0
r′Π(r′)dr′ . (16)

Note that in the analytical calculation of the profiles we used

the approximate disjoining pressure from Eq.(14) which gives

F ′ = Ha/(4d′4). This conclusion will be particularly impor-

tant in the description of the time evolution of the interface

presented in the following sections.

2.3 Dynamics of liquid film

From the macroscopic point of view the time evolution of

the liquid film brought about by external perturbation is de-

scribed by the incompressible Navier-Stokes equations with

the appropriate set of boundary conditions29,30. Our analysis

is based on the linearised Navier-Stokes equations

∂u

∂ t
=−∇

(

p

ρl

)

− gez+ν∇2u , (17)

∇ ·u = 0 , (18)

10.5

11

11.5

12

12.5

13

13.5

14

0 0.5 1 1.5 2 2.5 3

ζ
/(
R
F

′ )

r/R

D = 1.1Dmin (A)
D = Dmin (A)
D = 1.1Dmin (N)
D = Dmin (N)

Fig. 4 Liquid–gas interface profiles normalized by RF ′ have been

obtained using the analytical formula (A) and the numerical scheme

(N). The solid line represents the interface profile corresponding to

the point force, Πp(r) = Fδ (r).

where u is the velocity field, p denotes the pressure, ν is the

coefficient of kinematic viscosity, and ez is a unit vector in

direction perpendicular to the substrate. The following lin-

earised boundary conditions are imposed on the liquid film

u = 0 at z = 0 , (19)

uz =
∂ζ

∂ t
at z = H , (20)

∂ux

∂ z
+

∂uz

∂x
= 0 at z = H (21)

∂uy

∂ z
+

∂uz

∂y
= 0 at z = H (22)

(

p− 2ρlν
∂uz

∂ z

)

+Πw(r, t) =

−γ

(

∂ 2ζ

∂x2
+

∂ 2ζ

∂y2

)

+Πp(r, t) at z = H . (23)

Equation (19) represents the no-slip boundary condition at the

substrate surface. Equation (20) expresses the linearised kine-

matic boundary condition at the liquid–gas interface. It en-

sures that the mass flux through the interface is equal to zero.

For non-critical states considered in this paper the dynamic

viscosity of the liquid phase is much larger than that of the gas,

and the shear stresses can be neglected at the interface. This

condition is represented in Eqs(21,22). On the other hand the

difference between the normal stresses on both sides of the in-

terface has to be equal to the Laplace pressure which is related

to the interface curvature. This fact is reflected in Eq.(23). The

boundary conditions at the liquid–gas interface are, in fact, im-

posed at the surface z = H and not at z = H + ζ . This is the

consequence of the linearisation procedure in which the value

of any field evaluated at z = H + ζ can be expanded around
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z = H in Taylor series.

On the other hand, the disjoining pressure term in Eq.(23)

has not been linearised. The reason for this is that the dis-

joining pressure, Eq.(2), depends on the deformation ζ via the

ratio ζ/ε which may not be negligible even if the deforma-

tion itself is small enough to be described by the linearised

dynamics. In this case we consider the disjoining pressure as

an á priori unknown function of r and t.

A short discussion of boundary conditions which are dif-

ferent from those used in this paper, and their influence on the

results, in particular the dispersion relation, see Eq.(31) below,

can be found in Appendix A.

By applying the Fourier analysis to Eqs(17-23) one obtains

the following equation for the Fourier transform ζ̂ (k,ω) =
∫

dr
∫

dt exp(−ik · r− iωt)ζ (r, t) of the liquid–gas interface

deformation31

(

k

λ 2
+ k3 −

ρl

γ
Ω2(k,ω)

)

ζ̂ (k,ω) =−
kΠ̂p(k,ω)

γ
, (24)

where Π̂p(k,ω) is the Fourier transform of Πp(r, t), which we

assumed to be axisymmetric. The function Ω2(k,ω) is given

by the following expression31

Ω2(k,ω) = 4ν2
(

α̃4B̃− k3αD̃
)

, (25)

where

B̃ =
1

M− k
α

QL
W

[

L−
k

α

QM

W
−

k2

α̃2

1

W

]

, (26)

D̃ =
1

Q

[

W −
α̃2

k2

(

L− B̃M
)

]

, (27)

α2 = k2 +
iω

ν
, α̃2 = k2 +

iω

2ν
, (28)

and L = cosh(kH), M = sinh(kH), W = cosh(αH), Q =
sinh(αH).

The shape ζ (r, t) of the liquid–gas interface is obtained by

inverting both the temporal and the spatial Fourier transforms.

The integration over ω can be performed analytically only in

special cases, e.g., when the perturbing object moves horizon-

tally with a constant velocity31. Also, in situations when the

dimensionless parameter

Rk,ω =
∣

∣

∣

ω

νk2

∣

∣

∣
, (29)

is either very small or infinitely large the implicit dispersion

dispersion relation

k

λ 2
+ k3 −

ρl

γ
Ω2(k,ω) = 0 , (30)

can be solved for ω = ω(k). As a consequence, one obtains

the differential evolution equation for ζ̂ (k, t). The case of an

infinite values of Rk,ω was analysed by Closa et al.32. Here we

discuss the case of Rk,ω ≪ 1 which is suitable for nanoscopic

problems.

In this limit the dispersion relation, Eq.(30), takes the form

k

λ 2
+ k3 + 2i

µ

γ
ωk2g(kH) = 0 , (31)

where µ = ρlν is the coefficient of dynamic viscosity, and

g(x) =
cosh2(x)+ x2

sinh(x)cosh(x)− x
. (32)

As a result, the integration of Eq.(24) over ω leads to the fol-

lowing evolution equation

2
µ

γ
k2g(kH)

∂

∂ t
ζ̂ (k, t)+

(

k

λ 2
+ k3

)

ζ̂ (k, t) =−
kΠ̂p(k, t)

γ
.

(33)

In the limit of thin liquid films, the above equation reduces

to the equation obtained by Ledesma-Alonso et al.20. Thus

Eq.(33) can be considered as a generalization of their results

to films of arbitrary thickness.

The general solution to Eq.(33) has the following form

ζ̂ (k, t) =

{

ζ̂ (k,0)+ (34)

−

∫ t

0

[

Π̂p(k,τ)

2µkg(kH)
eΓ(k)τ

]

dτ

}

e−Γ(k)t ,

where

Γ(k) =
γ

2µ

1

g(kH)

(

k+
1

kλ 2

)

(35)

is the decay rate given by the imaginary part of the frequency

obtained from Eq.(31), and ζ̂ (k,0) denotes the Fourier trans-

form of the initial surface profile. In the r-space, this solution

can be written as

ζ (r, t) = 2π

∫ ∞

0
kζ̂ (k,0)e−Γ(k)tJ0(kr)dk+ (36)

− 2π

∫ ∞

0

∫ t

0

[

Π̂p(k, t − τ)

2µkg(kH)
e−Γ(k)τ

]

dτJ0(kr)dk .

where J0 is the zeroth-order Bessel function of the first kind.

The first term on the rhs of Eq.(36) represents the evolution

of the initial profile according to the dispersion relation. It

vanishes for initially flat interface. The second term describes

the response of the liquid film to the disjoining pressure acting

on the interface. This response is not instantaneous and the

dispersion relation provides different scales of ,,memory” for

different wave numbers. Note that in a general case Eq.(36)

cannot be considered as an explicit formula for ζ (r, t) since the

disjoining pressure also depends on the interface deformation.

Nevertheless, this formal expression, turns out to be helpful in
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understanding the general aspects of the interface response to

the external perturbation, which is presented in Sec. 3.2. In

the next subsection we discuss the various time scales relevant

to our problem.

2.4 Dispersion relation and relevant time scales

The dispersion relation in Eq.(31) was obtained under the

assumption Rk,ω ≪ 1. One should check whether this ap-

proach is self-consistent. After substituting the ω obtained

from Eq.(31) to the definition of Rk,ω in Eq.(29) one obtains

the following condition

γλc

2ρν2

(k2λ 2
c +(λc/λ )2)

k3λ 3
c g(kλc ·H/λc)

≪ 1 . (37)

The first fraction on the lhs is a liquid-dependent number, e.g.

of order 1 for the silicon oil, 104 for liquid hydrocarbons, and

105 for water at room temperature. The second fraction is a

function of the dimensionless wave number kλc and the thick-

ness of the liquid film H/λc. In Fig.5 a typical dependence of

Rk,ω on the dimensionless wave number for different thick-

nesses of the liquid film is presented for the case of liquid

hydrocarbons. For such systems the low Rk,ω approximation

is adequate for arbitrary k provided H ≪ 10−4λc. And, for

kλc ≫ 104 this approximation can be used for films of arbi-

trary thickness. On the other hand, for small wave numbers

and films of the thickness H/λc ∈ [10−4 , 10−2] the condition

Rk,ω ≪ 1 is satisfied only for k ≪ 1/H. This can be seen from

Fig. 5 if one notes that the maximum of each curve is located

at k ∼ 1/H.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

R
k
,ω

kλc

H = 10
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−2λc
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H = 10
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−5λc

Fig. 5 The parameter Rk,ω as a function of dimensionless wave

number kλc, Eq.(37), for typical liquid hydrocarbons at room

temperature: γ = 0.02 N/m, ρ = 800 kg/m3, Hls = 10−19 J,

ν = 10−6 m2/s, and for different values of the dimensionless film

thickness H/λc.

Three different regions of wave numbers can be distin-

guished in Fig. 5. In each of them the dispersion relation

and parameter Rk,ω behave in a different way. For very small

wave numbers the parameter Rk,ω is constant. This is caused

by the approximately quadratic nature of the dispersion rela-

tion. The size of this region is bounded by the inverse of the

effective capillary length, which is equal to λc for relatively

thick films. For thinner films λ decreases for decreasing H and

consequently the region of constant Rk,ω spans a wider range

of wave numbers. For 1/λ ≪ k ≪ 1/H the parameter Rk,ω

grows upon increasing kλc because the dispersion relation be-

comes a quartic function of the wave number. This regime

of the liquid film dynamics is well described by the TLF ap-

proximation31,33, in agreement with the asymptotic form of

the decay rate

Γ(k)≈ ΓT LF(k) =
γ

3µ
(kH)3

(

k+
1

kλ 2

)

for kH ≪ 1 . (38)

On the other hand, for k ≫ 1/H one observes a universal char-

acter of Rk,ω . It is caused by the linear form of the dispersion

relation, independent of H, and described by the infinite thick-

ness approximation

Γ(k)≈ Γ∞(k) =
γ

2µ

(

k+
1

kλ 2

)

for kH ≫ 1 . (39)

For a given wave number the decay rate determines the

characteristic relaxation time τ(k) = 1/Γ(k), which, in turn,

can be related to the characteristic length scale. There are four

natural length scales in our problem: the sphere radius R, the

distance D between the sphere and the reference interface po-

sition, the effective capillary length λ , and the film thickness

H. They determine the relevant wave numbers. The wave

number kλ = 1/λ gives the lower bound on the deformation

spectrum. On the other hand, the determination of the upper

bound is a subtle issue. It can be resolved by investigating the

Fourier transform of the disjoining pressure. In general, the

disjoining pressure depends on the surface profile but for small

deformations ζ/ε ≪ 1 the approximate upper bound kd = 1/d

can be obtained. It increases for decreasing both D and R,

but for distances analysed in this study it remains numerically

close to kR = 1/R. On the other hand for significant surface de-

formations, close to the bridge formation, the upper bound of

the spectrum shifts towards larger wave numbers20. Although,

this can be hardly determined analytically, the analysis of the

equilibrium surface profiles shows that even for the maximum

deformation the wave number kd is a reasonable estimate of

the upper cutoff. The corresponding characteristic time scales

are denoted τλ = τ(kλ ) and τd = τ(kd). For R ≪ H ≪ λ they

can be obtained from the asymptotic expressions for the decay

rate, i.e., from Eqs (38,39)

τλ ≈ 3B̃−2
o

(

H

R

)−3

τ0 , τd ≈ 2
d

R
τ0 , (40)
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where τ0 = Rµ/γ . These two time scales can differ signif-

icantly and their ratio depends on the relation between the

length scales λ ,H,R and d.

The time scale τλ governing the relaxation of long-

wavelength perturbations plays an essential role in the defor-

mation dynamics at r ∼ λ . On the other hand, τd determines

the relaxation time for the region of the interface for which

r . d, the so-called near-field deformation of the interface.

The length scale H plays another important role in the dy-

namics of the liquid film. The corresponding wave number

kH = 1/H splits the Fourier space into two regions in which

the dynamics is determined by two asymptotic forms of the

dispersion relation. The time scale τH = τ(kH) can be approx-

imated by

τH = 2g(1)τ0

H

R
≈ 8τ0

H

R
. (41)

In the following sections we show that if the characteristic

time scale of the perturbation is smaller than τH then the re-

sponse of the liquid film is given by the infinite thickness ap-

proximation. On the other hand, the TLF dynamics character-

izes the surface deformation on time scales much larger than

τH .

In order to estimate the time and length scales in typical

experiments one has to provide values of the relevant parame-

ters present in the problem. The radius of of the AFM tip can

vary from ∼ 10 nm to ∼ 1 µm, the latter referring to the col-

loidal probe AFM. The dynamic viscosity coefficient spans a

range of 10−3 to 10−1 Pa·s, while the surface tension coeffi-

cient has values between 10−3 and 10−2 J/m2. Consequently,

one obtains τ0 ∈ [10−9−10−4 s]. In the non-contact AFM ex-

periments the cantilever can oscillate with the frequency rang-

ing from 104 to 106 Hz, while it does not oscillate at all in

the force spectroscopy experiments with the colloidal probe

AFM2. In the latter case the characteristic time scale depends

on the velocity at which the probe approaches the sample.

3 Results

3.1 Time-independent perturbation

We begin the analysis of different time scales introduced in

the previous section by considering the special case of the ζ–

independent disjoining pressure

Π0(r) = Πp(r,ζ = 0) =−
4HplR

3

3πγ

[

d2 + r2
]−3

. (42)

Its Fourier transform in dimensionless variables introduced in

Sec. 2.2 takes the following form

Π̂′
0(k

′) =
Π̂0(k

′/R)

2πγR
=−

F ′

2
(k′d′)2K2(k

′d′) . (43)

If the distance D does not depend on time the integral in

Eq.(36) can be evaluated analytically and for initially planar

interface ζ (r, t = 0) = 0 one obtains

ζ ′(r′, t ′) =
F ′

2

∫ ∞

0

k′(k′d′)2K2(k
′d′)

k′2 + B̃o

(44)

[

1− e−Γ′(k′)t′
]

J0(k
′r′)dk′ ,

where t ′ = t/τ0 and

Γ′(k′) = τ0Γ(k′/R) =
1

2g(k′H ′)

(

k′+
B̃o

k′

)

. (45)

The integral in Eq.(44) was calculated numerically using

the Simpson rule implemented in the Octave34 environment.

We have chosen this simple numerical method because the

strongly oscillating integrand in Eq.(44) requires a fine spa-

tial discretization in the whole integration domain and, con-

sequently, different adaptive quadratures do not bring much

benefit. All results presented in this section correspond to the

choice Ha = 10−3 and Bo = 10−10. Time is expressed in the

units τ0.

In Fig. 6 we show the shape of the interface at different

times for H = 100R and D/Dmin = 1.1. These results were

obtained within three different approaches, each characterized

by the corresponding decay rate discussed in the previous sec-

tion. One observes a multi-scale temporal evolution of the

interface. The plot (a) presents the predictions of the general

theory, Eq.(35). At t ≈ τ0 ∼ τd the deformation of the interface

is confined to the region r . 10R and attains not more than

approximately 10% of its final magnitude. The mechanical

equilibrium is reached at t ≈ 1014τ0 ∼ tλ . One can compare

these results to the asymptotic time evolution in two special

cases: (b) kH → 0, and (c) kH → ∞. For H = 100R we have

τH = 800τ0. One concludes that indeed the TLF approxima-

tion is adequate for t ≫ τH but it fails to describe the initial

stage of the interface evolution. The TLF approximation un-

derestimates the relaxation time of the interface for r ≪ H.

This is related to significantly higher value of the decay rate

for k ≫ kH observed within this approximation as compared

to the general theory. On the other hand, the approximation

of infinitely thick film works well only for times t ≪ τH and

underestimates the relaxation time for r ≫ H.

One observes that the shape of the inner part of the profiles

(r . d) becomes equilibrated already at t ∼ τd and then does

not change in the course of time except for being lifted, as the

rest of the interface grows. This can be understood by real-

izing that the wave numbers responsible for the shape of the

inner profile correspond to k & 1/d and, consequently, equili-

brate at t ∼ τd . Smaller wave numbers set the absolute position

of the near-field deformation only.

As already discussed in Sec. 2.2 the interface deformation

normalized by the total force exerted on the interface depends
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Fig. 6 The transient profiles of the interface given by Eq.(44) for

H = 100R and D = 1.1Dmin obtained using (a) the general

dispersion relation, (b) the TLF approximation, and (c) the infinite

thickness approximation.

on the distance D only in the inner region r . d. Similarly, the

normalized transient profiles obtained for different distances

between the probe and the interface are very close to each

other. Small differences between the inner parts of the pro-

files are already visible at t ∼ τd and remain unchanged during

the time evolution. This can be observed in Fig. 7 where the

normalized apex position, i.e. ζ0(t) = ζ (0, t) is presented as a

function of time. The curves corresponding to different values

of D almost overlap and the small differences between them

developed for t . τd (see the inset in Fig. 7) do not change

appreciably at later times.

In order to discuss the time evolution of the interfacial apex

more thoroughly we rewrite Eq.(44) for r = 0 in the form con-

0

2

4

6

8

10

12

14

100 105 1010 1015

ζ 0
/(
R
·
F

′ )

t/τ0

1

2

3

10−1 100 101

D = 1.1Dmin

D = 1.05Dmin

D = 1.01Dmin

D = Dmin

Fig. 7 Time evolution of the position of the interface’s apex given

by Eq.(44) and normalized by the total force F ′ for H = 100R and

different values of the distance D.

venient for the analysis of the relevant time scales

ζ ′
0(t

′) =
F ′

2

∫ ∞

−∞

e2w

e2w + B̃o

e2wd′2K2(e
wd′)

{1− exp[−exp(ln(Γ′(ew))+ lnt ′)]}dw . (46)

As a result, the following analytical approximation of ζ ′
0(t

′)
can be found in different time regimes

ζ ′
0(t

′)≈ F ′











C1t ′/d′ for t ≪ τd

ln(t ′/d′)+C2 for τd ≪ t ≪ τH

1
4

ln(t ′H ′3/d′4)+C3 for τH ≪ t ≪ τλ

, (47)

where C1 ≈ 1.178, C2 ≈ 0.5, and C3 ≈ 0.486; see Appendix

B. Fig. 8 presents the time evolution of the apex position ob-

tained numerically for D = 1.1Dmin and H = 1000R. In the

same figure the analytical approximations given by Eq.(47) are

also presented. For such a thick film all stages of the evolution

can be clearly distinguished. One can see that the approxima-

tions are very accurate except for the three transition regions

near t = τd , t = τH , and t = τλ .

In the initial stage of time evolution the apex position grows

linearly with time up to t ≈ τd which is independent of H.

In the second stage of evolution one observes the logarith-

mic growth of the apex position which can be well described

within the infinite thickness approximation and therefore re-

mains independent of H. This stage is bounded by t ≈ τH and

can be detected only if H/d ≫ 1.

For t ≫ τH the evolution of the interface is determined by

the TLF dynamics. The apex position still growth logarithmi-

cally with the prefactor decreased 4 times as compared to the

previous stage. The role played by the film thickness in vari-

ous stages of time evolution can be seen in Fig. 9 which shows
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Fig. 8 The time evolution of the apex position given by Eq.(46) for

H = 1000R and D = 1.1Dmin. The solid line describes the results of

numerical integration with the general form of the decay rate given

by Eq.(35) while the dotted, dashed, and dash-dotted lines represent

the analytical approximations given by Eq.(47). The insets show the

plots of the initial stages of evolution.

the time dependence of the apex position for D = 1.1Dmin and

different values of film thickness H. First of all, the film thick-
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Fig. 9 The time evolution of the apex position given by Eq.(46) for

D = 1.1Dmin and different values of film thickness H.

ness H influences the value of parameter τH and therefore de-

termines the crossover time from the infinite thickness to the

TLF dynamics. The growth rates are different in both types

of dynamics and thus the overall evolution time varies with H.

The time scale τλ also depends on H via the effective capil-

lary length. This dependence results not only in the change of

relaxation time but it also influences the equilibrium profile of

the interface15. For very thin films both the interface deforma-

tion and the relaxation time increase with increasing H. How-

ever, while the deformation of the interface is a monotonous

function of the film thickness the relaxation time

τλ/τ0 =

(

Bo +
3Ha

8H ′4

)−2

H ′−3 (48)

reaches the maximum at H ′
max =

(

5Ha
8Bo

)1/4

. For the values of

parameters used in our study one has H ′
max = 50.

The hydrostatic pressure in the liquid film becomes relevant

only for r & λ 13,14. At smaller distances, it is the mean curva-

ture of the interface which is the relevant variable. Therefore

it is interesting to look at the time evolution of this quantity.

The dimensionless curvature of the interface at its apex

2κ ′
0 = 2Rκ0 ≈−

(

∂ 2ζ ′

∂ r′2
+

1

r′
∂ζ ′

∂ r′

)

r′=0

=− 2
∂ 2ζ ′

∂ r′2

∣

∣

∣

∣

r′=0

.

(49)

can be approximated as

|κ ′
0| ≈

F ′

4

∫ ∞

−∞
e4wd2K2(e

wd)

{1− exp[−exp(ln(Γ(ew))+ lnt ′)]}dw . (50)

One concludes that the small wave numbers k ≪ 1 are expo-

nentially damped and thus are not relevant for the evolution

of the curvature at the apex. Therefore, for H > R the infinite

thickness approximation can be used to obtain

|κ ′
0| ≈

F ′

4d′2

∫ ∞

−∞
e4wK2(e

w)

{1− exp[−0.5exp(w+ ln(t ′/d′))]}dw . (51)

As one could expect the apex curvature depends neither on the

Bond number nor the film thickness but is sensitive to details

of the interaction between the liquid and the probe. The results

of numerical evaluation of the integral in Eq.(50) are presented

in Fig. 10.

The curvature equilibrates at time t ∼ τd , which weakly de-

pends on D but nevertheless remains close to the time τR pre-

sented in Fig. 10. Consequently, the relaxation time of the

curvature is is much smaller than the relaxation time for the

whole deformation process. This observation will prove rele-

vant for the analysis of time dependent perturbations. In par-

ticular, if the disjoining pressure varies on a time scale much

larger than τR then the curvature at the apex can be considered

as equilibrated during the whole time evolution of the inter-

face.

3.2 A point-force approximation

In previous sections we showed that the deformation of the

interface is, to a large extent, independent of the details of the

disjoining pressure Πp and is rather determined by the total
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Fig. 10 The time evolution of the apex curvature, Eq.(50), for

different values of the distance D. The dashed vertical line denotes

the position of t = τR.

force exerted on the surface of liquid. In this section we use

this observation to discuss the evolution of the interface under

the influence of a time-dependent perturbation.

Our analysis is based on Eq.(36) with the initial condition

ζ (r, t = 0) = 0. The integrand in the second term on the rhs is

represented as a product of factors. Each of them refers to a

different aspect of the liquid film dynamics. The forcing term

Π̂p(k, t − τ) describes the amount of energy inserted into var-

ious k-modes. It also determines the upper cutoff for the rele-

vant wave numbers. In the case of the van der Waals interpar-

ticle interactions the contribution corresponding to k ≫ 1/d

turns out to be negligible. The exponential factor describes the

relaxation of different wave numbers. We have already shown

that large wave numbers equilibrate faster than small ones. As

a result, for τ & τd the upper cutoff is determined by the relax-

ation term rather than by the forcing term. In such a case one

can approximate the forcing term by the total time-dependent

force acting on the interface

Π̂p(k, t − τ)≈ Π̂p(0, t − τ) =−F(t − τ). (52)

For r ≫ d this approximation becomes even better since the

presence of the oscillating Bessel function reduces the contri-

bution from large wave numbers, k & 1/d.

Within the above approximation one obtains

ζ ′(r′, t ′) =

∫ ln t′

0
F ′(t ′− es)K̃r′(s)ds , (53)

where s = lnτ ′ = lnτ/τ0, and

K̃r′(s) =
es

2

∫ ∞

0

J0(k
′r′)

g(k′H ′)
e−Γ′(k′)es

dk′ . (54)

is called the logarithmic response function (LRF). Its structure

is determined by the relation between the length scales H, r,

and λ , with the corresponding time scales τH , τr = τ(1/r),
and τλ . Figure 11 presents four representative shapes of the

LRF for r′ = 100, Bo = 10−10, and different thicknesses H.
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ln t/τ0
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H = 100R
H = 10R
H = 2.5R

Fig. 11 The logarithmic response function K̃100(s) for

H ′ = 2.5, 10, 100, and 1000. Different symbols denote different

time scales: (stars) τr, (circles) τH , and (squares) τλ .

For regions of the interface corresponding to τr ≪ τH the

response to the perturbation is negligible at short times τ ≪ τr.

On the other hand it increases significantly in the vicinity of

τr reaching the maximum, which - upon increasing H - turns

into a plateau with the value 1.

When the time τH is approached the value of the LRF de-

creases, which is related to transition from the infinite thick-

ness to the TLF dynamics. For τH ≪ τ ≪ τλ another plateau

turns up, with the value 0.25. This constant-response region is

limited by τ ∼ τλ beyond which the LRF finally vanishes.

For r ∼ H the qualitative behaviour of the LRF is similar to

the previously discussed case r ≪ H although its maximum is

strongly suppressed by finite thickness of the liquid film. The

value at maximum is close to the values corresponding to time

scales τr and τH . Consequently, only the initial stage of the

temporal response of the interface is governed by the infinite

thickness approximation.

In the region r ≫ H one has τH ≪ τr and thus the LRF is

completely described by the TLF approximation. In this case

one observes strong negative response of the interface before

the actual relaxation process takes place. This is a character-

istic feature of the TLF dynamics. Since the transport of the

liquid from remote regions is much suppressed by the viscous

drag, any increase of the film thickness in a given region is

correlated with its depletion in the neighbouring rim, which in

turn induces subsequent bumps and depletion regions at more

distant regions of the interface. The magnitude of these oscil-

lations decreases rapidly with the distance from the perturbing

object and usually only the first negative-response region can

be distinguished. This effect is particularly important in the
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dewetting phenomena, where it can cause secondary instabili-

ties of the liquid film24.
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H = 2.5R

Fig. 12 Derivative of the LRF ∂ K̃100/∂ r′(s) for H ′ = 2.5, 10, 100,
and 1000.

The relaxation time τr0
separates two different types of the

response of the interface at r ∼ r0, to the perturbing force. For

τ . τr0
the actual relaxation process takes place. At this stage

a local shape of the interface evolves. This can be seen in Fig.

12, where we present the LRF corresponding to the interfacial

slope ∂ζ ′/∂ r′. It is given by ∂ K̃r′(s)/∂ r′. One observes that

the time window in which the action of the force influences

the local shape of the interface is located at τ . τr0
, and de-

cays quickly for τ > τr0
. At larger times modification of the

interface position at r . r0 is related to the deformation of the

interface at larger separations from the perturbing sphere. We

have already observed this effect in the case of constant force

when the inner part of the profile preserved its shape during

the whole evolution of the interface. One concludes that if the

time-varying force is approximately constant on time scales

shorter than τr0
then the region of interface corresponding to

r . r0 remains always in mechanical equilibrium with the cur-

rent value of the force.

In the case of constant force the constant-response region

of the LRF for t ≫ τH leads to the logarithmic growth of the

interface

ζ ′(r′, t ′) = F ′ ·

(

1

4
ln t ′+C(r,H, B̃o)

)

, (55)

where the time independent function C has to be derived from

the response function. It can be done using the following prop-

erty
∫ ∞

−∞
K̃r′(s)ds = K0(B̃o

1/2
r′) , (56)

where K0 denotes the zeroth-order modified Bessel function of

the second kind. Consequently, one can show that for r ≪ λ

C(r,H, B̃o)≈
1

4
ln

(

H ′3

r′4

)

− 0.014 , (57)

see Appendix C for details.

3.3 Scaling of the response function

Although the integral in the expression defining K̃r′(s), see

Eq.(54), cannot be calculated analytically in the general case,

one can discuss its asymptotic behaviour and scaling proper-

ties. For τ ≪ τλ , the rescaling of both position r̃ = r/H and

time τ̃ = τ ′/H ′ = τ/τ0 ·R/H gives

K̃r̃(s̃) =
es̃

2

∫ ∞

0

J0(k
′ r̃)

g(k′)
e
− k′

2g(k′)
es̃

dk′ , (58)

where s̃= ln(τ ′/H ′). Further simplifications can be made both

within the TLF and the infinite thickness approximations. For

τ ≪ τH the response function takes the form

K̃r̃(s̃) = Q

(

es̃

2r̃

)

− es̃
R

(

1

r̃

)

, (59)

where

Q(x) =
∫ ∞

0
e−wJ0

(w

x

)

dw , (60)

and

R(x) =

∫ ∞

0

(

1−
1

g(w)

)

J0

(w

x

)

dw . (61)

The function es̃ R(1/r̃) can be interpreted as a correction to

the infinite thickness approximation due to a finite thickness

of the liquid film and it vanishes for infinitely thick films.

On the other hand, for τH ≪ τ ≪ τλ one has

K̃r̃(s̃) =
1

4
P

(

es̃

3r̃4

)

, (62)

where

P(x) =
∫ ∞

0
e−wJ0((w/x)1/4)dw . (63)

For τ ≫ τλ the decay rate can be approximated by

K̃r′(s) =
3B̃o

2

H ′3
e−s . (64)

This asymptotic scaling shows that in the final stage of the

interface evolution the equilibrium deformation profile is ap-

proached according to the power law ζeq(r)− ζ (r, t) ∝ 1/t.

The scaling functions P,Q and R are shown in Fig. 13.

One concludes that x ∼ 1 at which the functions P and Q

reach the asymptotic plateau is related to the relaxation time

τr

τr ≈

{

2r′τ0 for r′ ≪ H ′

3r′4

H′3 τ0 for r′ ≫ H ′
. (65)
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Fig. 13 The scaling functions P ,Q, and R.

As we have already shown this is a relevant time scale, which

separates two different types of the interface response to the

perturbing force.

3.4 Response to a periodic perturbation

In principle, Eq.(53) provides a tool for calculating the defor-

mation of the interface for a given time-dependent perturba-

tion. If the force is known á priori the integral can be explicitly

evaluated. For example, this is the case of a vertically oscillat-

ing AFM probe, provided the deformation of the interface is

negligible compared to the separation between the probe and

the interface. This problem was analysed by Ledesma-Alonso

et al.20 for thin liquid films. In this section we investigate how

the behaviour of the interface changes upon increasing H and

going beyond the regime of validity of the TLF approximation

used in Ledesma-Alonso et al.20. We will show that restrict-

ing the analysis to the lubrication approximation may lead to

noticeable inaccuracy in predictions concerning the position

of the interface even for relatively thin films.

We consider the case of an oscillating sphere with

D(t) = D0 +Acosω0t , (66)

where D0 is the mean distance between the probe and the in-

terface, and A is the amplitude of oscillations. Consequently,

the dimensionless total force exerted on the interface is given

by

F ′(t) =
Ha

4(D′(t)2 − 1)2
. (67)

The results presented below have been obtained for the fol-

lowing set of parameters

Ha = 10−3, Bo = 10−10,

D0 = 1.3 ·Dmin, A = 0.29 ·Dmin .

Figure 14 shows the time evolution of the interface evalu-

ated at r = 2R during the tenth period of force oscillations for

T0 = 2π/ω0 = 100τ0 and different values of H. The curves

were obtained using three different methods: the direct solu-

tion of the TLF equation (see Appendix D), the integration of

the LRF within the TLF approximation, and the integration of

the general form of the LRF.
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(d)

Fig. 14 The time evolution of the interface evaluated at r = 2R for

T0 = 100τ0 and different thicknesses of the liquid film: (a) H = R,

(b) H = 5R, (c) H = 20R. Different lines correspond to different

methods used to obtain these results: the numerical solution of the

TLF equation (solid line), the integration of the LRF within the TLF

approximation (dotted line), and the integration of the general form

of the LRF (dashed line). The plot (d) shows the time evolution of

the force acting on the interface.

In Fig. 14a all three curves are close to each other. One

observes a small difference between the direct solution of
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the TLF equation and the method using the LRF within the

TLF approximation. This difference is the consequence of the

point-force approximation used in the derivation of the LRF.

The point r = 2R is relatively close to the apex and such small

deviations from the solution obtained for the exact profile of

the disjoining pressure can be expected. On the other hand, the

dashed line representing results based on the general form of

the LRF differs from the two other lines in a more pronounced

way. This indicates a rather limited applicability of the TLF

approximation for this system. For H = R the deformation of

the interface in the vicinity of the apex is determined by the

wave numbers k & 1/H whose relaxation cannot be fully de-

scribed by the TLF approximation. Here, the short-time evo-

lution corresponds to the transition region between the infi-

nite thickness and the TLF dynamics. This effect becomes

more evident for thicker films. One notes that in these cases

(e.g., H = 5R and H = 20R) the general LRF method predicts

smaller deformation than the TLF approximation does. An-

other difference between these two approaches is the phase

shift20, i.e., the shift between the maximum of the deforma-

tion and the maximum of the force †. For increasing thickness

of the film the phase shift calculated within the TLF approx-

imation decreases and the response of the interface is almost

quasi-static for H = 20R. This is related to a strong decrease

of the relaxation time τr ∝ H−3, which implies that a large

part of the interface remains in mechanical equilibrium with

the force acting on the interface. According to the general dis-

persion relation the relaxation time becomes independent of H

for thick films and thus one observes only a small decrease of

the phase shift in this case. This is also the reason for larger

values of the interface deformation obtained within the TLF

approximation. Underestimation of the relaxation time causes

a faster response of the interface which leads to larger defor-

mations when the force is maximal.

If we look at the deformation of the interface at the time

scale of a single period, all differences between different types

of dynamics that are present on time scales much shorter than

T0, can be disregarded. In particular, for oscillations with the

period T0 ≫ τH the TLF approximation can be successfully

used to describe the dynamics of the interface even though it

is not adequate for a short time evolution of the apex region.

This is presented in Fig. 15, where the time evolution of the

interface evaluated at r = 2R is shown for H = 5R and differ-

ent values of the period T0. In this system one has τH = 40τ0.

For T0 = 1000τ0 the time evolution of the interface is governed

by the TLF approximation. However, upon increasing the os-

cillations frequency the TLF approximation leads to growing

deviations from the results obtained within the general form

of the LRF.

For large frequencies of the perturbation the dynamics of

† Note that Ledesma-Alonso et al. 20 used slightly different definition of the

phase shift.
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Fig. 15 Time evolution of the interface position at r = 2R for

H = 5R and different periods T0 of the force oscillations: (a)

T0 = 1000τ0, (b) T0 = 100τ0, (c) T0 = 10τ0. The line styles are the

same as in Fig. 14

.

the inner part of the interface around the apex can be very

important, in particular when one analyses a jump-to-contact

phenomenon, which is governed by instability in the region of

large wave numbers20. Our results show that for such cases

it may be essential to use the general form of the dispersion

relation presented in this study, even for relatively thin films.

4 Conclusions

In this study we analysed the dynamics of a liquid film of ar-

bitrary thickness. The deformation of the liquid–gas interface

was caused by its interaction with the AFM tip modeled by a

nano-sized sphere. In the first part, we studied the time evo-

lution of an initially planar interface towards the non-planar

equilibrium configuration. In order to be able to consider

liquid films of arbitrary thickness we based our analysis on

the general dispersion relation31 in the limit of small values
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of parameter ω/νk2 which can be interpreted as k-dependent

Reynolds number. We derived the relevant length and time

scales and discussed their role in the dynamics of the inter-

face deformation. In particular, we identified the time scale τH

which separates the regimes governed by two different forms

of the asymptotic dynamics: one corresponds to the infinite

thickness approximation and the other to the TLF approxima-

tions. It turns out that due to the multi-scale character of the

interface deformations usually each approximation becomes

relevant in the appropriate regime in which it explains differ-

ent aspects of the interface dynamics. In the special case of

a constant force acting on the interface we obtained analyt-

ical expressions describing approximately the time evolution

of the interface and - upon comparison with the numerical re-

sults - we checked that these expressions provide a reliable

description of dynamics.

We showed that if the interface is perturbed by a small ob-

ject both the equilibrium and the transient profiles can be to a

large extent described by a point-force approximation. Devi-

ations from this approximation are essential only in the vicin-

ity of the apex and for very short times. This observation al-

lowed us to derive the response function for the deformation

of the interface perturbed by a time-dependent force. The re-

sponse function for a point at the interface can be character-

ized by three different time scales which are related to the rel-

evant length scales: the lateral distance from the AFM tip, the

thickness of the liquid film, and the so-called effective cap-

illary length. The response function shows different scaling

behaviour in different time regimes and we discussed the cor-

responding analytical approximations. The response function

method can prove useful in bridging the inner and outer solu-

tions in multiscale simulations18.

In the second part we discussed the response of the inter-

face to the action of the oscillating perturbation. Similar prob-

lem has been extensively studied by Ledesma-Alonso et al.20

within the TLF approximation. Our analysis is valid for ar-

bitrary film thickness. We showed that in the vicinity of the

apex the interface evolution is strongly influenced by the fi-

nite thickness of the film even for relatively thin films. This

effect is more significant for larger frequencies of force oscil-

lations and can be neglected for the oscillation periods much

larger than the time scale τH .

The important aspect of many AFM experiments is the so–

called jump-to-contact phenomenon which is related to large

wave numbers instability20. It may prove interesting to study

its occurrence and characteristics within an approach which

goes beyond the TLF approximation. One of the issues is to

see how the minimum distance between the tip and the liquid-

gas interface depends on the film thickness and the frequency

of the tip oscillations. This is an important question, since in

many AFM experiments the so-called zero distance, i.e. the

position of the unperturbed liquid-gas interface, is approxi-

mated by the elevation of the AFM tip at the moment of the

capillary bridge formation2. Our results can also prove rele-

vant when studying dynamics of mircon-sized droplets which

can hardly be described within the TLF approximation.

In this paper we provided a general framework for descrip-

tion of the liquid film dynamics. The proposed method can be

applied to different systems characterised by various length

and time scales, as well as by different forms of the disjoin-

ing pressure. We showed the capacity of the method in the

case of simple van der Waals interactions in the mean field ap-

proximation. In addition, most of our results were presented

for the linearised form of the disjoining pressure. These sim-

plifications allowed for a transparent description of the im-

portant features of the liquid film dynamics. However, they

also imply that the numerical values of parameters presented

in the text need to be applied with caution. Weak perturba-

tion represented by the linearised disjoining pressure gives rise

to relatively small deformations of the interface. Their mag-

nitude is comparable to the molecular size for small radii of

the perturbing sphere. On one hand such small deformations

are hardly accessible experimentally and the hydrodynamic

description turns out inaccurate, although the hydrodynamic

equations have already been successfully used down to the

scale of a nanometer24. On the other hand, the deformation

of the interface increases when the full form of the disjoining

pressure is considered, e.g. in the description of the jump-to-

contact phenomena. Numerical solutions to Eq.(33) with the

nonlinear disjoining pressure can be obtained with the help of

the Hankel transform method presented in Ledesma-Alonso et

al.20. Also for larger sizes of the perturbing object the result-

ing deformations can be reliably captured by the continuum

models.

The complete description of small systems (∼ 10 - 100 nm)

at room temperatures should take into account thermal fluctu-

ations. In particular, one may consider using the form of the

disjoining pressure obtained within the renormalization group

approach27 or incorporate the stochastic tensor into the hy-

drodynamic equations35. Also, in real systems other types of

interaction may occur, e.g. electrostatic. They would influ-

ence the deformation height but not the general aspects of the

liquid film dynamics encoded in the dispersion relation and

discussed in the paper.

Since our method is based on the linearised Navier-Stokes

equations in the limit of small Reynolds numbers, one can ex-

pect it to fail when the inertia of the liquid becomes relevant.

Our model needs to be applied with caution also when the de-

formation of the interface is comparable with the thickness of

the film or the slope of the interface becomes too big. In such

cases numerical solution of the Stokes equation may be the

only option.
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A Boundary conditions

The derivation of the dispersion relation, see Eqs (24) and

(31), is based on standard boundary conditions for incom-

pressible, viscous liquid. However, for various micro- and

nanoscale systems one can contemplate using different forms

of boundary conditions. In particular, it has been observed that

liquid may experience slip at a substrate-liquid interface24. To

include this effect in theoretical analysis the so-called Navier

boundary conditions can be introduced at the substrate-liquid

interface

(ux,uy) = b
∂ (ux,uy)

∂ z
at z = 0 , (68)

where the parameter b is called the slip length. Consequently

a modified form of the dispersion relation is obtained. In the

limit ω/νk2 ≪ 1 it differs from that presented in Eq.(31) by

the modified form of the function g(kH). In the partial-slip

case it depends additionally on the slip length b and has the

following form

g(k,H,b) = (69)

cosh2(kH)+ (kH)2 + 2kb(kH + sinh(kH)cosh(kH))

sinh(x)cosh(x)− x+ 2kbsinh2(kH)
.

In general, the presence of a partial slip decreases the charac-

teristic time scales governing the liquid film dynamics. On the

other hand it does not change the qualitative behaviour of the

dispersion relation, which agrees with the results obtained for

thin liquid films24.

Chan et al.18 showed that in many cases liquid-gas or

liquid-liquid interfaces may exhibit an immobile behaviour in

contrast with the stress continuity condition. It results in a

no-slip boundary condition at the free surface and thus decou-

ples the shear stresses in fluids on either side of the interface.

Consequently, the function g(kH) takes the following form

g(kH) =
sinh(kH)cosh(kH)+ kH

sinh2(kH)− (kH)2
. (70)

The detailed analysis of the influence of the above modified

dispersion relations on the dynamics of our system is beyond

the scope of this paper.

B Derivation of analytical approximation to

the evolution of the apex position

The integrand in Eq.(46) can be split into three factors

ζ ′
0(t

′) =
Ha

4d′4

∫ ∞

−∞
p(w)q(w)z(w)dw , (71)

where p(w) = e2w/(e2w + B̃o), q(w) = e2w d2 K2(e
wd)/2, and

z(w) = 1 − exp[−exp(ln(Γ(ew)) + lnt ′)]. All the functions

p,q,and z have sigmoidal shape and are presented in Fig.

16. The transition regions of functions p and q are given by

w ≈ wp = 0.5ln B̃o and w ≈ wq = − lnd′, respectively. The

position of the transition region for the function z depends

on t ′ and H ′ (via Γ). For t ≪ τH one has wz = ln(t ′/2) and

for t ≫ τH one obtains wz = 1/4ln(t ′H ′3/3); in consequence

wz > wp for t < τλ . Moreover, if the scales set by wp, wq, and

wz are well separated then one can use the following approxi-

mation

ζ ′
0(t

′)≈ lim
ε1,ε2→∞

Ha

4d′4

[

∫ wz+ε1

−∞
z(w)dw+

+

∫ wq−ε2

wz+ε1

dw+

∫ ∞

wq−ε2

q(w)dw

]

=

=
Ha

4d′4
[wq −wz +C] , (72)

where the constant C is given by

C = lim
ε1,ε2→∞

∫ wz+ε1

−∞
z(w)dw−ε1 +ε2 +

∫ ∞

wq−ε2

q(w)dw . (73)

It can be shown that C depends neither on d′,H ′, B̃o nor t ′.

However, it does depend on the form of the decay rate present

in function z(w) and it matters whether we use the infinite

thickness or the TLF approximation.

On the other hand, for t ≪ τd transition regions of q(w) and

z(w) overlap while the function z(w) can be approximated by

z(w)≈
t ′

2
exp(w) . (74)

This gives the linear growth of the apex position in the initial

stage of time evolution

ζ ′
0(t

′)≈
Ha

4d′4

t ′

2d′

∫ ∞

−∞
e3wK2(e

w)dw . (75)

C Derivation of the constant C(r,H, B̃o)

In the regime of constant response, i.e., for τr,τH ≪ t ≪ τλ

the deformation of the interface under influence of a constant

force F ′ can be written as

ζ ′(r′, t ′) = F ′
∫ ln t′

−∞
K̃r′(s)ds =

F ′

[

∫ x

−∞
K̃r′(s)ds−

1

4
x+

1

4
lnt ′

]

, (76)

where x is an arbitrary parameter which lies in the constant re-

sponse region and the lhs does not depend on x. Using Eq.(55)

one can identify the function C(r,H, B̃o) as

C(r,H, B̃o) =

∫ x

−∞
K̃r′(s)ds−

1

4
x , (77)
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Fig. 16 Different parts of the integrand in Eq.(71) evaluated for

B̃o = 10−10.

which should not depend on the choice of x. Using the result

from Eq.(56) one has

K0

(

B̃o
1/2

r
)

=C(r,H, B̃o)+
1

4
x+

∫ ∞

x
K̃r′(s)ds . (78)

Since τr,τH ≪ ex one can use the TLF approximation to get

∫ ∞

x
K̃r′(s)ds =

∫ ∞

0

k′

k′2 + B̃o

e−
1
3 (k

′H′)3(k′+B̃o/k′)ex

dk′ . (79)

Thus one obtains

∫ ∞

x
K̃r′(s)ds+

1

4
x =

= lim
z→−∞

∫ ∞

0

w

w2 + 1
e−w2(w2+1)ez

dw+
1

4
z+

1

4
lnτλ ≈

≈−
1

4
ln
(

B̃2
oH ′3

)

+ 0.130 . (80)

Finally, the function C takes the following form

C(r′,H ′, B̃o)≈ K0

(

B̃
1/2
0 r

)

+
1

4
ln
(

B̃2
oH ′3

)

− 0.130≈

≈
1

4
ln

H ′3

r′4
− 0.014 , (81)

where we used the asymptotic expansion of the Bessel func-

tion K0 for a small argument, K0(x) ≈ − lnx+ ln2− γ , and γ
denotes the Euler-Mascheroni constant.

D The thin liquid film equation

Using the dimensionless variables introduced in Sec. 2.2 the

TLF equation33 can be written in cylindrical symmetry as fol-

lows

∂ζ ′

∂ t ′
=

1

r′
∂

∂ r′

[

r′
(H ′+ ζ ′)3

3

∂

∂ r′
(

−
∂ 2ζ ′

∂ r′2
−

1

r′
∂ζ ′

∂ r′
+ B̃oζ ′+Π′

p

)]

. (82)

The numerical solution of this nonlinear equation requires sta-

ble methods due to its high stiffness. We use an implicit finite

difference numerical scheme based on the model proposed in

Diez et al.36. The solver was implemented in the Octave envi-

ronment34. Variable grid spacing and time stepping have been

used to perform the effective numerical simulation.
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Liquid film dynamics is studied within a general theoretical framework

provided for liquid films of arbitrary thickness.
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