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In contrast with ordinary materials, living matter drives its own motion by generating active, out-of-equilibrium internal stresses.

These stresses typically originate from localized active elements embedded in an elastic medium, such as molecular motors

inside the cell or contractile cells in a tissue. While many large-scale phenomenological theories of such active media have

been developed, a systematic understanding of the emergence of stress from the local force-generating elements is lacking. In

this paper, we present a rigorous theoretical framework to study this relationship. We show that the medium’s macroscopic

active stress tensor is equal to the active elements’ force dipole tensor per unit volume in both continuum and discrete linear

homogeneous media of arbitrary geometries. This relationship is conserved on average in the presence of disorder, but can be

violated in nonlinear elastic media. Such effects can lead to either a reinforcement or an attenuation of the active stresses, giving

us a glimpse of the ways in which nature might harness microscopic forces to create active materials.

1 Introduction

Forces in living systems are largely generated at the nanomet-

ric protein level, and yet biological function often requires

them to be transmitted to much larger length scales. In the

actomyosin cytoskeleton for instance, local forces exerted by

myosin molecular motors on a disordered elastic scaffold of

actin fibers determine the mechanical properties of the cell

and help drive mitosis, cell migration and adhesion1. At a

larger scale, contractile cells exert forces on their surround-

ings to participate in muscular contraction, clot stiffening2 and

wound healing3. Due to their physiological relevance, such

systems have been extensively studied in vitro, and direct, dy-

namical imaging has recently progressed from macroscopic

observations4 to visualizations of the networks’ microstruc-

ture5,6 as well as individual components7 during contraction.

The abundance of different macroscopic behaviors gener-

ated by apparently similar microscopic components, which is

particularly spectacular in the cytoskeleton, has attracted sig-

nificant theoretical attention over the last decade. Two promi-

nent theoretical strategies have emerged.

On the one hand, so-called “active gels” models empha-

size macroscopic flows within the cytoskeleton, and do not

formulate detailed assumptions about the microscopic inter-

actions between motors and filaments8–10. Instead, they rely

on symmetry considerations to derive the most general equa-

tions compatible with the problem considered, and success-

fully predict intricate patterns of motion resembling experi-

mentally observed dynamical structures. While very general,

these approaches involve a large number of unprescribed pa-
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rameters enclosing the relevant aspects of the microscopic dy-

namics; in particular, the most important, specifically active

aspects of the cytoskeletal dynamics are typically described

by a phenomenological “active stress tensor”.

On the other hand, length scales too small to be accu-

rately captured by an active gel formalism have typically been

modeled using both continuum11 and discrete18 elastic mod-

els. Such models yield insights into specific cellular pro-

cesses such as mitotic spindle organization13, lamellipodium

growth14 or intracellular propulsion15, as well as into the

propagation of dipolar forces generated by cells embedded in

an elastic matrix16. However, although the bulk elastic prop-

erties of such models have been thoroughly investigated16,17

on a general basis, force transmission from the microscopic to

the macroscopic level was only considered in numerical sim-

ulations of specific geometries18–23, and a general theoretical

framework to understand this process is lacking.

In this paper, we introduce such a formalism under the form

of a direct relation–termed “dipole conservation”–between the

macroscopic active stress and the force dipole tensor, a lo-

cal quantity describing the individual force-exerting elements.

Going beyond previous special-case derivations, we show that

this relation applies in both continuum (Sec. 2) and discrete

(Sec. 3) homogeneous, linear elastic media irrespective of

their shape and of the spatial distribution of the active forces.

To understand the biologically relevant influence of hetero-

geneities, we investigate the case of random spring networks

in Sec. 4, and show that although dipole conservation is vi-

olated in individual realizations of the network it still holds

in an average sense provided the disorder is the same every-

where. Finally, in Sec. 5 we study a toy model nonlinear elas-

tic medium and show that nonlinear elasticity can skew force
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Thus −∆µν/V is the medium’s coarse-grained stress tensor

and ∆/(V d) = ∆µµ/(V d) is the analog of a hydrostatic pres-

sure. In an active medium language, ∆< 0 thus characterizes a

contractile medium while ∆ > 0 is associated with extensility.

Note that in a system with periodic boundary condition, the

boundary dipole tensor can be defined through the relation

∆µν =−∂E/∂ (γµν), where the affine deformation can be im-

posed through Lees-Edwards boundary conditions. Unless ex-

plicitly stated, all the continuum and discrete results presented

in this manuscript can be rederived under periodic boundary

conditions with only minimal modifications to their proofs.

2.2 Mean-stress theorem

As a first step towards establishing dipole conservation, here

we rederive a result known as the mean-stress theorem19,24.

We introduce the dipolar moment of the active forces Fµ(R)
as

Dµν =
∫

Ω
Fµ(R)Rν dV. (4)

Note that Dµν is independent of the origin of the coordinates

if the body forces sum to zero as expected for active elements

embedded in an elastic medium, and that the total force dipole

exerted by several active elements is equal to the sum of the

individual force dipoles.

Inserting the force balance equation ∂ν σµν = −Fµ into

Eq. (4) and integrating by part yields the mean stress theorem

Dµν =
∮

∂Ω
σλ µ(R)Rν dsλ +

∫

Ω
σµν(R) dV. (5)

Defining the integrated stress tensor Σµν =
∫

Ω σµν dV and us-

ing the definition of the boundary dipole Eq. (2), Eq. (5) can

be cast into a compact form:

∆µν = Dµν −Σµν . (6)

This result holds irrespective of the medium’s material prop-

erties, including homogeneity and linearity.

2.3 Dipole conservation

Despite its universality, in the general case the result of Eq. (6)

involves a complicated unknown object Σµν and is thus of lim-

ited practical use. Here we show that this limitation is lifted

when considering a linear homogeneous elastic medium with

fixed boundaries.

In a linear homogeneous elastic medium, stress is re-

lated to strain through a position-independent stiffness tensor:

σµν(R) =Cµναβ γαβ (R). Integrating this relation over space,

we get

Σµν =Cµναβ Γαβ with Γαβ =
∫

Ω
γαβ (R) dV, (7)

with Γαβ the integrated strain. Assuming small displace-

ments, we use the linear strain γαβ (R) = [∂α uβ (R) +
∂β uα(R)]/2 with uα(R) the medium’s displacement vector.

Integration of Eq. (7) then yields a boundary integral

Γαβ =
∮

∂Ω

[

uβ (R)

2
dsα +

uα(R)

2
dsβ

]

. (8)

Equation (6) thus provides a decomposition of the boundary

stress as a sum of a bulk term Dµν involving active forces and

a boundary term Σµν = Cµναβ Γαβ related to the system de-

formation. Note that the latter depends on the system’s elastic

properties through the stiffness tensor Cαβ µν , while the former

does not. Now introducing the assumption of fixed bound-

ary conditions, we find that the boundary displacements in the

right-hand side of Eq. (8) vanish, implying that the whole in-

tegral vanishes. Using Eq. (7), we thus find that Σµν = 0, and

thus Eq. (6) can be rewritten as the dipole conservation rela-

tion:

∆µν = Dµν (9)

which relates bulk and boundary forces. To understand the

meaning of this equation, we decompose it into the equal-

ity of the traces, symmetric traceless parts and antisymmet-

ric parts of the two tensors. The equality of the traces,

∆ = Dµµ = D, is of particular interest for biological systems

as it relates the “hydrostatic pressure” ∆ of the medium to

the local force dipole D, a quantity routinely interpreted as

the amount of contractility of the active elements12,19,20,22,25.

Next, the symmetric traceless part of each of the two dipole

tensors [(∆µν +∆νµ)/2 and (Dµν +Dνµ)/2] is analogous to

a nematic order parameter characterizing the anisotropy of the

corresponding forces, and thus their equality means that the

anisotropy of the contractile forces is also conserved across

scales. Finally, the equality ∆µν −∆νµ = Dµν −Dνµ of the

antisymmetric parts is equivalent to torque balance in the elas-

tic medium; since embedded active elements exert a vanish-

ing total torque on the elastic medium, it simply reduces to

∆µν −∆νµ = 0, and thus expresses torque balance on the total

system.

For systems without fixed boundaries, Eq. (9) takes the

more general form

∆µν = Dµν −Cµναβ Γαβ , (10)

meaning that the total coarse-grained stress −∆µν/V is

the sum of an active contribution and of the elastic stress

Cµναβ Γαβ . This relation has previously been derived in an

isotropic geometry24.

Note that Eq. (9), as well as the other dipole conservation

relations presented in this paper assume a homogeneous (or

statistically homogeneous in Sec. 4) elastic medium. Like

these other results, it can however be generalized to cases

where a piece of elastic material is removed to make space
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v− vm = 0, we find

Σ = D−∆ = 0, (25)

i.e., the effective medium theory predicts average dipole con-

servation irrespective of boundary conditions. Going beyond

this vanishing average stress, we further compute the variance

Σ2 of the integrated stress, which is proportional to (v− vm)2.

For small disorder, the typical mismatch v− vm between the

random bond and its deterministic neighbors is moreover pro-

portional to the mismatch α−αm of their spring constants, and

thus to the amplitude δα of the disorder. This finally yields

Std(Σ) = Std(∆) = Σ0δα, (26)

where the geometry-dependent prefactor Σ0 in the right-hand

side is given in Appendix A. Comparing this effective medium

prediction with the numerical data of Sec. 4.2, we find an ex-

cellent agreement up to a bond disorder δα ≃ 1, following

which our small-disorder expansion breaks down [Fig. 4(b)].

This proportionality of dipole fluctuations δΣ to the net-

work disorder δα suggests that reliable dipole transmission is

only possible in well-ordered media. However, due to the lin-

earity of the elastic medium, the fluctuations stemming from

many small contractile elements scattered through space aver-

age out to zero. This scattered geometry is reminiscent of the

structure of force-generating cytoskeletal networks.

5 Breakdown of dipole conservation in nonlin-

ear elastic media

Unlike the elastic disorder discussed above, nonlinear elastic

behavior introduces systematic violations of force dipole con-

servation, as illustrated here on a simple example. We con-

sider a spherical, three-dimensional cavity of radius R1 filled

with a continuum homogeneous elastic medium with elastic

energy density

e =
λ

2
(Trγ)2 +µTr

(

γ2
)

+
β

3
(Trγ)3 , (27)

where γ is the strain tensor, λ and µ are Lamé parameters

that characterize the linear response of the material, and β is

a nonlinear compressibility, with β > 0 describing softening

upon compression. We impose a radial displacement u0 at

radius R0, resulting in a radial displacement

uR(R) = AR+
B

R2
(28)

with

A =

{

u0/R0 R < R0

−u0R2
0/(R

3
1 −R3

0) R0 < R < R1

(29a)

B =

{

0 R < R0

u0R0R3
1/(R

3
1 −R3

0) R0 < R < R1

. (29b)

Although Eq. (28) matches the linearized solution of the elas-

tic problem, it is actually valid to arbitrary nonlinear order for

the specific form of the strain energy of Eq. (27)30,31.

Restricting ourselves to small displacements, we can use the

usual Cauchy strain tensor γµν = 1
2
(∂µ uν + ∂ν uµ) and derive

the resulting radial stress

σRR(R) = 3λA+2µ

(

A−
2B

R3

)

+9βA2, (30)

which we use to compute the local and boundary force dipoles

D = 4πR3
0

[

σRR(R
+
0 )−σRR(R

−

0 )
]

= u0 (λ +2µ)
12πR3

1R2
0

R3
1 −R3

0

+βu2
0

36πR3
1R0

(

R3
1 −2R3

0

)

(

R3
1 −R3

0

)2

∆ = 4πR3
1σRR(R1)

= u0 (λ +2µ)
12πR3

1R2
0

R3
1 −R3

0

−βu2
0

36πR3
1R4

0
(

R3
1 −R3

0

)2

∼
R0≪R1

D−36πβu2
0R0. (31)

Thus the nonlinear elasticity of the material renormalizes the

local force dipole by a quantity −36πβu2
0R0 which becomes

negligible in the linear limit βu0 ≪ λ ,µ . This violation of

dipole conservation favors contraction (∆ < 0) for a material

that softens under compression (β > 0) as further discussed

below.

6 Discussion

Stress-generating, active materials are essential constituents

of the cell, and their biological design is strongly con-

strained by the physical laws governing force transmission

in elastic media. As shown here, these laws take a sim-

ple, geometry-independent form in homogeneous linear elas-

tic media, whereby the force dipole is an invariant of linear

elasticity. More specifically, the macroscopic force dipole ten-

sor exerted by the medium on its boundaries is equal to the

sum of the microscopic force dipoles exerted on it by em-

bedded active elements. This dipole conservation relation is

valid both for continuum media and for discrete media with

unspecified finite range interactions, making it relevant for

popular biological fiber network models with stretching and

bending energies17. It also holds true in anisotropic me-

dia. Due to its generality, dipole conservation is a powerful

tool to relate widely used macroscopic descriptions of the cy-

toskeleton, sometimes termed active gels theories, to the un-

derlying microscopic phenomena. For instance, in a homo-

geneous linear elastic medium with a density ρ of embedded

elements each exerting a force dipole dµν , the active stress

σ̃µν —the central object of active gel theories—is simply given

by σ̃µν =−ρdµν [see Eqs. (3) and (9)].

1–9 | 7
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This relation has interesting experimental implications, as it

allows to relate measurements of the macroscopic stress σ̃µν

in cells and tissues to the forces dµν exerted by their compo-

nents in their physiological environment, provided that their

concentration ρ is known. Such macroscopic characteriza-

tions are routinely performed on reconstituted actomyosin net-

works5, live cells32 and whole active tissues4. The inferred in

situ dµν may differ from microscopic measurements on indi-

vidual active elements, thus revealing new behaviors resulting

from the embedding of these elements in the medium.

Considering biologically relevant, disordered elastic media,

we show that in a discrete linear system where the disorder

probability distribution is position-independent, dipole con-

servation is satisfied on average. This result again applies to

fiber network models, but can be violated in small systems

where the influence of the boundary conditions is not negligi-

ble. Dipole conservation is moreover not generally respected

in every statistical realization of the system, and fluctuations

are proportional to the amplitude of the disorder. However, in

a system with many active elements the violation associated

with each one only depends on its immediate elastic environ-

ment. In large enough systems, such individual violations are

thus essentially uncorrelated and self-averaging thus leads to

reliable, deterministic stress generation.

Unlike disorder, nonlinearities have a systematic effect on

force transmission. Indeed, we show that a material that soft-

ens under compression tends to favor contraction, reminis-

cent of the enhanced contractility observed in bundles and

networks of filaments prone to buckling under compressive

stresses33–35. A similar effect has been been predicted in

shear stiffening materials11. Nonlinear behavior may also

stem from geometrical effects in the absence of a constitutive

nonlinearity of the material, as when parts of the elastic body

undergo large displacements at small strains36. Such situa-

tions also lead to violations of the force dipole conservation.

As biological media reorganize and flow under force, we ex-

pect their long-time behavior to depart from the elastic frame-

work considered here and behave viscoelastically. Interest-

ingly, for small enough deformation our results still apply in

these cases. Indeed, both force balance and the linear relation-

ship between stress and strain are still satisfied in viscoelas-

tic systems, the only difference being that the elastic modu-

lus relating these two quantities is now frequency-dependent.

However, if the material is liquid-like on long time scales we

expect the resulting flows to induce large deformations, result-

ing in geometrical nonlinearities and violations of the dipole

conservation. Finally, we note that geometrical nonlinearities

are also more prevalent in disordered than homogeneous net-

works37, implying that disorder might significantly affect con-

tractility by lowering the threshold to nonlinear behavior. As

a result, a reliable understanding of contraction in active bio-

logical materials requires a good characterization of the vis-

coelastic and nonlinear properties of the underlying matrix.

Given impressive recent experimental advances in this area,

we believe that model-independent, rigorous theoretical stud-

ies such as this one will be valuable in analyzing new data and

thus understanding the relation between molecular motors and

cell-wide force generation.
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A Effective medium theory for disordered

spring networks

Here we derive the results of Sec. 4.3 by developing an effective medium

theory, following Ref. 29. In this approach the disordered network described

in Sec. 4 is approximated by an effective homogeneous network where every

bond has a spring constant αm. When subjected to the same body forces and

boundary conditions as the original network, the effective network deforms so

that the bond joining adjacent vertices i and j has elongation v
(i j)
m with respect

to its rest length. To determine the value of αm, we introduce a third system

obtained by replacing bond (i j) by a random spring with constant α drawn

with probability law dP(α). This induces a change in the deformation field,

and the elongation of the considered bond in the single-random-bond system

is denoted v(i j) = v
(i j)
m +δv(i j). Mechanical equilibrium then imposes

δv(i j) = v
(i j)
m

αm −α

qαm +α
(32)

where q = z/2d −1 with z the network connectivity and d the spatial dimen-

sion. The effective spring constant αm is fixed by imposing

δv(i j) = v
(i j)
m

∫

αm −α

qαm +α
dP(α) = 0, (33)

where the average is taken over the distribution of α .

To compute the integrated stress Σ, we note that displacements in our single

random bond system are the same as in a homogeneous lattice of αm springs

with an active force dipole of amplitude (α−αm)v
(i j) applied along bond (i j).

We further note that the integrated stress in this homogeneous, linear system

vanishes according to Eq. (21). Since stresses in this system are identical to

those in our single-random-bond system except at bond (i j), the integrated

stress in the latter is equal to the integrated stress in the former (i.e., zero) plus

the contribution of bond (i j):

Σ = 0+(α −αm)v
(i j) =

zαm

2d
δv(i j) (34)

where Eq. (32) was used. Inserting Eq. (33) into Eq. (34), we obtain Σ = 0,

i.e., the average dipole conservation equation Eq. (25).

Denoting σ
(i j)
m =αmv

(i j)
m and δσ (i j) = σ

(i j)
m +δσ (i j), we plug Eq. (32) into

Eq. (34) and compute
[

δσ (i j)
]2

=C
[

σ
(i j)
m

]2

, where

C =
∫

[

αm −α

(1−2d/z)αm +2dα/z

]2

dP(α). (35)

In the spirit of the effective medium theory, we approximate the fully random

lattice as a superposition of single random bond lattices and sum the bond

stresses σ (i j) as independent identically distributed variables:

Σ2 = ∑
(i j)

[

δσ (i j)
]2

=CΣ2
0, (36)

where Σ2
0 = ∑(i j)

[

σ
(i j)
m

]2

can be computed from the stress field in the homo-

geneous system with appropriate boundary conditions and active body forces.

This procedure is used to obtain the normalization factor of Fig. 4(b). Note

that C takes a simple form in the weak disorder limit Var(α) = δα2
≪ α2.

Indeed, setting α = 1 Eq. (33) yields

αm = 1−
2d

z
(δα)2 +O

[

(δα)3
]

, (37)

and the numerical factor becomes C = δα2 +O
[

(δα)3
]

, yielding Eq. (26).
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Many living materials exert mechanical stresses on their environment that originate from internal forces 
generated by embedded active elements. We derive a general relation between microscopic forces and 
macroscopic stresses, which takes the form of a conservation of the force dipole across scales in linear 

elastic media.  
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