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In complex fluids the Gaussian Diffusion Approximation is generally
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The Gaussian Diffusion Approximation proposes that the distribution of displacements ∆x for a particle diffusing through a
complex fluid has a Gaussian dependence on ∆x. We demonstrate from experimental evidence and computer simulations that this
approximation is generally incorrect in complex fluids. As a result, experimental studies that have used the Gaussian Diffusion
Approximation to interpret their findings will need to be reconsidered.

1 Introduction

The Gaussian Diffusion Approximation was introduced a cen-
tury ago to treat Brownian motion and diffusion by meso-
scopic particles and dilute neutral solutes in low-viscosity liq-
uids. Within the limits of then-current experimental instru-
mentation, the approximation was adequate for its intended
purpose: It gave a reasonable microscopic description of dif-
fusion in simple systems. Under modern conditions, diffusion
measurements in complex fluids are often used to study the
complex fluid’s dynamics. The Gaussian Diffusion Approxi-
mation is then sometimes applied to these measurements, e. g.,
to infer mean-square particle displacements.

The thesis of this paper is that many modern invocations of
the Gaussian Diffusion Approximation in soft matter studies
have taken the approximation entirely outside its range of va-
lidity. In consequence, inferences based on the approximation
can be seriously misleading. Conversely, predictions of dif-
fusive behavior based on molecular models and the Gaussian
Diffusion Approximation may be significantly in error, even
though the molecular models are entirely adequate.

The Gaussian Diffusion Approximation, written for motion
along one coordinate axis, provides1,2

P(∆x, t) =
exp(−(∆x)2/(2⟨(∆x(t))2⟩))

(2π⟨(∆x(t))2⟩)0.5 . (1)

Here P(∆x, t) is the probability of observing a displacement
∆x of a diffusing particle during a time interval t. P(∆x, t) is
sometimes known as the van Hove function. The mean-square
displacement of the diffusing particle during time t enters the
van Hove function via the factor ⟨(∆x(t))2⟩ in the exponential.

An incomplete list of experimental techniques whose out-
comes are sometimes interpreted by invoking this approx-
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imation includes (i) pulsed field gradient nuclear magnetic
resonance using the Stejskal-Tanner equation, (ii) particle
tracking microrheology, (iii) fluorescence correlation spec-
troscopy, (iv) diffusing wave spectroscopy, (v) fluorescence
photobleaching recovery, (vi) x-ray correlation spectroscopy,
(vii) optical particle tracking, (viii) inelastic neutron scatter-
ing, and (ix) optical probe diffusion/microrheology. Our own
interest in these techniques traces back to a long-ago series
of papers by Hallet and students3,4, who introduced the idea
of studying polymer solution dynamics by using quasielastic
light scattering to observe the diffusion of dilute polystyrene
spheres through solutions of weakly-scattering polymers.

In saying that the combination of any of these techniques
with the Gaussian approximation may lead to difficulties, we
emphasize: (i) The literal experimental data are not in ques-
tion, only their interpretations; and (ii) Control experiments
that validated these techniques in simple Newtonian fluids are
not relevant for the discussion here.

To understand why the Gaussian approximation is invoked
so frequently, it is worthwhile to begin with the theoretical
rationale for using it. The rationale is based on the Central
Limit Theorem. The qualitative notion is that diffusive mo-
tion can be envisioned as occurring because the diffusing par-
ticle takes large numbers of random steps. Except over very
short times, sequential steps are said to be independent (un-
correlated). In an equilibrium system, the distribution func-
tions for all the random steps are said to be the same. If these
conditions are satisfied, the Central Limit Theorem says that
a sum ∆x of a large number of very small random steps must
have the Gaussian distribution seen in Eq. 1. Of course, the
claim that sequential diffusive steps are uncorrelated must face
the challenge that this claim is already known to be invalid in
simple and glassy liquids5–7. In simple liquids, particle dis-
placements remain correlated over long times due to the long-
time persistence of hydrodynamic forces, the ’hydrodynamic
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tail’, as has been observed experimentally by Boon and by
Bouiller8,9. Nonetheless, Gaussian diffusion appears attrac-
tive as an approximation to real diffusion.

The reason that the Gaussian Diffusion Approximation
must be viewed as highly suspect in complex fluids is a sec-
ond mathematical result, namely Doob’s Theorem10. For the
trajectory of a diffusing particle, the conditions under which
Doob’s Theorem is applicable are precisely the same as the
conditions under which the Central Limit Theorem is applica-
ble. If one theorem is applicable, so must be the other. Doob’s
Theorem constrains the time dependence of ∆x. Whenever
particle motions lead via the Central Limit Theorem to the
Gaussian of Eq. 1, it is necessarily the case from Doob’s The-
orem that the mean-square particle displacement increases lin-
early with time, namely

⟨(∆x(t))2⟩= 2Dt. (2)

The diffusion coefficient D of Doob’s Theorem is a time-
independent constant. However, in complex fluids many ex-
periments are not consistent with Eq. 2. If Doob’s Theorem
does not describe some system, then the Central Limit Theo-
rem also cannot describe that system, so therefore experiment
is also not consistent with using the Central Limit Theorem to
describe single-molecule diffusion in that system.

Our result on the Gaussian Diffusion Approximation in
complex fluids has substantial antecedents in other systems.
It has long been known for simple liquids that the Gaussian
Diffusion Approximation is invalid on short time scales5,6. In
small-molecule single-component liquids at short times, the
van Hove function P(∆x, t) is not a Gaussian in ∆x. Further-
more, in the same fluids ⟨(∆x(t))2⟩ does not increase linearly
with t. On the same line, it is well-established that solu-
tion dynamics in glass-forming fluids close to the glass tran-
sition is characterized by several universal features, including
stretched-exponential-in time relaxations and van Hove func-
tions having fat exponential tails.7 These features show that
the Central Limit Theorem does not describe molecular mo-
tion in near-glass liquids. However, the complex fluid com-
munity has not uniformly recognized the significance of these
well-established simple-liquid behaviors for studies of com-
plex fluids, as witness the community’s widespread invocation
of the Gaussian Diffusion Approximation.

The following Sections of this paper present extensive evi-
dence that the Gaussian Diffusion Approximation should not
be invoked in complex fluid studies. Section 2 presents exper-
imental evidence already found in the literature showing that
the approximation is invalid. Section 3 develops a series of
computer simulations of Gaussian and non-Gaussian random
walks. Section 4 presents outcomes of the simulations, show-
ing that when non-Gaussian random walks are interpreted by
applying the Gaussian Diffusion Approximation, substantial
errors arise. Section 5 offers a discussion of our findings.

2 Experimental Evidence

This Section notes five sorts of experimental data showing that
the Gaussian Diffusion Approximation is invalid in complex
fluids. There are direct experimental tests of Eq. 1, direct ex-
perimental tests of equation 2, and three classes of experiment
that address the spatial Fourier transform g(1s)(q, t) of P(∆x, t).

First, P(∆x, t) has been measured directly with particle
tracking. Early measurements of P(∆x, t) by Apgar, et al.11

and Tseng, et al.12 clearly revealed non-Gaussian forms for
P(∆x, t). More recent studies by Wang, et al.13,14, and Guan,
et al.15, the last being measurements on a near-ideal system of
colloidal hard spheres diffusing through nondilute suspensions
of larger hard spheres, confirmed a non-Gaussian distribution
of P(∆x, t). The more recent studies reveal the form of the dis-
tribution, namely P(∆x, t) is nearly Gaussian for smaller | ∆x |,
but, at larger |∆x |, P(∆x, t) decreases approximately exponen-
tially in |∆x |. These are the ’fat tails’ described by Chaudhuri,
et al.7 for glassy systems. By direct measurement, P(∆x, t) in
complex fluids is thus not a Gaussian in ∆x.

Second, ⟨(∆x(t))2⟩ has been measured using particle track-
ing. In some systems, experiment finds

⟨(∆x(t))2⟩= atα (3)

for a a constant and α < 1, the case termed subdiffusion. Ex-
perimental studies reporting subdiffusion were reviewed by
Saxton16. Doob’s Theorem shows: If the Gaussian Diffusion
Approximation based on the Central Limit Theorem is valid
in a system, then it is mathematically impossible for subdiffu-
sive behavior to be observed; in Gaussian diffusive systems,
α = 1 must be obtained. If α ̸= 1, then the system cannot be
Gaussian.

Finally, quasielastic light scattering has been used to study
optical probe diffusion through complex fluids. Optical probe
diffusion is applicable to complex fluids that scatter light
weakly. In an optical probe experiment, one observes the
motions of a dilute suspension of intensely-scattering optical
probes through a complex fluid matrix. For a successful ex-
periment, either the probes completely dominate scattering by
the complex fluid of interest, or the spectra of the probes has
been purified of scattering by the complex fluid spectrum via
subtraction at the field correlation function level. In a probe
experiment, quasielastic light scattering measures directly the
spatial Fourier transform of P, namely

g(1s)(q, t) =
∫ ∞

−∞
d∆x P(∆x, t)exp(iq∆x). (4)

Up to a possible normalizing constant, g(1s)(q, t) is the self
part of the probe dynamic structure factor, with q being the
scattering vector, the self part being observed because the
probes are dilute.
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In systems that are described accurately by the Gaussian
Diffusion Approximation, eq 4 becomes

g(1s)(q, t) = exp(−q2⟨(∆x(t))2⟩/2), (5)

and on applying Doob’s Theorem

g(1s)(q, t) = exp(−Dq2t). (6)

Eq 5 is sometimes interpreted as showing that ⟨(∆x(t))2⟩ can
be obtained from g(1s)(q, t) in non-trivial cases. Eq. 6 shows
that if the Gaussian Diffusion Approximation is applicable
then g(1s)(q, t) must necessarily be a simple exponential in t
and in q2.

Light scattering studies of probe diffusion readily identify
systems in which Eq. 6 is incorrect. In some systems, the
time dependence is wrong. Strelezky and Phillies17 report
systems in which g(1s)(q, t) relaxes as a stretched exponen-
tial exp(−θ tβ ) in time, θ and β being line shape parameters,
with β ̸= 1. In other systems, g(1s)(q, t) gains multiple relax-
ations on different time scales18–20. In yet other systems, the
q2 dependence is wrong. Several authors18–21 report cases in
which the relaxation log(g(1s)(q, t)) is not linear in q2. From
the spatial Fourier transform relation, if log(g(1s)(q, t)) is not
linear in q2, P(∆x, t) can not be a Gaussian in ∆x. In all these
systems, the Gaussian Diffusion Approximation cannot possi-
bly be correct, because g(1s)(q, t) does not have the properties
required for Gaussian diffusers by the Central Limit Theorem
and Doob’s Theorem.

The above are five lines of experimental evidence show-
ing that the Gaussian Diffusion Approximation is not valid
in many complex fluids. In particular, we have considered
(i) direct measurement of P(∆x, t), (ii) direct measurement of
⟨(x(t))2⟩, (iii) the time dependence of g(1s)(q, t), (iv) multi-
modal lineshapes of g(1s)(q, t), and (v) direct measurement of
the q-dependence of g(1s)(q, t).

3 Simulations

As a further demonstration that the Gaussian Diffusion Ap-
proximation is invalid in complex fluids, we did computer sim-
ulations. Full details are in the Electronic Supplement. The
simulations had two distinct parts. First, we generated tra-
jectories u(t) and x(t) for the particle’s velocity and position.
Second, we generated statistical characterizations of particle
motions.

A starting point for simulations is the Langevin equation

m
du(t)

dt
=− fou(t)+F (t), (7)

which is a heuristic approximation introduced a century ago as
a description of the diffusion of mesoscopic particles in sim-
ple fluids. In this equation, u(t) is the time-dependent particle

velocity, m and fo are the probe’s mass and drag coefficient,
and F (t) is the thermal ”random” force on the particle. fo
and F (t) are interlinked by the fluctuation-dissipation theo-
rem. The thermal force is taken to have a very short correla-
tion time, so that impulses

∫
F (t)dt supplied to the particle by

the fluid, over nonoverlapping time intervals, are very nearly
independent from each other.

We first implemented Eq. 7 as a numerical simulation. F (t)
was created with a pseudorandom number generator having
a Gaussian distribution. We confirmed that x(t) from our
simulation has the properties expected2 for a solution to the
Langevin equation. In particular, we found a Gaussian dis-
tribution for P(∆x, t), with a mean-square displacement that
increases linearly with t.

To reveal non-Gaussian behavior, we used a more physi-
cally realistic form for the equation of motion. Our starting
point was the Mori equation22, which provides

m
du(t)

dt
= iΩu(t)−

∫ t

−∞
dsϕ(t − s)u(s)+FP(t). (8)

The Mori equation is a clever and complex rearrangement of
Newton’s Second Law, written as the Liouville equation. Here
u(t) is the dynamic variable of interest, in this work the probe
velocity. For our systems Ω vanishes. FP(t) is the projected
force; Mori’s treatment gives an exact albeit formal expression
for FP(t). The Mori memory kernel ϕ(s) is determined by the
projected force, namely

ϕ(s) = ⟨FP(0)FP(s)⟩/⟨(u(0))2⟩. (9)

The Mori equation looks a great deal like the Langevin equa-
tion. However, the Langevin equation is a heuristic approx-
imant. The Mori equation is an exact result of classical and
statistical mechanics.

In applications of the Mori equation, the projected force
FP(t) is often approximated as having a correlation time short
compared to the time scales of interest. With this approx-
imation, ϕ(s) is very nearly a delta function in time. For
probes in complex fluids, this approximation loses the inter-
esting physics. The central rationale for observing probe dif-
fusion in complex fluids is to extract information about the re-
laxations of the complex fluids. To do so, probe motions must
be observed on the time scales on which relaxations occur. On
these time scales, FP(t) and ϕ(s) have prolonged correlations.

To apply the Mori equation, we needed an adequate model
for a complex fluid. Our starting point is the observation that
complex fluids have relaxations on multiple, very different
time scales. For example, a probe particle diffusing in a poly-
mer solution experiences fluctuating interactions with the sol-
vent and largely independent fluctuating interactions with the
polymer molecules. Corresponding to these two very different
relaxations, the thermal driving force FP(t) and the effective
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friction factor ϕ(s)) should each be expected to have correla-
tions and relaxations on multiple different time scales.

A model corresponding to these expectations has been de-
veloped by Tateishi, et al.23. Tateishi, et al., introduce an ap-
proximation to Eq. 8, in which FP(t) contains two uncorre-
lated noise sources ξ (t) and η(t). In Tateishi’s calculation,
the time correlation functions of ξ (t) and η(t) were a delta
function and a power law. The corresponding memory kernel
then had two components, namely

ϕ(s) = ⟨ξ (t)ξ (t + s)⟩+ ⟨η(t)η(t + s)⟩. (10)

It may appear somewhat obscure to say that the random
force can be divided into two components. A recent physi-
cal model that displays this division explicitly is the walking
confined diffusion model introduced by Ziebacz, et al.24, and
by Ochab-Marcinek and Holyst25. In this model, a probe in a
polymer solution is said to be confined to a ”cave”, a spherical
depletion zone centered on the probe from which the polymer
is significantly excluded. Within the cave, the probe can dif-
fuse relatively rapidly. The probe cannot move significantly
beyond the edges of the depletion zone, because the viscosity
outside the depletion zone is too large. However, the spher-
ical depletion zone itself performs slow diffusion, taking the
probe with it as it moves. The net result is that the probe parti-
cle performs motion on two different time and distance scales,
a faster scale determined by the current location and size of the
depletion zone, and a slower scale determined by the diffusion
of the depletion zone. Correspondingly, the probe is subject
to a rapidly fluctuating force that drives probe motion within
the depletion zone, and a slowly fluctuating force correspond-
ing to the gradual motion of the zone. A slightly different
version of the model, in which the depletion zone perpetually
relaxes via diffusion toward the current location of the probe,
was provided by Phillies26,27; however, the interest in those
papers was primarily the long-time behavior.

To implement the Tateishi, et al., calculation, we simulated
a system with two random forces. The rapidly-fluctuating
thermal force was represented by a random number genera-
tor giving a Gaussian-normal distribution output. The corre-
sponding memory kernel was taken to be a delta function, giv-
ing the friction factor seen in the Langevin equation. To gen-
erate a second thermal force and memory kernel having the
right long-time correlations, we used Mori’s orthogonal hier-
archy of thermal forces scheme28. The basis of the orthog-
onal hierarchy is Mori’s observation that the time evolution
of the projected thermal force can itself be calculated with a
second Mori equation. We used the second Mori equation as
a generalized Langevin equation to generate the needed ran-
dom force, a force having the desired long-time correlations,
and separately calculated the corresponding memory function
ϕ(s), as discussed in the Supplemental Material. Mathemati-

cally, the long-lived projected force was constructed as a sum

FP
i =

i

∑
j=i−N

YjCi− j. (11)

Here i and j label time steps in the calculation, while Ci− j
propagates the contribution of the random source at time j
forward to time i. N is the range of Ci− j, the largest value of i−
j for which a given Gaussian random variable Yj contributes
to FP

i .
In our simulations, correlations in the slowly-relaxing fluc-

tuations were chosen to relax exponentially with time. We also
experimented with a projected force that had an exponential
relaxation at short times and a power-law relaxation at longer
times. This alternative projected force gives the same quali-
tative results as the results shown below for an exponential-
correlated random force, so simulations using the alternative
force were only used to confirm that our qualitative findings
were not some quirk of an idiosyncratic choice of random
forces.

We then generated an extensive set of characterizations of
our trajectories u(i) and x(t) as obtained via numerical inte-
gration of our approximation to the Mori equation. Numerical
integration gives the trajectories at equally spaced time steps;
the natural time unit is a single time step. For each system we
calculated the velocity-velocity correlation function

CVV (t) = ⟨u(0)u(t)⟩, (12)

and the acceleration-acceleration correlation function

CAA(t) = ⟨(u(t2)−u(t1))(u(t4)−u(t3))⟩. (13)

CAA(t) was obtained for t1 ≤ t2 ≤ t3 ≤ t4, with t = t3−t2, while
keeping t2 − t1 and t4 − t3 small.

The direct test of the displacement distribution function
was the calculation of P(∆x, t). Here ∆x(t) = x(τ + t)− x(τ).
P(∆x,1) gives the distribution of x(t)− x(t −1), which is also
the distribution of u(t). The u(t) had the expected Gaussian
distribution. CVV (t) is long lived, so errors due to time being
discretized are small.

We calculated the time-dependent central moments Kn(t) of
P(∆x, t) from the simple moments ⟨(∆x(t))n⟩, namely

K2(t) = ⟨(∆x(t))2⟩, (14)

K4(t) = (⟨(∆x(t))4⟩−3(⟨(∆x(t))2⟩)2)/(⟨(∆x(t))2⟩)2, (15)

and

K6(t) = (⟨(∆x(t))6⟩−15⟨(∆x(t))4⟩⟨(∆x(t))2⟩

+30⟨(∆x(t))2⟩3)/(⟨(∆x(t))2⟩)3. (16)

The odd central moments K1, K3, and K5 of P(∆x, t) were
confirmed by direct calculation to vanish, as expected from
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symmetry. In plotting P(∆x, t), the abscissa was scaled by the
root-mean-square displacement.

Many studies of the diffusion of probe molecules through
complex fluids are based on scattering methods. These meth-
ods typically determine the intermediate scattering function

g(1s)(q, t) = ⟨cos(q∆x(t))⟩. (17)

We determined this function for wide ranges of q and
t. As an indication of the simulation’s accuracy, the
relaxation of g(1s)(q, t) could generally be followed until
g(1s)(q, t)/g(1s)(q,0) < 3 ·10−4, corresponding to a signal-to-
noise ratio ca. 3000. It is sometimes assumed that g(1s)(q, t) is
related to the mean-square displacement via

g(1s)(q, t) = exp(−q2⟨(∆x(t))2⟩/2). (18)

We tested this hypothesis by plotting the directly-calculated
(eq 17) and inferred (eq 18) values for g(1s)(q, t) against each
other.

4 Results

We made extensive simulations on a probe that follows the
Langevin equation and on a probe that follows the Mori equa-
tion with two driving forces. The Langevin simulation yielded
all expected properties: P(∆x, t) was a Gaussian at all times.
Correspondingly, the higher central moments K4 and K6 of
P(∆x, t) were both very nearly zero at all times. CVV (t) re-
laxed exponentially in t. At times sufficiently long that CVV (t)
had relaxed into the noise in the simulation, ⟨(∆x(t))2⟩ in-
creased linearly with time. The intermediate scattering func-
tion log(g(1s)(q, t)) was linear in t, linear in q2, and determined
by ⟨(∆x(t))2⟩ via eq 18.

We now consider a diffusing probe in a complex fluid. The
probe’s diffusion was driven by two random forces, one being
the Langevin driving force and the other having an exponen-
tial memory, and the two corresponding friction forces. The
Langevin drag coefficient was fo = 0.1. Our propagator was
an exponential Ci = f1 exp(−ai)/Q with a = 0.01, f1 = 0.1,
and normalization such that ΣiCi = f1.

Figures 1 and 2 show important statistical properties of this
probe. The velocity-velocity correlation function and mean-
square displacement appear as Fig 1a. The time evolution
of the mean-square displacement is undistinguished. The two
solid lines represent the near-ballistic motion (⟨(∆x(t))2⟩ ∼ t2)
at short times and pseudodiffusive motion (⟨(∆x(t))2⟩ ∼ t1) at
long times. We say pseudodiffusive because P(∆x, t) was not
a Gaussian at long times. The time evolution of ⟨u(0)u(t)⟩
shows a perhaps-unexpected feature, namely an oscillation re-
sembling a damped ringing motion. The oscillation is driven
by the memory kernel, which creates a drag proportional to
the velocity (the sequential displacements) at earlier times.
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Fig. 1 Diffusion by a probe with a slow exponential memory. (a)
⟨v(0)v(t)⟩/⟨(v(0))2⟩ (⃝) and ⟨(∆x(t))2⟩ (�). (b) P(∆x, t) at at 1
(⃝) and 50,000 (♢) timesteps. (c) Cumulants K4 and K6 as
functions of time for probes with a slow exponential memory (◦,♢,
respectively) and for probes with a simple Langevin probe (+,×,
respectively).

Figure 1b shows P(∆x, t) at short (t = 1) and long (t =
50000) times. The qualitative shape of P(∆x, t) evolves in
time. As seen in the figure, the short-time P(∆x,1) is a
single Gaussian, measurements (points) matching a Gaus-
sian fit (solid line). At the large time, P(∆x, t) is not at all
Gaussian. The central feature in P(∆x, t), corresponding to
∆x/⟨(∆x(t))2⟩1/2 < 1 or so, is a central hump that could be ap-
proximated with a Gaussian. At larger ∆x, P(∆x, t) gains near-
exponential wings, decreasing approximately as exp(−a|∆x|).
Near-exponential wings have previously been found experi-
mentally by Wang, et al.13,14, and Guan, et al.15.

Figure 1c shows the time dependence of the higher-order
central moments of P(∆x, t), both for the Langevin probe par-
ticle and also for the Mori-Zwanzig probe particle. For the
Langevin probe, the higher-order cumulants are very nearly
zero. For the Mori-Zwanzig probe, K4 reaches a long-time
asymptote, while K6 also tends toward a fixed value. On the
scale of Figure 1b, plots of P(∆x, t) for the ten largest delay
times are almost entirely indistinguishable; the apparent fluc-
tuations in K6 at these large times are seen because K6 is a very
small difference between extremely large numbers. There is
clearly no tendency for P(∆x, t) to return to Gaussian behav-
ior, for which K4 = K6 = 0, at large times.

Figure 2a shows a semilog plot of the intermediate struc-
ture factor g(1s)(q, t) as a function of time for various values of
q. The relaxation of g(1s)(q, t) is profoundly non-exponential,

1–8 | 5

Page 6 of 9Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



0 200 400 600 800 1000
time

0.001

0.01

0.1

1

g
(1
s
) (
q
,t
)

a

0 2x10
-5

4x10
-5

6x10
-5

8x10
-5

10
-4

q2

0.01

0.1

1

g
(1
s
) (
q
,t
)

b

10
0

10
1

10
2

10
3

10
4

10
5

10
6

time

0.001

0.01

0.1

1

g
(1
s
) (
q
,t
)

c

Fig. 2 Diffusion by a probe with a slow exponential memory. (a)
g(1s)(q, t) as a function of t for (from slowest to fastest decay) q of
0.01, 0.02, 0.03, 0.04, 0.05, 0.06, and 0.08. (b) g(1s)(q, t) as a
function of q2 for (from slowest to fastest decay) t of 50, 300, 1800
4000, 8000, 1.6 ·104, 3.5 ·104, 5 ·104, and 4.9 ·106,(c) Comparison
of g(1s)(q, t) (open points) and exp(−q2⟨(∆x(t))2⟩/2) (filled points),
for q (slowest to fastest decay) of 0.0001 (⊗) , 0.001 (⃝), 0.003
(�), 0.01 (△), 0.02 (♢), 0.04 (△), 0.08 (⃝), and 0.3 (�).

with a drastic change in slope being apparent near t = 100.
The long-time relaxation of g(1s)(q, t) is not a simple expo-
nential; it is seen to retain a slight curvature. Our model thus
leads to non-exponential relaxations of g(1s)(q, t).

Figure 2b presents g(1s)(q, t) as a function of q2 for various
values of t. Just as log(g(1s)(q, t)) does not decay linearly in t,
so also log(g(1s)(q, t)) does not decay linearly in q2.

Finally, Figure 2c compares the measured g(1s)(q, t) with
the Gaussian Diffusion Approximation prediction g(1s) ∼
exp(−q2⟨(∆x(t))2⟩/2). At the largest q we examined,
g(1s)(q, t) as measured agrees with the Gaussian expecta-
tion. However, at such a large q, g(1s)(q, t) decays into
the noise at very small t. At smaller q, the Gaussian ex-
pectation fails qualitatively. For q ≤ 0.04, the experimen-
tally measured g(1s)(q, t) visibly becomes bimodal, as has
also been observed experimentally17–19: At earlier times,
g(1s)(q, t) agrees with the Gaussian expectation. At later
times, exp(−q2⟨(∆x(t))2⟩/2) (filled points) falls rapidly with
increasing t, but the measured g(1s)(q, t) (open points) de-
creases much more slowly. As a result, in later parts of their
decay g(1s)(q, t) and exp(−q2⟨(∆x(t))2⟩/2) differ by orders of
magnitude.

5 Discussion

The primary conclusion of this paper is that it is unjustifiable,
and often incorrect, to use the Gaussian Diffusion Approxima-
tion to interpret data on the diffusion of dilute probe particles
through complex fluids. In support of our conclusion we noted
(Section 2) extensive experimental evidence on diffusion in
polymer solutions, colloid suspensions, and glass-forming liq-
uids. Measurements of P(δx, t), ⟨(∆x(t))2⟩, and g(1s)(q, t) all
show that diffusion in these complex fluids is described by
non-Gaussian processes.

The Gaussian Diffusion Approximation is sometimes in-
voked to claim that mean-square particle displacements can
be calculated from dynamic light scattering spectra via a rela-
tion

g(1s)(q, t) = exp(−q2⟨∆x(t))2)⟩/2). (19)

Because the Gaussian Diffusion Approximation is generally
incorrect in complex fluids, Eq. 19 cannot be used to inter-
pret the motion of particles through complex fluids. While
Eq. 19 is found in standard texts on dynamic light scatter-
ing1, it appears there in the context of experiments on di-
lute macromolecules in simple low-viscosity solvents, notably
water, these being the experiments that were au courant for
light scattering spectroscopy at the time that Ref. 1 was writ-
ten. Fortunately, Doob’s Theorem sometimes gives us an en-
tirely reliable warning that Eq. 19 cannot possibly be valid
in a system, namely if g(1s)(q, t) is not a simple exponential
in q2 and in t then g(1s)(q, t) cannot possibly be consistent
with the Gaussian Diffusion Approximation. The Gaussian
Diffusion Approximation is also sometimes invoked implic-
itly, notably in studies that report ⟨(x(t))2⟩ rather than the full
P(∆x, t). However, the mean-square displacement only char-
acterizes diffusive motions in the special case that the Gaus-
sian Diffusion Approximation is applicable.

In principle, P(∆x, t) should be experimentally accessible
by measuring g(1s)(q, t) at fixed t for an adequate range of
scattering vectors q, and then performing a Fourier transform
from q to ∆x to advance from g(1s)(q, t) to P(∆x, t). Signif-
icant obstacles to such an experiment, which to the author’s
knowledge has not been performed, would include sweeping
an adequate range of q and determining the absolute calibra-
tion of the spectral amplitude as the scattering angle or the
illuminating wavelength are changed.

It appears worthwhile to note that there are generalizations
of the Langevin picture, distinct from the one advanced by
Tateishi23 and seen in operation in the walking confined dif-
fusion model24,25, that lead only to Gaussian behavior. Man-
delbrot and Van Ness29 discuss fractional Brownian motion.
Fractional Brownian motion differs from the Brownian motion
generated by the Langevin equation (eq 7) in that the simple
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random force F (t) is replaced with an integral average

FM(t) =
∫

dsK(s)F (t − s) (20)

of random forces applied at different times, K(s) being a mem-
ory kernel. The simple random force had a vanishingly short
correlation time, so that ⟨F (t)F (t + s)⟩ ∼ δ (s), δ (s) being
the Dirac delta function. In fractional Brownian motion, K(s)
is non-zero over an extended range of values of s, so that
the random increments supplied to dx/dt by FM(t) at differ-
ent times are cross-correlated. Mandelbrot and Van Ness29

specifically considered a power-law memory kernel. So long
as FM(t) is a sum of identically distributed Gaussian ran-
dom variables, it is itself a Gaussian random variable, so the
distribution of displacements P(∆x, t) generated by fractional
Brownian motion remains Gaussian.

Closely related to fractional Brownian motion are the mo-
tions described by the generalized Langevin equation

m
d2x
dt2 =−

∫ t

−∞
ds ϕ(t − s)

dx(s)
dt

+F (t), (21)

as discussed by Fox30, with memory kernel ϕ(t − s) =
kBT m2⟨F (t)F (s)⟩, and kB and T being Boltzmann’s con-
stant and the absolute temperature, respectively. The random
force F (t) is taken to be a non-Markoffian Gaussian random
process, non-Markoffian because ϕ(t) ̸= aδ (t). As empha-
sized by Fox30, dx(t)/dt inherits from F (t) its Gaussian-
random non-Markoff nature, so that x(t) remains Gaussian,
even though it is not a Markoff process.

The models of Mandelbrot and Ness, and of Fox, differ
from Tateishi, et al.’s model in a fundamental respect. In both
of these models the thermal driving force is a sum of identi-
cally distributed random forces, so a Gaussian P(∆x, t) is nec-
essarily found. In the Tateishi, et al., model, there are two si-
multaneous, differently-distributed random forces; rationales
based on the Central Limit Theorem are therefore inapplica-
ble, and a non-Gaussian P(∆x, t) can be obtained.

Finally, I note several experimental techniques whose data
interpretation sometimes relies on the Gaussian Diffusion Ap-
proximation.

Inelastic scattering methods, including quasielastic light
scattering, quasielastic x-ray scattering, and inelastic neutron
scattering, when applied to systems in which the scatterers are
dilute, all measure g(1s)(q, t). For each of these methods, the
results above are all applicable. For probes in complex fluids,
eq 5 is invalid. If one used g(1s)(q, t) to infer the mean-square
displacement, at long times and smaller q the inferred mean-
square displacement would be too small, and the inferred time-
dependent microviscosity would be too large.

Pulsed-Field-Gradient Nuclear Magnetic Resonance gen-
erally31 infers a self-diffusion coefficient via the Stejskal-
Tanner equation32, which in standard derivations31 inserts the

effect of diffusion on spin relaxation via the Fick’s Second
Law operator D∇2, D being a constant. The use of Fick’s
second law is equivalent to the Gaussian Diffusion Approx-
imation. Use of the Stejskal-Tanner equation and PFGNMR
to infer self-diffusion coefficients of objects in complex flu-
ids therefore requires careful attention. In particular, if the
relaxation identified as corresponding to self-diffusion is not
a simple exponential (cf. fig 2a), then the Gaussian Diffusion
Approximation and hence the Stejskal-Tanner equation would
certainly not be applicable to the system.

Particle tracking techniques are sometimes only used to
determine ⟨(∆x(t))2⟩ rather than the full P(∆x, t). If the
mean-square displacement is interpreted directly as a time-
dependent diffusion coefficient, the Gaussian approximation
has been invoked implicitly, namely the relationship between
⟨(∆x(t))2⟩ and Dt is part and parcel of the Gaussian approx-
imation. Fluorescence photobleaching recovery and fluores-
cence correlation spectroscopy sometimes assume a form for
P(∆x, t) and after complex averaging advance to infer the time
dependence of ⟨(∆x(t))2⟩. If the assumed form is Gaussian,
but ⟨(∆x(t))2⟩ does not increase linearly in t, the analysis is
not self-consistent.
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Graphical TOC Text
In a complex fluid, the displacement distribution function

P(∆x, t) is generally not a Gaussian in ∆x; data interpretations
using the Gaussian Diffusion Approximation are often invalid.

8 | 1–8

Page 9 of 9 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t


