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To study the relationship between dynamics and structure in a glass-forming liquid, we introduce a purely geometric criterion for
locally mobile particles in a dense hard-sphere fluid: namely, “T1-active” particles, which can gain or lose at least one Voronoi
neighbor by moving within their free volume with other particles fixed. We obtain geometrical and dynamical properties for
monodisperse hard-sphere fluids with 0.40 < ¢ < 0.64 using a “crystal-avoiding” MD simulation that effectively suppresses
crystallization without altering the dynamics. We find that the fraction of T1-active particles vanishes at random close packing,
while the percolation threshold of T1-inactive particles is essentially identical to the commonly identified hard-sphere glass

transition, ¢ ~ 0.585.

1 Introduction

The dramatic slowing down and heterogeneity of dynamics in
glass-forming liquids is related to growth of regions of parti-
cles that require collective rearrangements to relax. Despite
substantial efforts, the structural origin of glass transition re-
mains unclear. Widmer-Cooper et al., demonstrated that lo-
cal Debye-Waller factor of a particle (corresponding to the
short time dynamics or rattling motion”) is correlated with
its dynamical propensity (characterizing long time dynamics
or “cage-breaking” process)'. Both quantities were obtained
from an isoconfigurational ensemble average, in which mul-
tiple simulations are performed with the same starting con-
figuration and different realizations of thermal initial veloc-
ities. Hence both the Debye-Waller factor and the propen-
sity only depend on the initial geometry. Similarly, recent
numerical and experimental results suggest a strong correla-
tion between irreversible structural reorganization and quasi-
localized soft modes, which again reflect the local structure>>.
However, finding a local measure of the initial configuration
that is causally connected to the dynamics has proven to be
elusive?.

In this paper, we propose a new, purely geometrical crite-
rion that relates directly to the hard-sphere glass transition. By
analogy to rearrangement processes in foams, we define “T1-
active” particles as those that can either gain or lose a Voronoi
neighbor by moving within their own free volumes, with other
particles held fixed. When T1-inactive particles percolate, we
may expect the system to become non-ergodic or glassy. In
fact, we find that the percolation threshold of T1-inactive par-
ticles coincides with the monodisperse hard-sphere glass tran-
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sition, commonly reported at ¢z ~ 0.585 6,

2 Method

Hard-sphere fluids have been intensively studied since they
serve as the simplest model that exhibits a glass transition,
and are well approximated by real colloidal suspensions. Ge-
ometric properties such as free volume and cavities can be de-
fined rigorously and computed conveniently for hard-sphere
systems’. However, monodisperse hard-sphere fluids crys-
tallize readily at volume fractions ¢ > ¢¢ ~ 0.494. To study
the metastable fluid phase above ¢, a small amount of poly-
dispersity 0 (defined as the fractional standard deviation of
particle diameter) is typically introduced to suppress crystal-
lization. Recently, the extent to which polydispersity alters the
dynamics near the glass transition has been debated %10, Also,
algorithms for computing free volume and related properties
are most conveniently implemented for monodisperse hard-
spheres (though extension to polydisperse spheres is possi-
ble)”. For these reasons, it would be attractive to find a way to
carry out molecular dynamics (MD) simulations of monodis-
perse hard-sphere fluids in which crystallization was somehow
suppressed.

We have developed a crystal-avoiding (CA) MD simulation
method based on hybrid Monte Carlo (MC), inspired by pre-
vious works 21>, Each MC move is generated from a short
event-driven MD trajectory and accepted with a probability
p = min{exp(—YNAds),1}, where N is the number of parti-
cles and §g is the local bond order parameter averaged over
next-nearest neighbors !¢ (or any other sensitive bond-order
parameter that measures the crystallinity of the system). If
the MC move is rejected, all particle velocities are reassigned
from a Maxwell-Boltzmann distribution before the next trial
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Fig. 1 Mean-squared displacements for monodisperse hard spheres
using crystal-avoiding method (CA) and polydisperse systems with
conventional MD (MD) at ¢ = 0.55, 0.56, 0.57 and 0.58. Inset:
pressure versus time at ¢ = 0.57 with different methods. Dotted line
indicates corresponding pressure reported in Ref. 11.

move. We emphasize that the simulation time only advances
when a trial is accepted; in this way, the particle dynamics
can be reasonably reproduced despite the low acceptance rate.
In short, the method essentially samples among those trajec-
tories in phase space for which crystallization did not occur.
If the duration of the trial trajectories and hence the time be-
tween velocity randomizations is larger than velocity autocor-
relation time, the resulting dynamics should well represent the
metastable fluid. If nucleation is rapid, this may lead to a low
acceptance rate of trial moves. In practice, we choose the bias
Y and trial trajectory length /\p for reasonably high accep-
tance rates and fidelity to dynamics of polydisperse systems
(see Table 1).

Fig.2 illustrates the dependence of the particle self-diffusion
coefficient D on the crystal bias parameter y and trial tra-
jectory length lyp, for a dense system with ¢ = 0.56. The
self-diffusion coefficient is clearly insensitive to the value of y
(over this range, crystallinity is effectively suppressed). D de-
pends weakly on lyip, until Iyyp becomes longer than the par-
ticle velocity autocorrelation time. For the largest values of ¢
we study ¢ > 0.57, to maintain a reasonable acceptance rate,
we take smaller /yp values (10-20, see Table 1). This leads
to slightly smaller values of D (by a factor of 10715 ~ 1.4),
which is a small effect compared to the strong dependence of
Don ¢.

We test the CA method by comparing to monodisperse and
mildly polydisperse systems (Gaussian distributed diameters
with 6 = 0.08) at ¢ = 0.57 > ¢ simulated with conventional
MD. The inset to Fig. 1 shows that a monodisperse system
under MD will crystallize spontaneously as indicated by an
abrupt drop in pressure. The same monodisperse system sim-

ulated with the CA method maintains a constant pressure, in-
dicating that crystallization is suppressed. Likewise, a poly-
disperse system under MD does not crystallize — but does
display a lower constant pressure, as noted previously>. On
the other hand, the mean-squared displacement (MSD) of sys-
tems simulated with the CA method are consistent with those
of polydisperse systems under MD. Previous work suggests
that MSD is insensitive to the amount of mild polydispersity®
as long as the system is below glass transition, so we conclude
the dynamics of metastable monodisperse fluids are well rep-
resented by our CA method.

In contrast, for systems at or slightly above the glass tran-
sition, we observe a dramatic difference in the dynamics
of monodisperse and slightly polydisperse systems. Fig. 3
compares the dependence of the apparent particle diffusion
coefficient on aging time f. (time elapsed after the initial
Lubachevsky-Stillinger configurations are generated, before
the diffusion coefficient is measured). For ¢ = 0.58, both
monodisperse (filled symbols) and slightly polydisperse sys-
tems (open symbols) show no dependence of D on aging. For
¢ = 0.59 — slightly above the commonly reported colloidal
glass transition of ¢. = 0.585%° — the monodisperse system
shows a strong aging dependence of D, which continues to de-
crease with 7, as far as we can observe. (The inset shows two
representative plots of Ar? versus ¢ for the monodisperse sys-
tem for different aging times; values of D are extracted from
the slopes of these plots.) The polydisperse system displays
some aging dependence, but ultimately seems to settle to a fi-
nite value of D. This contrast between the sudden onset of
strong aging in the monodisperse system and the more mod-
est aging behavior of the polydisperse system suggests that
the polydisperse glass transition is smeared or delayed due to
small mobile particles, consistent with recent findings by Za-
ccarelli et al. 10

For our simulations of metastable monodisperse hard-
sphere fluids, we use the Lubachevsky-Stillinger algorithm '

Table 1 Parameters for crystal-avoiding MD simulation. MD trial
length Iyp is in unit of collisions per particle. The smaller /\p used
for high ¢ is a compromise between reproducing dynamics and high
acceptance rate (see main text).

() Y I

< 0.50 0 -
0.50-0.53 0.25 40
0.54 0.50 40
0.55 050 40
0.56 1.00 40
0.57 1.20 20
0.58 1.20 10
>0.59 1.50 10
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Fig. 2 Dependence on ¥ and Iy of diffusion coefficients D at

¢ = 0.56. The resulting dynamics is insensitive to y and depends
weakly on hyp (see main text). For reference, log,n D =~ —4.0 for
¥ = 0 (crystal) as shown in Fig. 5a.

to prepare initial fluid configurations of N = 2000 hard spheres
with ¢ = 0.40 to 0.61. Then, we use the CA method to
equilibrate the systems until no obvious aging process is ob-
served for the quantity of interest before collecting data. (For
¢ > 0.59, data are collected after the longest equilibration time
we can perform in spite of the aging.) The fraction of “crys-
talline particles” is controlled to be less than 3%. (A parti-
cle i is deemed crystalline if it has N. > 6 neighbors with lo-
cal bond order parameter dg (i, j) > 0.7, see Ref.13.) Polydis-
perse systems are also prepared using Lubachevsky-Stillinger
algorithm with diameters normally distributed. Standard hard-
sphere units are used: sphere diameter ¢, sphere mass m, col-

lision time T = 6+/m/(kgT).

3 Results

In this work, we are concerned with local geometries that per-
mit particles to rearrange. Such rearrangements or “cage-
breaking” events are often identified by comparing particle
displacements to a threshold. As we shall show, such events
can equally well be identified by counting the number of
changed Voronoi neighbors. In this language, the “supercool-
ing” (densification) of a hard-sphere fluid can be described as
follows. For ¢ < ¢, particles change neighbors frequently
and irreversibly, and the system is ergodic. Above ¢, more
and more neighbors are fixed during a given time, and ergod-
icity is broken. At ¢ = ¢y, the system is completely jammed,
and no particle can change any neighbors.

To establish the connection between mobility and neighbor

rearrangements, we compare the dynamic propensity <Arl~2>
f. 19

ic’
calculated following Ref.*”, and the total number of new
Voronoi neighbors, defined as | U ; Vil where V;; is the set

Fig. 3 Dependence on equilibration time 7. of diffusion coefficients
D(t.) at ¢ =0.58 and ¢ = 0.59 with filled and empty symbols
representing monodisperse and polydisperse systems, respectively.
Inset: examples of obtaining D(z. ) from the slope of MSD in
monodisperse systems at ¢ = 0.59 for different z..

of new neighbors that particle 7 gained in the jth isoconfigu-
rational run, starting from the same initial configuration. Here
|U; V5] is a short-time measure of rearrangements, in that we
take the isoconfigurational run length to be 25 times shorter
than that used for the propensity, which is evaluated at the end
of the caging regime '°. Fig. 4 shows that the propensity and
number of new neighbors are heterogeneously distributed and
correlated with each other — indicating that cage-escape dy-
namics of particles can be predicted to some extent by the re-
arrangements of Voronoi neighbors over a much shorter time.

Having established that acquiring new and losing old
Voronoi neighbors is correlated with cage escape and hence
particle diffusion, we ask what could be the elementary local
motions by which new neighbors are acquired and old ones
lost, and what local particle arrangements promote or preclude
these motions. We consider the simplest class of local motions
in which a single particle moves in its free volume, defined as
the space within which its center can translate with other par-
ticles fixed.

A sufficient condition for a given particle to gain a new
Voronoi neighbor is that at least one of its “exclusion spheres”,
i.e., the neighboring particles that define its free volume, is not
currently one of its Voronoi neighbors (see Fig. 6a). In such a
case, by moving within its free volume the given particle can
touch the exclusion sphere, which certainly then becomes a
new Voronoi neighbor. This criterion implies that the circum-
center of the Delaunay tetrahedron formed by the new Voronoi
neighbor and three other neighboring exclusion spheres must
be farther than ¢ from the original position of the given par-
ticle. Therefore, a cavity (into which an new sphere can be
added) must exist. When a cavity is present, a nearby parti-
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Fig. 4 Dynamic propensity (left) and number of new Voronoi
neighbors (right) averaged at ¢ = 0.58 over 400 isoconfigurational
runs of length 1257 and 57 respectively. 20% of particles with the
largest and smallest values are shown for clarity. Propensity
timescale 1257 corresponds to the end of the caging plateau in the
log-log plot of MSD (see Fig. 1).

cle can hop into the cavity to acquire a new neighbor, leav-
ing behind a cavity for another particle to hop into, and so
forth. Stringlike motion observed in experiments®® and sim-
ulations '*?! seems to support this scenario. We call such a
particle “uncaged”, because it can move beyond its Voronoi
cell without the aid of nearby particle motion.

To test this scenario, that uncaged particles contribute to
neighbor rearrangements, we compute the fraction of uncaged
particles h(¢) and number of cavities as a function of ¢ by
extending the Sastry free volume construction’ (see Fig. 5a).
We find that cavities and hence uncaged particles become ex-
tremely rare, decreasing by four orders of magnitude as ¢
approaches 0.53 or so. By contrast, the diffusion coefficient
D(¢) decreases much more gently with ¢ in this range. Thus
uncaged particles cannot be primarily responsible for local
neighbor rearrangements and structural relaxation in glassy
hard-sphere fluids. (Note that we do observe a small concen-
tration of cavities (vacancies) in the crystal phase, which lead
to vacancy diffusion.)

If the sufficient but not necessary condition of uncaged par-
ticles is rarely met, how can particles in dense glassy change
Voronoi neighbors when there is no cavity to hop into? By
analogy to the T1 process of structural rearrangement in two
dimensional foams>? (see Fig. 6b), we identify another way
particles can change neighbors. A particle p; with Voronoi
neighbors p,, p3, p4 can acquire a new Voronoi neighbor ps, if
p1 1s initially outside the circumsphere of the Delaunay tetra-
hedron formed by the four particles p»—ps, but is able to move
inside the circumsphere to complete the T1 event. Note parti-
cle p; may have ps as a neighbor without being able to touch
ps. Through a reverse T1 event p; can lose ps as a neighbor.

(@)

(9)

(9)

Fig. 5 (a) Diffusion coefficient D(¢) and uncaged particle fraction
h(¢), versus volume fraction ¢. Inset: average number of cavities
per particle. (b) T1-active fraction p(¢). Inset: prq as ¢
approaches ¢y (random close packing). All dashed lines are power
law fits. The error bars are smaller the size of the symbols.

The free volume of a given particle presents a set of cusps,
each defined by three Voronoi neighbor particles. These cusps
are the most favorable positions for a T1 event to occur. If
a particle can either gain or lose a Voronoi neighbor while
moving within its free volume, both it and the neighbor are
marked as T1-active; otherwise, particles are T1-inactive.

The fraction of T1-active particles pri(¢) as a function of
¢ is shown in Fig. 5b. In the fluid region ¢ < 0.5, almost
all particles are T1-active. In the metastable region ¢ > 0.5,
pr1(¢) decreases gently until ultimately vanishes near ran-
dom close packing, as (@p — ¢)¢, with @p = 0.6448 £ 0.0001
and { = 0.65+0.02. In contrast, the diffusion coefficient ap-
pears to vanish at the glass transition, at ¢ ~ 0.585, which is
associated with the growth of domains of particles that must
rearrange cooperatively. Evidently, particle diffusion does not
cease because T1-active particles become rare. Instead, we fo-
cus on T1-inactive particles, which by definition are those that
cannot undergo T1 events by the motion of any single particle
in the system.

For a T1-inactive particle to change Voronoi neighbors and
contribute to structural relaxation, cooperative motion of at
least two particles is required. Thus, formation of a network of
T1-inactive particles could be related to the growth of cooper-
atively rearranging regions (CRRs). To this end, we study per-
colation of T1-inactive particles as volume fraction increases.
We use particles that define the free volume of a given particle
as its neighbors in the percolation problem. Spanning clus-
ters (infinite in periodic boundary conditions) of T1-inactive
particles are identified for many configurations over a range
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Fig. 6 2D schematics of neighbor rearrangements. (a) A hopping
particle (purple) initially surrounded by its Voronoi neighbors (gray)
can hop into the cavity (white region), collide with a new neighbor
(green), and leave behind a cavity. (b) T1 event in a 2D foam
corresponding to a flip of one soap film (solid line). (¢} A T1-active
particle (blue) gains a new neighbor (green) in a T1 event; no cavity
is required.

of ¢ = 0.57 to 0.61. The percolation threshold p. and critical
exponents are obtained from finite-size analysis.

Fig. 7 displays the percolation probability of T1-inactive
clusters as a function of Tl-inactive fraction p3y. The in-
set shows the linear relation between T1-inactive fraction p
and the particle volume fraction ¢. Evidently, percolation of
Tl-inactive particles occurs around p7 = 0.232, or equiva-
lently ¢ = 0.59. To obtain the critical threshold and expo-
nents, we perform finite-size scaling by fitting the percola-
tion probability as a function of T1-inactive fraction to a tanh
function (1 + tanh[(p37— pET(L))/A(L)]) /2 for different sys-
tem sizes L, as shown in Fig. 7. In the limit of an infinite
system, the percolation probability would be a step function
and the percolation transition occurs at p, = 0.232 £0.002,
which corresponds to ¢, ~ 0.586 — essentially identical to
the location of the “colloidal glass transition” often quoted as
¢y ~0.585 36 The critical exponents in our model for the cor-
relation length [€ ~ (¢ — ¢ )] and percolating cluster frac-
tion [m ~ (¢ — ¢c)P]are v =0.9140.01 and = 0.50+0.02,
consistent with standard percolation results vp ~ 0.88 and
Bo ~ 0.412°. This suggests whatever spatial correlations in
T1 activity are present are not strong enough to change the
universality class.

In addition to our result that T1-inactivity percolates and

Fig. 7 Probability that a T1-inactive cluster spans the system as a
function of T1-inactive fraction pgy for different system sizes; solid
lines are fits to tanh function (see main text). Inset: volume fraction
¢ versus T1-inactive fraction pgy.

the diffusion coefficient vanishes at the same volume fraction,
we note that the scaling of the T1-inactive correlation length,
combined with a power law fit for the vanishing diffusion co-
efficient [D ~ (@, — ¢) 221017, gives a dynamic scaling rela-
tion 1/D ~ &% with 7 ~ 2.4, Similar values of z ~ 2 — 5 have
been reported for power law relations between relaxation time
and dynamic correlation length?*-26_ This is further evidence
that T1-inactive clusters are dynamically relevant.

In fact, a percolation approach to the glass transition has
been suggested before. Cohen and Grest studied percolation
of liquid-like particles with free volumes above some arbitrary
criterion®’. This approach seemed ad hoc, because no signif-
icant difference in free volume distribution distinguishes the
liquid and glassy states. In contrast, the T1 activity of a par-
ticle by definition is determined from the configuration, the
evolution of which is in turn influenced by the dynamics.

Recently, another connection between the glass transition
and percolation has been reported?®; namely, that the MCT
glass transition ¢, coincides with the divergence of the cluster
size of fast moving particles, and the VFT-fitted ¢ (close to
¢drep) coincides with the divergence of the cluster size of slow
moving particles. Comparing this to the present work, we re-
mark that fast and slow clusters are defined dynamically, based
on observed particle mobility; both of them grow with increas-
ing @, consistent with increasing collective motion. In con-
trast, T1-activity is a purely geometrical property describing
the “possibility” of changing Voronoi neighbors for a given
configuration; the fraction of Tl-inactive particles increases
with increasing ¢. The actual mobility of a particle in a given
simulation is also influenced by the initial velocities, so there
is no deterministic relation between T1-activity and mobility.
That being said, an increasing number of T1-inactive particles,
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which cannot change their Voronoi neighbors by their indi-
vidual motion, implies a growing degree of collective motion
required for relaxation. The similar power law divergence of
the dynamic correlation length and T1-inactive cluster length
discussed above also suggests a connection between mobility
and T1-inactive particles.

4 Summary

In this work, we have devised a crystal avoiding (CA) method,
which can suppress crystallization in hard-sphere fluids while
preserving the dynamics, to study glassy monodisperse hard-
sphere fluids at ¢ > ¢r. The CA method allows us to explore
glassy monodisperse hard-sphere fluids at ¢ > @¢— for which
equilibration has been a “subtle question”?° — and offers new
opportunities to examine the effect of polydispersity on dy-
namics. In searching for the relevant local rearrangements that
permit particles to gain and lose Voronoi neighbors, we show
that the number of uncaged particles vanishes too rapidly com-
pared to the moderate slowing of diffusion, and so cannot be
the primary means by which particles acquire new neighbors.

Instead, we propose that Tl-active particles, identified
based purely on geometry, are able to acquire and lose neigh-
bors by single particle motion without cavities present, and
are common enough to contribute to rearrangements, only be-
coming scarce near random close packing. Moreover, clusters
of Tl-inactive particles percolate at ¢ =~ 0.586, remarkably
close to the glass transition. These results suggest a close
relation between T1-inactive clusters and slow dynamics in
glassy hard-sphere fluids. Establishing the same link for poly-
disperse systems and exploring the possible connection of T1-
(in)active correlation length to the dynamic or static correla-
tion lengths will be the subject of future work.
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