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We study the microscopic response of force-chain net-
works in jammed soft particles to quasi-static isotropic
(de)compressions by molecular dynamics simulations. We
show that not only contacts but also interparticle gaps be-
tween the nearest neighbors must be considered for the
stochastic evolution of the probability distribution func-
tions (PDFs) of forces, where the mutual exchange of con-
tacts and interparticle gaps, i.e. opening and closing con-
tacts, are also crucial to the incremental system behav-
ior. By numerically determining the transition rates for
all changes of contacts and gaps, we formulate a Master
equation for the PDFs of forces, where the insight one gets
from the transition rates is striking: The mean change
of forces reflects non-affine system response, while their
fluctuations obey uncorrelated Gaussian statistics. In con-
trast, interparticle gaps are reacting mostly affine in av-
erage, but imply multi-scale correlations according to a
much wider stable distribution function.

Quasi-static deformations of soft particles, e.g. glasses, col-
loids, emulsions, foams, and granular materials, have been
widely investigated because of their significant importance
in industry and science. However, many challenges of de-
scribing their macroscopic behaviors still remain due to dis-
ordered configurations, complex dynamics, etc1. At the mi-
croscopic scale, mechanical responses of soft particle pack-
ings are probed as a reconstruction of force-chain networks2,3,
where complicated non-affine displacements of particles cause
the “recombination” of force-chains, i.e. opening and closing
contacts4. Once a macroscopic quantity is defined as a sta-
tistical average in force-chains, e.g. the stress tensor, elastic
moduli, etc, its non-trivial response to quasi-static deforma-
tions (i.e.non-affine response) is governed by the change of
the probability distribution function (PDF) of forces. There-
fore, the PDFs in soft particle packings have practical impor-
tance so that a lot of theoretical studies (e.g. based on the
stress ensemble5, force network ensemble6, entropy maxi-
mization7, and so on8,9) have been devoted to determine their
functional forms observed in experiments10,11 and numerical
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supplementary information available should be included here]. See DOI:
10.1039/b000000x/
a Faculty of Engineering Technology, MESA+, University of Twente, Driener-
lolaan 5, 7522 NB, Enschede, The Netherlands

simulations12,13. In general, the PDFs areasymmetricand
cannot be described by conventional distribution functions14.
Moreover, there is still much debate about their tails15,16 as
well as their shapes for small forces17–19.

In this study, we propose a new method for describing the
evolution of the PDFs of forces under quasi-static deforma-
tions. Employing the Delaunay triangulation (DT) for two-
dimensional packings (see Fig. 1(a)), we generalize the “over-
lap” between particles (i and j) connected by a Delaunay edge
as

xi j ≡ Ri +Rj −Di j , (1)

whereRi +Rj andDi j are the sum of radii and the Delaunay
edge length, respectively, so that not onlycontacts(xi j > 0),
but also interparticle gaps orvirtual contacts(xi j < 0) can be
included in force-chain networks∗. We then apply quasi-static
isotropic (de)compressions to the packings, where the area
fraction,φ, increases (or decreases) byδφ and the PDF of gen-
eralized overlaps, Eq. (1), captures the statistics of contacts
and virtual contacts after opening or closing contacts. Our
main result is that we numerically calibrate a Master equa-
tion for the PDFs of generalized overlaps, where transition
rates of generalized overlaps aresymmetricand can be de-
scribed by conventional distribution functions. In addition, we
find that the transition rates depend on both an applied strain
step,δφ, and the distance from jamming point,φ−φJ, through
only one scaling parameter,γ ≡ δφ/(φ−φJ), whereφJ is the
area fraction at jamming. The Master equation is able to de-
scribe all features of the PDFs, e.g. their changes during com-
pressions and discontinuous “jumps”, i.e. restructuring around
zero-overlaps, which had been observed in a previous study20.
The application perspective of our method is that it allows us
to compute the local energy density given by the second mo-
ment of particle overlaps as a statistical approach to largescale
problems. The hydrostatic pressure and bulk modulus can be
deduced from the first and second derivatives of the energy
density, respectively, where the derivatives are defined bythe
Master equation (see the ESI†).

As method, we use molecular dynamics (MD) simulations

∗Since the DT is unique for each packing, virtual contacts areuniquely deter-
mined, where the total number of contacts and virtual contactsis a conserved
quantity which is independent of the area fraction. We have not observed any
flips of the Delaunay edges ifγ ≤ 10−3, and the number of flipped edges are
less than 1% at most forγ ∼ 10.
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of two-dimensional frictionless soft particles. The normal
force between particles in contact (i and j) is given by fi j =
kxi j − ηẋi j (xi j > 0) with a spring constant,k, viscosity co-
efficient,η, and relative speed in the normal direction, ˙xi j . A
global damping force,fd

i =−ηvi , proportional to the particle’s
velocity,vi , is also introduced to enhance the relaxation, where
the particles lose their kinetic energy by means of inelastic
contacts and global damping. We randomly distribute a 50 : 50
binary mixture ofN particles with two kinds of radii,Ri > Rj

(Ri/Rj = 1.4), in a square periodic box, where no particle
touches others. We then rescale every radius to make mechan-
ically stable particle packings (our method is similar to the one
used in Ref.21 †). In our simulations, distances from jamming
are determined by the known scaling of averaged overlap22,23,
x̄(φ) ≃ A(φ− φJ). From our 10 samples ofN = 8192 parti-
cles, we estimateφJ = 0.8458±10−4 with a critical amplitude,
A= (0.31±0.01)σ̄, whereσ̄ is the mean diameter in a pack-
ing closest to the jamming point,φ−φJ = 1.2×10−5. We also
prepared 10 samples for small systems (N = 512,2048) and 2
samples for the largest one (N = 32768), while we only report
the results ofN = 8192 since none of the results depends on
system size (see the ESI†).

We apply an isotropic compression to the packings by mul-
tiplying every radius by

√

1+δφ/φ, where the area fraction
increases fromφ to φ+ δφ. At the same time, all the gen-
eralized overlaps,xi j , change toxaffine

i j = xi j +(Di j/2φ)δφ ‡.
However, the particles are randomly arranged and their force
balance is broken by compression so that the system is allowed
to relax to a new mechanically stable state§. After relaxation,
the overlaps change to new values,x′i j 6= xaffine

i j , due to non-
affine displacements of the particles, where we observe four
kinds of changes (fromxi j to x′i j ) as shown in Figs. 1(c) and
(d): x12 > 0 andx13 < 0 change tox′12 > 0 andx′13 < 0, re-
spectively, where they do not change their signs and thus con-
tacts are neither generated nor broken. We name these changes
“contact-to-contact (CC)” and “virtual-to-virtual (VV)”, re-
spectively. On the other hand,x14 < 0 andx15 > 0 change
to x′14 > 0 andx′15 < 0, respectively, where a new contact is
generated and an existing contact is broken, respectively.We

† We rescale every radius asR(t + δt) = [1+ {x̄− xm(t)}/l ]R(t), wheret, δt,
x̄, andxm(t) are time, increment of time, target mean overlap, and averaged
overlap at timet, respectively. When ¯x> xm(t), each radius increases, while
it decreases if ¯x < xm(t). Therefore, the averaged overlap converges to the
target value, ¯x, in the long time limit. Here, we keep the mass constant and
use a long length scalel = 102R̄ to grow the particles gently, wherēR is the
mean radius att = 0. Note that the static packings prepared with longer length
scales,l = 103R̄ and 104R̄, give the same results concerning critical scaling
of frictionless particles near jamming22, while we do not obtain the same
results withl = 10R̄. We stop rescaling each radius when every acceleration of
particles drops below a threshold 10−6kR̄/m and assume the system is static.

‡ We neglected the higher order term proportional toxi j δφ
§ From our results of the mean square displacements, most particles do not

jump out of cages and our systems do not undergo structural relaxations after
compression. We also checked that the response to compressiondoes not
depend on the protocols, e.g. an overdamped dynamics.

call these changes “virtual-to-contact (VC)” and “contact-to-
virtual (CV)”, respectively.

The restructuring of the force-chains, attributed to the
changes, (CC), (VV), (VC), and (CV), is well captured by
the PDFs of the generalized overlaps. Figure 1(b) displays
the PDFs of the overlaps scaled by the averaged overlap be-
fore compression,ξ ≡ xi j /x̄(φ), ξaffine≡ xaffine

i j /x̄(φ), andξ′ ≡
x′i j /x̄(φ), where we omit the subscripti j from the scaled over-
laps. As can be seen, the difference between affine and non-
affine deformations is clear: The affine deformation just shifts
the PDF before compression to the positive direction, while
non-affine deformations broaden the PDF in positive overlaps
and reconstruct the discontinuous “jump” around zero. Note
that, however, the new PDF in negative overlaps is comparable
with that after affine deformation (see the inset in Fig. 1(b)).
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Fig. 1 (Color online) (a) Sketch of the generalized force-chain
network with contacts (red lines) and virtual contacts (blue lines),
where overlaps are defined as positive and negative, respectively.
The widths of red lines are proportional to the strength of forces. (b)
The PDFs of scaled overlaps,Pφ(ξ) (squares),Pφ+δφ(ξaffine)

(triangles), andPφ+δφ(ξ′) (circles), forφ−φJ = 1.2×10−3 and

δφ = 1.2×10−3. The inset is the zoom-in to the PDFs of virtual
contacts. (c) and (d): Sketches of the DT around a single particle (c)
before compression and (d) after relaxation, where red solid and
blue dashed lines represent contacts and virtual contacts,
respectively. The circles are particles with centers placed on the
Delaunay vertices.

To describe such non-affine evolution of the PDFs, we in-
troduce the Chapman-Kolmogorov equation24,

Pφ+δφ(ξ′) =
∫ ∞

−∞
W(ξ′|ξ)Pφ(ξ)dξ , (2)

2 | 1–6
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whereW(ξ′|ξ) is a conditional probability distribution (CPD)
satisfying the normalization condition,

∫ ∞
−∞W(ξ′|ξ)dξ′ = 1.

The CPD is the probability of overlaps becomingξ′ which
wereξ before compression (i.e. a distribution ofξ′ around a
mean value which depends onξ). For example, the CPD for
affine deformation is a delta function,Waffine(ξ′|ξ) = δ(ξ′ −
fa(ξ)), where the mean value is given by a linear function of
ξ, fa(ξ) = ξ+Baγ, with a coefficient,Ba = Di j /(2Aφ), which
just shifts the PDF byBaγ, i.e. Pφ+δφ(ξ) = Pφ(ξ − Baγ), as
shown in Fig. 1(b)¶.

On the other hand, the CPDs for non-affine deformations
can be measured through scatter plots of the scaled overlaps,
see Figures 2(a) and (b), where the four kinds of changes are
mapped onto four regions: (CC)ξ,ξ′ > 0, (VV) ξ,ξ′ < 0, (VC)
ξ< 0,ξ′ > 0, and (CV)ξ> 0,ξ′ < 0, respectively. In (CC) and
(VV), the scaled overlaps after compression distribute around
mean values which we describe by linear fitting functions for
ξ′,

fn(ξ) = (an+1)ξ+bn , (3)

where the subscripts,n = c andv, represent the mean values
in (CC) and (VV), respectively. If we introduce standard de-
viations ofξ′ from fn(ξ) asvn, which are almost independent
of ξ, the systematic deviation from affine deformations can be
quantified by the coefficients,an, bn, andvn, as summarized in
Fig. 2(c). Note that the differences are always present, butnot
visible if the applied strain is small or the system is far from
jamming, i.e. ifγ ≪ 1 (Fig. 2(a)), whileξ′ deviates more from
fa(ξ) and data points are more dispersed if we increaseγ (Fig.
2(b)). For example, Fig. 2(d) shows a double logarithmic plot
of ac againstγ, where all data collapse onto a linear scaling,
ac ≃ Acγ, with Ac = 0.76±0.002. We also find other scaling
relations,av ≃ 0, bc ≃ Bcγ, bv ≃ Bvγ, vc ≃ Vcγ, andvv ≃ Vvγ
with Bc = 0.24±0.002,Bv = 1.80±0.001,Vc = 0.32±0.01,
and Vv = 4.41± 0.06, respectively, forγ < 1 (see the ESI
†), so that all parameters characterizing the mean values and
fluctuations are linearly scaled byγ. Becauseav ≃ 0 and
Bv ≈ Ba(≃ 1.9 for small and large particles), virtual contacts
almost behave affine in average, except for their huge fluctua-
tions (Vv ≫Vc). In contrast to (CC) and (VV), the data ofξ′ in
(VC) and (CV) are concentrated in narrow regions (between
the axes and the dashed lines in Fig. 2(c)), whereasfa(ξ) lin-
early increases withξ in (VC) and there is no data offa(ξ) in
(CV), i.e. the affine deformation gives closing contacts only.

We then determine the CPDs for non-affine deformations
as the distributions of scaled overlaps,ξ′, around their mean
values,fn(ξ). Figure 3(a) shows the CPDs in (CC), where all
results with a wide range ofγ are symmetric aroundfc(ξ) and
collapse if we multiplyWCC(ξ′|ξ) andξ′− fc(ξ) by γ and 1/γ,
respectively. The solid line is the scaled Gaussian distribution

¶γ can be large, whereasδγ is always small.
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Fig. 2 (Color online) (a) and (b): Scatter plots of overlaps, where
the blue and red dots are affine and non-affine responses to
compression,(ξ,ξaffine) and(ξ,ξ′), respectively. Here,
δφ = 4×10−5 andφ−φJ = (a) 4×10−3 (γ = 0.01) and (b)
1.2×10−4 (γ = 0.33). (c) A sketch of deviations from an affine
deformation, where the blue and red solid lines representfa(ξ) (for
small and large particles) andfn(ξ) (n= c,v), respectively. (d) A
double logarithmic plot ofac againstγ, whereδφ is ranged between
4×10−7 ≤ δφ ≤ 4×10−3, and different symbols represent different
distances from jamming,φ−φJ, as given in the inset.

function,

γWCC(ξ′|ξ) =
1

√

2πV2
c

e−Θ2/2V2
c , (4)

with Θ ≡ [ξ′ − fc(ξ)]/γ. Figure 3(b) displays the CPDs in
(VV), where all results are also symmetric aroundfv(ξ) and
collapse as well, after the same scaling as for (CC). The solid
line is here a stable distribution function25,

γWVV(ξ′|ξ) =
1
2π

∫ ∞

−∞
e−(κ|Vvz|λ+iΩz)dz, (5)

with Ω≡ [ξ′− fv(ξ)]/γ, wherez is a dimensionless wave num-
ber, and the fitting parameters are given byλ = 1.65 and
κ = 0.62, respectively, i.e. the CPD in (VV) is nearly the
Holtsmark distribution (λ = 3/2 andκ > 0). Figures 3(c) and
(d) show the CPDs in (CV) and (VC) approximated by expo-
nential distributions,

γWCV(ξ′|ξ) = {1− ICC(ξ)}
eΛ/qv

qv
, (6)

γWVC(ξ′|ξ) = {1− IVV(ξ)}
e−Λ/qc

qc
, (7)

1–6 | 3
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respectively, whereΛ ≡ ξ′/γ and the dimensionless lengths
are given byqv = 6.10 andqc = 0.65 (qv ≫ qc), respec-
tively ‖. In curly brackets on the right hand sides,ICC(ξ) ≡
1
2erfc

[

− fc(ξ)√
2vc

]

andIVV(ξ) ≡
∫ 0
−∞WVV(ξ′|ξ)dξ′ are the cumu-

lative distribution functions of the CPDs in (CC) and (VV), re-
spectively, which are required to satisfy the normalization con-
ditions∗∗ and well describe the dependence of the CPDs onξ
(see the ESI†). In addition, ifγ = 0, WCC =WVV = δ(ξ− ξ′)
and WCV = WVC = 0 †† so that the Chapman-Kolmogorov
equation (2) does not change the PDF without deformations.

Now, we restrictδφ to quite small values compared to
φ− φJ and define an infinitesimal scaled strain step asδγ ≡
δφ/(φ− φJ) ≪ 1. Introducing a transition rate asT(ξ′|ξ) =
limδγ→0W(ξ′|ξ)/δγ, we rewrite the Chapman-Kolmogorov
equation (2) as a Master equation24,

∂
∂γ

Pφ(ξ′) =
∫ ∞

−∞

[

T(ξ′|ξ)Pφ(ξ)−T(ξ|ξ′)Pφ(ξ′)
]

dξ , (8)

where we use the CPDs, Eqs. (4)-(7), for the transition rates.
Figures 4(a) and (b) display the numerical solutions of the
Master equation underincrementalcompression steps, where
the increment of area fraction is fixed toδφ = 10−5 so that
δγ ≤ 2.5×10−3 throughout the numerical integrations. Here,
the initial condition is given by the PDF obtained through
MD simulations with the distance from jamming,φ0 − φJ =
4×10−3. The overlaps are scaled by the averaged overlap at
the initial state, ¯x(φ0). Good agreements between the solu-
tions (red solid lines) and MD simulations (open symbols) are
established for smallδγ even in the tails of the PDFs (the inset
in Fig. 4). In addition, the Master equation reproduces discon-
tinuous jumps of the PDFs around zero-overlap as observed
in Fig. 1(b). We also confirmed that numerical solutions start-
ing from different initial conditions, e.g. a step functionand a
Gaussian distribution (not consistent with mechanical stabil-
ity), converge to a unique solution with discontinuous jumps
around zero (see the ESI†).

In additional MD simulations ofdecompressiontests with
the increment of area fraction,δφ < 0, we find that the mean
values and CPDs are given by just replacing the scaling pa-
rameter,γ, with −γ in Eqs. (3)-(7), which does not change the
form of the Master equation (8). Therefore, the linear scal-
ings of the coefficients for non-affine deformations,an, bn,
and vn, are maintained under decompression, and the func-
tional forms of the CPDs are the same for both compression

‖The meaning ofqv is thatγqv represents a typical length of interparticle gaps
which are generated by opening contacts. Similarly, new contacts have a typ-
ical overlap∼ γqc. For example,γqv ≃ 0.061 andγqc ≃ 0.0065 forγ = 0.01
in our scaled length.

∗∗The normalization conditions are
∫ 0
−∞ WVVdξ′+

∫ ∞
0 WVCdξ′ =

∫ 0
−∞ WCVdξ′+∫ ∞

0 WCCdξ′ = 1, for previously virtual contacts and contacts, respectively.

†† We usedWVV = (2π)−1∫ e−[κ|γVvz′ |λ+i(ξ′− fv)z′]dz′ = (2π)−1∫ ei(ξ−ξ′)z′dz′ →
δ(ξ−ξ′) with z′ ≡ z/γ ande−1/γ/γ → 0 for γ → 0.
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Fig. 3 (Color online) Semi-logarithmic plots of the CPDs, where we
fix ξ = 1.6 (CC), 0.2 (CV), and−0.2 (VC), respectively, while we
averageWVV(ξ′|ξ) over−20≤ ξ ≤ 0. The different symbols
representγ, as given in the insets, and the solid lines are given by
Eqs. (4)-(7) (note the different horizontal axis scales). The
horizontal bars in (CC) and (VV) indicate the widths of the
distributions. The dotted line in (VV) is the Gaussian distribution
function, Eq. (4).

and decompression (see the ESI†). However, the scattered
data under compression and decompression are not symmet-
ric with respect to the diagonal line,ξ′ = ξ. Thus, the tran-
sition rates for decompressions areTγ<0(ξ′|ξ) 6= Tγ>0(ξ|ξ′),
which leads toirreversibleresponses of soft particle packings
under cyclic (de)compressions. Figure 5 shows coordination
number and static pressure during cyclic compression, where
we first increase the area fraction fromφ0−φJ = 4×10−3 to
φ1−φJ = 8×10−2 and then decrease back toφ0−φJ with the
incrementsδφ =±10−4. Reasonable agreements between the
MD simulations and numerical solutions of the Master equa-
tion are established (see the ESI† for the connection between
the PDFs and coordination number or pressure). The Mas-
ter equation captures irreversible responses of these quanti-
ties (the coordination number is more visible in Fig. 5(a)).In
addition, the Master equation well reproduces the non-linear
behavior of pressure (Fig. 5(b))3, while the Master equation
without any opening and closing contacts, i.e. numerical so-
lutions with zero transition rates in (CV) and (VC), gives a
linear increase and decrease of pressure (straight lines inFig.
5(b) ‡‡) as described in the literature focusing on the systems
close to jamming22.

In summary, we provide, for the first time, a Master equa-
tion for the PDFs of forces in soft particle packings under
quasi-static (de)compressions, where not only the changesof

‡‡ Note that the pressure is still irreversible even though there is no opening and
closing contacts.
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Fig. 4 (Color online) Numerical solutions of the Master equation
(the solid and dotted lines) under compression, where (a) and (b)
display the PDFs of negative and positive overlaps, respectively.
The solutions develop in the directions indicated by the arrows. The
open squares, circles, and triangles are the PDFs obtained from MD
simulations withφ−φJ = 4×10−3, 1.2×10−2, and 4×10−2,
respectively. The insets show the semi-logarithmic plots. Overlaps
are scaled by the averaged overlap atφ0−φJ = 4×10−3.

contacts and virtual contacts, but also their mutual exchange,
i.e. opening and closing contacts, are included in the transi-
tion rates for the Master equation. The transition rates (or
the CPDs of the generalized overlaps) are symmetric around
mean values with finite widths, where both the mean and fluc-
tuations are well characterized by a single scaling parameter,
γ = δφ/(φ− φJ), quantifying the degree of non-affine defor-
mations. We confirm that the mean values and CPDs for de-
compression are given by replacing the scaling parameter with
−γ. The Master equation can predict the incremental evolu-
tion of the PDFs, including discontinuous jumps around zero,
that is, the multi-particle system is reduced to a single-contact
picture, i.e. a mean-field like description.

The CPDs show by themselves important properties: Con-
tacts respond in a non-affine way, especially near jamming21,
as quantified by the scaling, e.g.ac ∼ γ = δφ/(φ−φJ). Aston-
ishingly, their fluctuations obey Gaussian statistics, indicating
the uncorrelated stochastic evolution of forces9. In contrast,
the nearly Holtsmark distributions for virtual contacts that de-
form affinely in average feature much broader tails. Indicat-
ing much larger changes of interparticle gaps, this implies
a strongly correlated stochastic evolution over a wide range
of length-scales. The probabilities for opening and closing
contacts are exponentially decaying with distance from zero
(i.e. e−|Λ|/qv and e−|Λ|/qc in Eqs. (6) and (7), respectively),
and cause the discontinuous jumps in the PDFs, since open-
ing contacts are free to open widely whereas closing contacts
are affected by repulsion, i.e.qv ≫ qc (see the ESI†). Note
that such discontinuities are specific to “static packings”and
will disappear once a finite temperature is imposed20. Be-
cause both the Gaussian and Holtsmark distributions are mem-
bers of the stable distribution family, fluctuations of contacts
and virtual contacts in soft particles should obey the general-
ized central limit theorem25, which has consequences for the
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Fig. 5 (Color online) (a) Coordination number,z, and (b) pressure,
p, in units of the spring constant,k, plotted against the area fraction
during a compression-decompression cycle (the arrows in (a)). The
open symbols and lines are MD simulations and numerical solutions
of the Master equation, respectively. The (red) squares and solid
lines are the results under compression, while the (blue) circles and
dotted lines are data under decompression. The straight lines in (b)
are given by numerical solutions of the Master equation without any
opening and closing contacts, i.e.WCV =WVC = 0, where the
(black) solid and (yellow) dotted lines are the results under
compression and decompression, respectively. The insets are zooms
into the squares surrounded by the broken lines.

statistical description of disordered systems in general.The
strong deviation from an affine approximation21 for contacts
and the enormous fluctuations of overlaps26 for virtual con-
tacts, as well as the probabilities for opening and closing of
contacts, are all proportional to the scaled strain increment, γ.

Clearly, there is the need of further studies on the physical
origin of the statistics of overlaps described above. The func-
tional forms of the CPDs can give very interesting insights into
the micro-mechanics of soft particles, e.g. stochastic processes
of overlaps in force-chain networks. Now, analytic solutions
or asymptotic solutions of the Master equation are important
next steps towards the understanding of the functional forms
of the PDFs. The Master equation also poses a new challenge;
it requires the incrementδφ to be much smaller thanφ− φJ,
i.e. γ ≪ 1. Thus, strictly speaking, it can never reachφJ, and
the result cannot be the PDF atφJ, albeit asymptotically. This
means that the jamming transition is a singular limit of the
Master equation.

Finally, our analysis can be easily extended to three dimen-
sions and be examined and validated by experiments, e.g. by
photoelastic tests2 or oedometer tests of sands27,28. The ex-
tension to other cases is also straightforward, e.g. the solu-
tions under shear can be obtained if we apply our results for
compression and decompression to principal compressive and
tensile directions, respectively (in preparation).
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