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We study the microscopic response of force-chain net-
works in jammed soft particles to quasi-static isotropic
(de)compressions by molecular dynamics simulations. We
show that not only contacts but also interparticle gaps be-
tween the nearest neighbors must be considered for the
stochastic evolution of the probability distribution func-
tions (PDFs) of forces, where the mutual exchange of con-
tacts and interparticle gaps, i.e. opening and closing con-
tacts, are also crucial to the incremental system behav-
ior. By numerically determining the transition rates for
all changes of contacts and gaps, we formulate a Master
equation for the PDFs of forces, where the insight one gets
from the transition rates is striking: The mean change
of forces reflects non-affine system response, while their
fluctuations obey uncorrelated Gaussian statistics. In con
trast, interparticle gaps are reacting mostly affine in av-
erage, but imply multi-scale correlations according to a
much wider stable distribution function.

Quasi-static deformations of soft particles, e.g. glasseb
loids, emulsions, foams, and granular materials, have be

widely investigated because of their significant impor&anc
in industry and science. However, many challenges of de

scribing their macroscopic behaviors still remain due & di
ordered configurations, complex dynamics,'etét the mi-

croscopic scale, mechanical responses of soft particlk-pac

ings are probed as a reconstruction of force-chain netvictks
where complicated non-affine displacements of particlasea
the “recombination” of force-chains, i.e. opening and tigs

contact4. Once a macroscopic quantity is defined as a sta

tistical average in force-chains, e.g. the stress tensastie
moduli, etc, its non-trivial response to quasi-static defa-
tions (i.e.non-affine responeas governed by the change of
the probability distribution function (PDF) of forces. Tree
fore, the PDFs in soft particle packings have practical impo

tance so that a lot of theoretical studies (e.g. based on t

stress ensembte force network ensembfe entropy maxi-

mization’, and so 0f% have been devoted to determine their

functional forms observed in experimeHtd! and numerical
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erl

simulationd?13 In general, the PDFs amsymmetricand
cannot be described by conventional distribution functién
Moreover, there is still much debate about their t2 as
well as their shapes for small forceés?®,

In this study, we propose a new method for describing th-
evolution of the PDFs of forces under quasi-static deforma:
tions. Employing the Delaunay triangulation (DT) for two-
dimensional packings (see Fig. 1(a)), we generalize therov
lap” between particles @ndj) connected by a Delaunay edge
as

Xij =R +Rj—Djj , Q)

whereR; + R; andD;;j are the sum of radii and the Delaunay
edge length, respectively, so that not onbntacts(x;; > 0),

but also interparticle gaps eirtual contacts(xj; < 0) can be
included in force-chain networks We then apply quasi-static
isotropic (de)compressions to the packings, where the area
fraction, @, increases (or decreases)dwyand the PDF of gen-
eralized overlaps, Eq. (1), captures the statistics ofamtat
and virtual contacts after opening or closing contacts. Ou.
main result is that we numerically calibrate a Master equa-
tion for the PDFs of generalized overlaps, where transitior
rates of generalized overlaps agmmetricand can be de-
scribed by conventional distribution functions. In adafitj we
find that the transition rates depend on both an appliedhstrai
step,d, and the distance from jamming poimt;- ¢y, through
only one scaling parameter= 3@/ (@— @), whereq; is the
area fraction at jamming. The Master equation is able to de-
scribe all features of the PDFs, e.g. their changes during co
pressions and discontinuous “jumps”, i.e. restructuriogiad
zero-overlaps, which had been observed in a previous &udy
The application perspective of our method is that it allows u
to compute the local energy density given by the second mc
ment of particle overlaps as a statistical approach to lscgke
problems. The hydrostatic pressure and bulk modulus can .

hdeduced from the first and second derivatives of the energ

gensity, respectively, where the derivatives are definethey
Master equation (see the EBI
As method, we use molecular dynamics (MD) simulations

x Since the DT is unique for each packing, virtual contactsuaiquely deter-

mined, where the total number of contacts and virtual contagtsonserved
quantity which is independent of the area fraction. We hatehserved any
flips of the Delaunay edges i< 103, and the number of flipped edges are
less than 1% at most fgr~ 10.

This journal is © The Royal Society of Chemistry [year]

Journal Name, 2010, [voll, 1-6 |1



Soft Matter Page 2 of 6

of two-dimensional frictionless soft particles. The nofma call these changes “virtual-to-contact (VC)” and “contamt
force between particles in contactand j) is given by fijj = virtual (CV)”, respectively.

kxj; —nxj (x; > 0) with a spring constank, viscosity co- The restructuring of the force-chains, attributed to the
efficient,n, and relative speed in the normal directief3, A changes, (CC), (VV), (VC), and (CV), is well captured by
global damping forcefd = —nv;, proportional to the particle’s the PDFs of the generalized overlaps. Figure 1(b) displays
velocity, v;, is also introduced to enhance the relaxation, whereghe PDFs of the overlaps scaled by the averaged overlap be-
the particles lose their kinetic energy by means of inetasti fore compressior§, = x;j /x(@), £3fine = x;’“}f““e/Z((p), andg’ =
contacts and global damping. We randomly distribute a 50 : SQ(i/J. /X(®), where we omit the subscrifjt from the scaled over-
binary mixture ofN particles with two kinds of radiiR > Rj  |aps. As can be seen, the difference between affine and non-
(R/Rj = 1.4), in a square periodic box, where no particle affine deformations is clear: The affine deformation justtshi
touches others. We then rescale every radius to make mechagfire PDF before compression to the positive direction, while
ically stable particle packings (our method is similar tetine  non-affine deformations broaden the PDF in positive overlap
used in Ref! ). In our simulations, distances from jamming and reconstruct the discontinuous “jump” around zero. Note
are determined by the known scaling of averaged ové#i&h  that, however, the new PDF in negative overlaps is comparabi

X(@) ~ A(@— @y). From our 10 samples dff = 8192 parti-  with that after affine deformation (see the inset in Fig. L.(b)
cles, we estimat@; = 0.8458+ 10~ with a critical amplitude,

A= (0.31+0.01)0, whereo is the mean diameter in a pack-
ing closest to the jamming poirp— @; = 1.2 x 10~°. We also
prepared 10 samples for small systemis<{ 512 2048) and 2
samples for the largest ond & 32768), while we only report
the results oN = 8192 since none of the results depends on
system size (see the ESL

We apply an isotropic compression to the packings by mul-
tiplying every radius by,/1+ &@/@, where the area fraction
increases fromp to @+ 6¢. At the same time, all the gen-
eralized overlapsxj, change to¢""® = x; + (Dj; /2¢)3¢ *.
However, the particles are randomly arranged and theieforc
balance is broken by compression so that the system is alowe
to relax to a new mechanically stable statéfter relaxation,
the overlaps change to new value, # xﬁﬁi“e, due to non-
affine displacements of the particles, where we observe fou
kinds of changes (from; to xi’j) as shown in Figs. 1(c) and
(d): x12 > 0 andx;3 < 0 change tog, > 0 andx;; < O, re-
spectively, where they do not change their signs and thus con
tacts are neither generated nor broken. We name these change
“contact-to-contact (CC)” and “virtual-to-virtual (VV)"re-  Fig. 1 (Color online) (a) Sketch of the generalized force-chain
spectively. On the other hand;4 < 0 andx;s > 0 change  network with contacts (red lines) and virtual contacts (blue lines),
to X’14 >0 andx’15 < 0, respectively, where a new contact is where overlaps are defined as positive and negative, respectively.

generated and an existing contact is broken, respectivédy.  The widths of red lines are proportional to the strength of forces. (b)
The PDFs of scaled overlaf®(§) (squares)P(erm(Eaﬁ'“e)

tWe rescale every radius &t + ) = [1+ {X— xm(t)}/I]R(t), wheret, &, (triangles), andPy, 5y(§') (circles), forg— gy = 1.2 x 10-3 and
X, andxn(t) are time, increment of time, target mean overlap, and averagegsp— 1.2 x 10-3. The inset is the zoom-in to the PDFs of virtual
overlap at time, respectively. Whem > xn(t), each radius increases, while contacts. (c) and (d): Sketches of the DT around a single particle (=-

it decreases ik < xm(t). Therefore, the averaged overlap converges to the . . .
target valuey, in the long time limit. Here, we keep the mass constant and before compression and (d) after relaxation, where red solid and

use a long length scale= 1G2R to grow the particles gently, whefeis the ~ PlUe da_Shed lines represent contacts ar_‘d virtual contacts,
mean radius at= 0. Note that the static packings prepared with longer length respectively. The circles are particles with centers placed on the
scales] = 10°R and 10R, give the same results concerning critical scaling Delaunay vertices.
of frictionless particles near jammiRg while we do not obtain the same
results with = 10R. We stop rescaling each radius when every acceleration of
particles drops below a threshold f&R/mand assume the system is static. ~ T0 describe such non-affine evolution of the PDFs, we in-
T We neglected the higher order term proportiona té¢ troduce the Chapman-Kolmogorov equaﬁ(’)’n
8§ From our results of the mean square displacements, mostlesrtio not
jump out of cages and our systems do not undergo structurabteas after )
compression. We also checked that the response to comprekssnnot PqH_&p(E’) :/ W(E’\E)P@(E)da , (2)
depend on the protocols, e.g. an overdamped dynamics. —00
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whereW(&'|€) is a conditional probability distribution (CPD) 6 : :
satisfying the normalization conditior),”, W/(&'|€)d&’ = 1. (a) v =0.01
The CPD is the probability of overlaps becomiggwhich
were & before compression (i.e. a distribution &faround a
mean value which depends §h For example, the CPD for
affine deformation is a delta functioMagine(§'|§) = 0(§' —
fa(§)), where the mean value is given by a linear function of
&, fa(§) = & + Bay, with a coefficientB, = Djj /(2A@), which

just shifts the PDF byBay, i.e. Py, 50(§) = Po(§ — Bay), as
shown in Fig. 1(b}..

On the other hand, the CPDs for non-affine deformations
can be measured through scatter plots of the scaled overlaps
see Figures 2(a) and (b), where the four kinds of changes are Non-af
mapped onto four regions: (C&)¢’' >0, (VV) &,& <0, (VC)
£<0,&>0,and (CVE >0,& <0, respectively. In (CC) and
(VV), the scaled overlaps after compression distributeiado
mean values which we describe by linear fitting functions for

&,

(b) =033

ot

Mmoo |-

(VV) (€v) T e e ,

fa(€) = (@ +1)&+bn , ®3) ’

where the subscripts, = ¢ andv, represent the mean values Fig. 2(Color online) (a) and (b): Scatter plots of overlaps, where
in (CC) and (VV), respectively. If we introduce standard de-the blue and red dots are affine and non-affine responses to
viations of&’ from f,(£) asvy,, which are almost independent gonipfsi'gl.fz”zd ) arf'(zvi)' Tosf)seCtlxe(;ybrerea )
of £, the systematic deviation from affine deformations can be® 7Y = ande=o = (a) 4x (y=001)and (b)

. . . - 1.2x 10" (y=0.33). (c) A sketch of deviations from an affine
guantified by the coefficients,, bn, andv,, as summarized in

. ) deformation, where the blue and red solid lines repre&g@) (for
Fig. 2(c). Note that the differences are always presentaduit o1 and large particles) arfd(€) (n = c,v), respectively. (d) A

visible if the applied strain is small or the system is famfro  4oyple logarithmic plot o againsty, wheredpis ranged between
jamming, i.e. ify < 1 (Fig. 2(a)), whileg’ deviates more from 4 107 < 8¢ < 4 x 10-3, and different symbols represent different
fa(€) and data points are more dispersed if we incrqg8&y.  distances from jammingp— ¢y, as given in the inset.

2(b)). For example, Fig. 2(d) shows a double logarithmidc plo

of a; againsty, where all data collapse onto a linear scaling, )

ac ~ Agy, With Ac = 0.76-£ 0.002. We also find other scaling function, 1

relations,a, ~ 0, be ~ By, by >~ By, Ve =~ ey, andwy, ~ 4y W (8'8) = —— g O /28 (4)
with Be = 0.24-+0.002,B, = 1.80+ 0.001,V, = 0.32+0.01, 2nve

andV, = 4.41+0.06, respectively, foly < 1 (see the ESI with © = [¢' — f,(§)]/y. Figure 3(b) displays the CPDs in
1), so that all parameters characterizing the mean values angv), where all results are also symmetric aroufy@€) and
fluctuations are linearly scaled by Becausea, ~ 0 and collapse as well, after the same scaling as for (CC). The soli
By ~ Ba(~~ 1.9 for small and large particles), virtual contacts |ine is here a stable distribution functiéh

almost behave affine in average, except for their huge fluctua "

tions 4, > V¢). In contrast to (CC) and (VV), the data &fin Wy (8']8) = i/ e—(K\VvZ\“iQZ)dz, (5)
(VC) and (CV) are concentrated in narrow regions (between 21 e

the axes and the dashed lines in Fig. 2(c)), whefgg lin- with Q = [&/ — f,(£)]/y, wherezis a dimensionless wave num-

early increases with in (VC) and there isno data d&(8) in  per and the fitting parameters are given by= 1.65 and
(CV), i.e. the affine deformation gives closing contactsyonl | _ 0.62, respectively, i.e. the CPD in (VV) is nearly the

We then determine the CPDs for non-affine deformationsyqtsmark distributionX = 3/2 andk > 0). Figures 3(c) and

as the distributions of scaled overlags, around their mean (q) show the CPDs in (CV) and (VC) approximated by expo-
values, fn(§). Figure 3(a) shows the CPDs in (CC), where all hantia| distributions,

results with a wide range gfare symmetric arouné.(§) and

collapse if we multiply\ec(€'|€) andg’ — f¢(§) by yand 1y, , B e\
respectively. The solid line is the scaled Gaussian digtioh Wev(E18) = {1-lec(@)} @ (6)
e*/\/%
Ty can be large, wheredy is always small. V‘MC(E/|E) = {1 - IVV(E)} e ) (7

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [vol], 1-6 |3



Soft Matter Page 4 of 6

respectively, wheré\ = &'/y and the dimensionless lengths
are given byqy = 6.10 andqg. = 0.65 (Qv > qc), respec-
tively |. In curly brackets on the right hand sidése(£) =

ferfc [— f};ii] andlyy (&) = /%, Wy (&/|8)dE’ are the cumu-
lative distribution functions of the CPDs in (CC) and (V\@;r
spectively, which are required to satisfy the normalization-
ditions** and well describe the dependence of the CPDE on
(see the ESt). In addition, ify =0, Wec = Wy = 3(§ — &)
andWey = Wyc = 0 T so that the Chapman-Kolmogorov
equation (2) does not change the PDF without deformations.

Now, we restrictdp to quite small values compared to
¢— @y and define an infinitesimal scaled strain stePps
00/ (@— @) < 1. Introducing a transition rate a5&'|§) =
limg, ,oW(&'|E)/dy, we rewrite the Chapman-Kolmogorov
equation (2) as a Master equatfdn

d o Fig. 3(Color online) Semi-logarithmic plots of the CPDs, where we
&P(p({’) = / [T(E'18)Pp(E) —T(E|E)Py(E)]dE, (8)  fix &€ =1.6 (CC), 02 (CV), and—0.2 (VC), respectively, while we
- averagdM v (&'|€) over—20< & < 0. The different symbols

where we use the CPDs, Egs. (4)-(7), for the transition rategepreseny, as given in the insets, and the solid lines are given by
Figures 4(a) and (b) display the numerical solutions of theEgs. (4)-(7) (note the different horizontal axis scales). The
Master equation undéncrementalcompression steps, where horizontal bars in (CC) and (VV) indicate the widths of the
the increment of area fraction is fixed &p = 105 so that dlstrl_butlons. The dotted line in (VV) is the Gaussian distribution
dy < 2.5 x 10~3 throughout the numerical integrations. Here, function, Eq. (4).
the initial condition is given by the PDF obtained through
MD simulations with the distance from jammings — @ =  and decompression (see the B$I However, the scattered
4% 1073, The overlaps are scaled by the averaged overlap alata under compression and decompression are not symme:-
the initial state x(qp). Good agreements between the solu-ric with respect to the diagonal lin&’ = &. Thus, the tran-
tions (red solid lines) and MD simulations (open symbols) ar sition rates for decompressions akgo(€'|E) # Ty~0(§|E),
established for smafly even in the tails of the PDFs (the inset which leads tdrreversibleresponses of soft particle packings
in Fig. 4). In addition, the Master equation reproducesatfisc  under cyclic (de)compressions. Figure 5 shows coordinatio
tinuous jumps of the PDFs around zero-overlap as observedumber and static pressure during cyclic compression, avher
in Fig. 1(b). We also confirmed that numerical solutionststar we first increase the area fraction frag— @y = 4 x 103 to
ing from different initial conditions, e.g. a step functiand a ¢, — @; = 8 x 10 2 and then decrease backg®— @; with the
Gaussian distribution (not consistent with mechanicédikta increment®p= +10 4. Reasonable agreements between the
ity), converge to a unique solution with discontinuous jemp MD simulations and numerical solutions of the Master equa-
around zero (see the E)l. tion are established (see the BSlor the connection between

In additional MD simulations oflecompressiotests with  the PDFs and coordination number or pressure). The Ma.-
the increment of area fractiodyp < 0, we find that the mean ter equation captures irreversible responses of thesetiguan
values and CPDs are given by just replacing the scaling paies (the coordination number is more visible in Fig. 5(&)).
rametery, with —yin Egs. (3)-(7), which does not change the addition, the Master equation well reproduces the norafine
form of the Master equation (8). Therefore, the linear scal-behavior of pressure (Fig. 5(5))while the Master equation
ings of the coefficients for non-affine deformatioms, b,,  without any opening and closing contaci®. numerical so-
andvn, are maintained under decompression, and the fundutions with zero transition rates in (CV) and (VC), gives a
tional forms of the CPDs are the same for both compressiotinear increase and decrease of pressure (straight lirféigin
5(b) *¥) as described in the literature focusing on the systen <
|| The meaning oty is thatyqy represents a typical length of interparticle gaps close to jamminéz_

which are generated by opening contacts. Similarly, newamtsithave a typ- ; - : )
ical overlap~ ya. For exampleyg ~ 0.061 andyg. ~ 0.0065 fory — 0.01 _ In summary, we provide, f(_)r the first tl_me, a Mgster equa
in our scaled length. tion for the PDFs of forces in soft particle packings under

«+ The normalization conditions a,, Wyvd&’ + [ Wycdg’ = % WeydE + quasi-static (de)compressions, where not only the chaoiges
fg" WecdE’ = 1, for previously virtual contacts and contacts, respebiv

1 We usedyy = (2r) L [ [IWMZPHE-MZ] g7 — (om)-1 1dEE)ZdZ - $1 Note that the pressure is still irreversible even thoiaghet is no opening and
3(& — &) with Z = z/yande %Y /y — 0 fory — 0. closing contacts.

YWy (€'1€)

4|  Journal Name, 2010, [vol] 1-6 This journal is © The Royal Society of Chemistry [year]
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Fig. 4 (Color online) Numerical solutions of the Master equation ~ Fig. 5 (Color online) (a) Coordination numbez,and (b) pressure,
(the solid and dotted lines) under compression, where (a) and (b) p, in units of the spring constark, plotted against the area fraction
display the PDFs of negative and positive overlaps, respectively.  during a compression-decompression cycle (the arrows in (a)). The
The solutions develop in the directions indicated by the arrows. Theopen symbols and lines are MD simulations and numerical solutions
open squares, circles, and triangles are the PDFs obtained from M®»f the Master equation, respectively. The (red) squares and solid
simulations withp— @y = 4 x 1073, 1.2 x 1072, and 4x 1072, lines are the results under compression, while the (blue) circles anc!
respectively. The insets show the semi-logarithmic plots. Overlaps dotted lines are data under decompression. The straight lines in (b)
are scaled by the averaged overlaggt- ¢y = 4 x 103, are given by numerical solutions of the Master equation without any
opening and closing contacts, Wty = W/ c = 0, where the
(black) solid and (yellow) dotted lines are the results under
compression and decompression, respectively. The insets are zoon.

contacts and virtual contacts, but also their mutual exgean s the squares surrounded by the broken lines.

i.e. opening and closing contacts, are included in the itrans
tion rates for the Master equation. The transition rates (or
the CPDs of the generalized overlaps) are symmetric around

mean values with finite widths, where both the mean and flucStatistical description of disordered systems in genefale

tuations are well characterized by a single scaling paramet strong deviation from an affine approximatfdrfor contacts

vy = 5¢/(9— @y), quantifying the degree of non-affine defor- and the enormous quctuatio_n_s_ of overlé‘fofx_)r virtual con-
mations. We confirm that the mean values and CPDs for dei@cts: as well as the probabilities for opening and closihg ¢
compression are given by replacing the scaling parametar wi contacts, are all proportional to the scaled strain increnye

—vy. The Master equation can predict the incremental evolu- Clearly, there is the need of further studies on the physicc’
tion of the PDFs, including discontinuous jumps around zeroorigin of the statistics of overlaps described above. Thefu
that is, the multi-particle system is reduced to a singletact  tional forms of the CPDs can give very interesting insights i
picture, i.e. a mean-field like description. the micro-mechanics of soft particles, e.g. stochasticesses

The CPDs show by themselves important properties: con®f overlaps in force-chain networks. Now, analytic solotio

tacts respond in a non-affine way, especially near jamAting ©" asymptotic solutions of the Master equation are impadrtan
as quantified by the scaling, eag.~ y= 8¢/ (¢— @y). Aston- next steps towards the understanding of the functional sorn.
ishingly, their fluctuations obey Gaussian statisticsidating ~ ©f the PDFs. The Master equation also poses a new challenge;

the uncorrelated stochastic evolution of fortesn contrast, 't requires the incremerlip to be much smaller thag— ¢,

the nearly Holtsmark distributions for virtual contactattde-  1-€- Y << 1. Thus, strictly speaking, it can never reaghand
form affinely in average feature much broader tails. Indicat the result cannot be the PDF@j albeit asymptotically. This
ing much larger changes of interparticle gaps, this implied"€ans that the jamming transition is a singular limit of the
a strongly correlated stochastic evolution over a wide eang Master equation.

of length-scales. The probabilities for opening and clgsin  Finally, our analysis can be easily extended to three dime -
contacts are exponentially decaying with distance frono zer sions and be examined and validated by experiments, e.g. kv
(i.e. e /% and e N/% in Egs. (6) and (7), respectively), photoelastic testsor oedometer tests of sarfd$® The ex-
and cause the discontinuous jumps in the PDFs, since opefension to other cases is also straightforward, e.g. the- sol
ing contacts are free to open widely whereas closing cantacttions under shear can be obtained if we apply our results for
are affected by repulsion, i.gy > qc (see the ESt). Note  compression and decompression to principal compressive an
that such discontinuities are specific to “static packingsti  tensile directions, respectively (in preparation).

will disappear once a finite temperature is impcSedBe- We thank M. Sperl, L.E. Silbert, B.P. Tighe, H. Hayakawa,

cause both the Gaussian and Holtsmark distributions are men®- Yukawa, T. Hatano, H. Yoshino, K. Kanazawa for fruit-
bers of the stable distribution family, fluctuations of caots Ul discussions. This work was financially supported by the

X . . NWO-STW VICI grant 10828 and a part of numerical compu-
and virtual contacts in soft particles should obey the gelner tation has been carried out at the Yukawa Institute Computer

ized central limit theorerf?, which has consequences for the Facility, Kyoto, Japan.
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