
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/softmatter

Soft Matter

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Cell membrane wrapping of a spherical thin elastic shell

Xin Yi and Huajian Gao∗

Nanocapsules that can be tailored intelligently and specifically have drawn considerable attention in the fields of drug delivery
and bioimaging. Here we conduct a theoretical study on cell uptake of a spherical nanocapsule which is modeled as a linear
elastic solid thin shell in three dimensions. It is found that there exist five wrapping phases based on the stability of three
wrapping states: no wrapping, partial wrapping and full wrapping. The wrapping phase diagrams are strongly dependent on the
capsule size, adhesion energy, cell membrane tension, and bending rigidity ratio between the capsule and membrane. Discussion
is made on similarities and differences between the cell uptake of solid nanocapsules and fluid vesicles. The reported results may
have important implications on biomedical applications of nanotechnology.

1 Introduction

As a special class of nanoparticles with a solid shell and a
hollow interior compartment, nanocapsules have found broad
biomedical applications, especially as drug delivery vehicles
with tunable geometrical, mechanical and physicochemical
properties. These nanomaterials can be designed to release
their encapsulated cargos in a controllable manner in response
to external triggers such as temperature, pH, light, ionic
strength, salt concentration and mechanical deformation.1,2

Typical nanocapsules include polymeric capsules, polymeric
micelles, colloidosomes1,2 as well as viral capsids.3,4 Al-
though considerable effort has been dedicated to mechanical
stability of nanocapsules,5,6 so far only a few theoretical7

and experimental studies8–10 have been focused on their in-
teractions with cells. It was found that cargos encapsulated
in soft nanocapsules are released prematurely outside cells,
while those in stiff capsules are fully delivered into cells,9 and
a two-dimensional theoretical study showed that full engulf-
ment of soft nanocapsules requires stronger adhesion energy
than that of stiff ones.7 Besides these studies on cell uptake
of nanocapsules, considerable interests have been drawn to
the elasticity effects in cell uptake of nanoparticles in gen-
eral.11–14 It was found that phagocytosis of soft microparticles
is hindered by particle deformation.11 Theoretical studies also
indicated that stiff nanoparticles can be more easily engulfed
than soft ones.7,12 Molecular dynamics simulations demon-
strated that nanoparticles grafted with stiffer ligands are more
easily engulfed than those coated with softer ligands.13

So far, existing theoretical studies on cell uptake of elas-
tic nanoparticles have modeled the particles as fluid vesi-
cles.7,12 Due to the free lateral movement of lipid molecules
and high resistance to lateral stretching, both vesicles and
cell membrane can undergo substantial bending deformation
in an Eulerian description. For cell uptake of a solid thin-
shelled nanocapsule, the deformation of cell membrane is de-
scribed more easily in an Eulerian description but the de-
formation of capsule prefers a Lagrangian description. A
theoretical challenge thus exists in the coupling of Eulerian
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and Lagrangian descriptions. Here we perform the first the-
oretical study on cell uptake of a linear elastic thin-shelled
nanocapsule. A numerical optimization approach is employed
to tackle the Eulerian-Lagrangian coupling. It is investigated
how the wrapping degree depends on the nanoparticle size, ad-
hesion energy, membrane tension, and bending rigidity ratio
between the capsule and membrane. A wrapping phase dia-
gram of cell-nanocapsule interaction is established to probe
the transitions between no wrapping, partial wrapping, and
full wrapping states. Moreover, discussion is made on sim-
ilarities and differences between the cell uptake of the solid
thin-shelled nanocapsule and fluid vesicle. Possible implica-
tions of our results on therapeutic drug delivery are also dis-
cussed.

2 Model and methods

The elastic nanoparticles in existing theoretical studies on cell
uptake have been modeled as elastic lipid vesicles deforming
via lateral lipid movement under the energetic cost of bending
and constraint of surface area conservation.7,12 In two dimen-
sions (2D), a cylindrical capsule with an inextensible elastic
thin shell undergoes a pure bending deformation. Therefore,
the wrapping of a 2D inextensible elastic thin shell capsule
by a lipid membrane is mathematically equivalent to that of
a 2D elastic cylindrical vesicle with a given cross sectional
circumference.7 In three dimensions (3D), there is no longer
such equivalence between vesicles and solid capsules, since
the deformation of a solid thin-shelled capsule requires not
only bending but also in-plane stretching of the shell. For cap-
sules made of linear elastic materials, the cost of stretching is
significant. The high energetic cost of stretching prevents the
formation of cylindrical tether structures commonly observed
in lipid bilayer membranes subject to a point force.15

We consider the adhesive wrapping of a spherical thin-
shelled capsule undergoing an axisymmetric deformation by a
lipid membrane in the adopted cylindrical coordinate (r,ϕ ,z)
(Fig. 1). Since the axisymmetric deformation of the capsule
and membrane is independent of the circumferential coordi-
nate ϕ and there is no in-plane shear deformation, we restrict
our attention to a certain vertical cross-section of the config-
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Fig. 1 Schematic of an elastic thin-shelled spherical capsule (thick
line) of initial radius a wrapped by an initially flat cell membrane
(thin black line) in the adopted cylindrical coordinate (r,ϕ ,z). (a)
The geometry of the system with tangent angle ψ . Arclengths s and
t are defined along the capsule and membrane, respectively,
measured from the bottom pole (s = t = 0). (b) Schematic for the
states of no wrapping (stress-free reference state) with zero contact
region and full wrapping in which the capsule is fully wrapped by
the membrane. Partial wrapping corresponds to an intermediate
scenario with incomplete wrapping as shown in (a).

uration (e.g., ϕ = 0). Before it contacts the membrane, the
capsule in the stress-free state is assumed to take a spherical
shape of radius a as its reference configuration (Fig. 1b). A
material point at (r = r0,z = z0) in the undeformed reference
configuration can be generally parameterized by the curvilin-
ear coordinates s0 ∈ [0,L0] and ψ0 ∈ [0,π] with geometrical
relations

dr0/ds0 = cosψ0 and dz0/ds0 = sinψ0,

where s0 is the arclength measured along the meridian from
the bottom pole in the reference configuration, L0 denotes the
half of the circumference of the cross-section, and ψ0 is the
tangent angles. The surface area is A0 = 2π

∫ L0
0 r0ds0. The

principal curvatures at point (s0,ψ0) in the meridional (longi-
tudinal) and circumferential (latitudinal) directions are

cs0 = dψ0/ds0 and cϕ0 = sinψ0/r0.

For the spherical capsule under consideration, we have L0 =
πa, ψ0 = s0/a, r0 = asinψ0, z0 = a(1− cosψ0), and cs0 =
cϕ0 = 1/a. Hereinafter a subscript 0 without specific notifica-
tions is used to identify a quantity associated with the refer-
ence state.

As the membrane wraps around the capsule, the wrapping
state evolves from the state of no wrapping (defined as the ref-
erence state in Fig. 1b) to partial wrapping (Fig. 1a). In the
state of partial wrapping, the material point (s0,ψ0) located at

(r0,z0) is displaced by the membrane to (r,z) with curvilinear
coordinates (s,ψ) in the deformed configuration where the de-
formation field can be characterized by longitudinal stretch λs
and latitudinal stretch λϕ in the meridional and circumferential
directions, respectively, as

λs = ds/ds0 and λϕ = r/r0.

Without loss of generality, we consider a capsule made of a
linearly elastic isotropic thin shell of thickness h. Its strain
energy density Ws is5,6,16

Ws =
Eh

2(1−ν2)
(e2

s +2νeseϕ + e2
ϕ )+

D
2
(C2

s +2νCsCϕ +C2
ϕ ),

(1)
where E is Young’s modulus, ν ∈ [−1,1] is the Poisson ratio
of the shell, and

es = λs −1 and eϕ = λϕ −1

are the meridional and circumferential strains, respectively;
D = Eh3/[12(1−ν2)] is the bending rigidity of the thin shell,
and Cs and Cϕ are the meridional and circumferential bending
strains, respectively,

Cs = λscs − cs0 and Cϕ = λϕ cϕ − cϕ0 ,

with the meridional curvature cs = dψ/ds and circumferential
curvature cϕ = sinψ/r.

The elastic energy density of the deformed cell membrane
is12,17,18

Wm =
κm

2
(c(m)

s + c(m)
ϕ )2 +σ(1− cosψm), (2)

where κm, c(m)
s = dψm/dt, c(m)

ϕ = sinψm/r, ψm, and t are the
bending stiffness, meridional curvature, circumferential cur-
vature, tangent angle, and arclength of the cell membrane, re-
spectively. With eqn (1-2) the total energy of the system is

Etot =
∫ L0

0
2πr0Wsds0 +

∫ ∞

0
2πrWmdt − γA3,

where γ is the adhesion energy representing the specific adhe-
sive interaction between the nanocapsule and cell membrane,
and A3 =

∫ sc

0 2πrds is the contact area with s = sc as the ar-
clength at the contact edge. The contact edge corresponds to
arclength position s0 = sc

0 in the reference configuration. The
wrapping degree f for a certain wrapping state is defined as

f =
∫ sc

0

0
2πr0ds0/A0,

i.e. the corresponding area of the contact region in the refer-
ence configuration divided by the total surface area A0 of the
undeformed capsule.

Here we employ a numerical optimization technique to de-
termine the minimum energy state at each given wrapping de-
gree f . With geometric relations dr/ds = cosψ and dz/ds =
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sinψ , the deformation of the capsule as well as the membrane
attaching on it is determined by the tangent angle ψ and the
longitudinal stretch λs = ds/ds0, while the shape of the outer
free membrane is determined by the tangent angle ψ . The
tangent angle ψ and longitudinal stretch λs in the inner free
region are approximated by cubic B-spline functions as7,19

ψ(a(1),s0)=
n

∑
i=0

a(1)i Ni(s0) and λs(b(1),s0)=
n

∑
i=0

b(1)i Ni(s0).

Similar forms based on cubic B-spline are employed for
ψm(a(2), t) in the outer free region and ψ(a(3),s0) and
λs(b(3),s0) in the adhesion region. Here superscripts (1),
(2) and (3) identify quantities associated with the inner free,
outer free, and wrapped regions, respectively (Fig. 1). Con-
trol points ai and bi are coefficients of the cubic basis func-
tions Ni with integer indices 0 ≤ i ≤ n. The basis functions
Ni(s0) and Ni(t) can be determined explicitly by specifying
knot vectors of the variable parameters s0 and t, respectively.
A typical choice of the knot vector for a parameter ξ ∈ [p,q]
is taken as {ξ0, . . . ,ξn+4} with ξi = p (i = 0, . . . ,3) and ξi = q
(i = n+1, . . . ,n+4). Here n is chosen as n = 68.

The boundary and constraint conditions provide either input
parameters or equality constraints during energy minimiza-
tion. As t → ∞, the outer free membrane becomes asymptot-
ically flat which requires ψm|t→∞ = 0 or a(2)n = 0. Similarly,
ψ|s0=L0

= 0 and ψ|s0=0 = 0 require a(1)n = 0 and a(3)0 = 0,
respectively. At the contact edge s = sc (or s0 = sc

0), the con-
tinuity of tangent angle requires a(1)0 = a(3)n = a(2)0 . The con-
tinuity of the coordinate (r,z) at the contact edge is enforced
as equality constraints. The total energy Etot as a function of
ψ(s0) , λs(s0) and ψm(t) under these constraints at a given f
and adhesion energy γ is minimized with respect to the con-
trol points ai and bi using the interior point method.20 Once
the tangent angles ψ and ψm and the longitudinal stretch λs
are known, the total energy and corresponding shapes of the
capsule and membrane can be determined.

At the full wrapping state ( f = 1), the spherical capsule with
initial radius a deforms into a sphere of radius ρ . In that state,
λ ≡ λs = λϕ = ρ/a, es = eϕ = λ − 1, and Cs = Cϕ = 0, and
Ws = Eh(λ −1)2/(1−ν). Since the membrane elastic energy
of the outer free region at full wrapping is negligible com-
pared to the elastic energy of membrane adhering on the cap-
sule,12,18 the total energy of the system at full wrapping can
be approximated as the sum of the adhesion energy and the
elastic energy of the capsule and adhering membrane, i.e.

Etot ≈ 4πa2 Eh
(1−ν)

(λ −1)2 +2πλ 2κm(σ̄ − γ̄)+8πκm,

where σ̄ ≡ 2σa2/κm is the normalized membrane tension
and γ̄ ≡ 2γa2/κm the normalized adhesion energy. Letting
dEtot/dλ = 0 gives

λ =
2Ea2h

2Ea2h+κm(σ̄ − γ̄)(1−ν)
.

The necessary condition for a stable state of full wrapping is
Etot < 0 (or γ̄ > σ̄ ), which means that λ > 1 or the spherical
capsule is enlarged through interactions with the membrane.

3 Results
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Fig. 2 (a) Elastic energy ∆Eel as a membrane wraps around an
elastic thin-shelled capsule with wrapping degree f for different
D/κm at σ̄ = 2 and γ̄ = 0. (b) Selected wrapping configurations at
σ̄ = 2 and γ̄ = 9 for different stiffness ratios D/κm.

To investigate the effects of capsule elasticity on cell up-
take, we consider elastic capsules with various bending rigid-
ity D = Eh3/[12(1− ν2)]. Hereinafter we take ν = 0.4 and
h = 0.05a, where a is the radius of the spherical capsule in
the reference configuration. Fig. 2a shows the elastic energy
change ∆Eel =Eel−E0

el as a function of the wrapping degree f
for different D/κm at σ̄ = 2 and γ̄ = 0, where Eel ≡ Etot + γA3
is the elastic energy of the system and E0

el is the reference en-
ergy before the capsule contacts the membrane. Here E0

el = 0
since the reference state in the current study is stress-free.
For capsules with a pre-stress or eigenstrain field, E0

el could
have a non-zero value depending on the definition of the ref-
erence state. As the stiffness ratio D/κm decreases, the slope
d(∆Eel)/d f decreases in the early stage of wrapping and in-
creases in the late stage, indicating that the wrapping around
softer capsules requires smaller adhesion energy in the early
wrapping stage but larger adhesion energy in the late stage.
Wrapping around a stiff capsule involves a gentle rise in the
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Fig. 3 Total energy change ∆E as a function of the wrapping degree
f for different γ̄ and D/κm at σ̄ = 2. The open symbols correspond
to the local energy minima. Based on the stability of no wrapping,
partial wrapping and full wrapping states, there exist five possible
wrapping phases, two stable (I and V) and three metastable phases
(II or II′ (depending on value of D/κm) to IV). The underlined
wrapping states in these metastable phases are the ones with lower
energy. Phase I, a stable no wrapping state with a single energy
minimum at f = 0; phase II, coexistence of a stable no wrapping
state and a metastable partial wrapping state; phase III, coexistence
of partial (stable) and full (metastable) wrapping states; phase IV,
coexistence of metastable partial and stable full wrapping states;
phase V, a stable full wrapping state with a single energy minimum
at f = 1; phase II′, a stable partial wrapping state.

elastic energy as the cell membrane deforms gradually around
the capsule. For a soft particle, the elastic deformation energy
is partitioned between the capsule and the membrane as illus-
trated in Fig. 2b. A very soft capsule would initially spread
along the membrane without inducing significant membrane
deformation. Only at a later stage will the membrane be forced
to bend around the capsule and catch up to almost the same
configuration at full wrapping as in the case of a stiff capsule.
This means a more abrupt rise in elastic energy at the later
stage of wrapping for soft capsules. A similar phenomenon
has been observed in the membrane wrapping of elastic vesic-
ular particles.12 Here only the energy profiles at γ̄ = 0 are pro-
vided. Further numerical results indicate that γ̄ of practical
interest has negligible influence on the elastic energy profiles
due to the slight area dilatation in the contact region which
is attributed to the high cost of stretching a solid thin shell.
For thin shells made of hyperelastic materials with low cost of
stretching, γ̄ would play a more important role in the evolu-
tion of elastic energy. Fig. 2b shows sequences of wrapping
configurations at σ̄ = 2 and γ̄ = 9 for different stiffness ra-
tios D/κm. The softer the capsule is, the larger the capsule
deformation is induced by the wrapping membrane.

The total energy difference ∆E = Etot −E0
el corresponds to

the sum of the elastic energy difference ∆Eel and adhesion en-
ergy −γA3. Fig. 3 shows ∆E as a function of the wrapping

degree f for different γ̄ and D/κm at σ̄ = 2. The behavior of
∆E indicates that there exist five possible phases. We focus
on relative stiff capsules (e.g., D/κm = 5) first. For small ad-
hesion energy γ̄ , ∆E increases monotonically with f and no
wrapping (phase I) prevails. As γ̄ increases, phase II comes
into existence in which a stable state of no wrapping and a
metastable state of partial wrapping coexist. Further increase
in γ̄ results in a global minimum at a state of partial wrapping
and an energy barrier to reach the (metastable) state of full
wrapping (phase III). Next we encounter phase IV in which
the stable state of partial wrapping becomes metastable while
the full wrapping state becomes stable. Eventually, if γ̄ is large
enough, phase V arises where the energy barrier to full wrap-
ping vanishes and the latter becomes the only stable state. For
each phase, there is a stable state of a global energy minimum
and possibly a metastable state of a local energy minimum.
For relatively soft capsules (e.g., D/κm = 1 and 0.1), the ad-
hesion energy can compensate for the bending energy at initial
wrapping, and phase II is replaced by II′. Depending on the
values of σ̄ and γ̄ , the energy profile ∆E of phase II′ could
exhibit either one or two local energy minima. Similar be-
haviors shown in Fig. 3 have been observed in the membrane
wrapping of vesicles.12

With the knowledge of energy profiles at different D/κm,
σ̄ , and γ̄ , the phase diagrams of wrapping are determined and
shown in Fig. 4. The full wrapping condition is taken as f = 1.
For rigid capsules, the minimum adhesion energy necessary
for partial wrapping is γ̄min = 4.12,18 As D/κm decreases, γ̄min
deceases because softer capsules can be easily flattened in ad-
hesion with the membrane; however, γ̄ needs to rise sharply
in the late stage to attain full wrapping. This conclusion can
also be reached by comparing slopes of the elastic energy pro-
files in Fig. 2a where the energy curve for softer capsules (i.e.
smaller D/κm) exhibits smaller slope around f = 0 and larger
slope around f = 1 compared to that of stiffer one. The phase
diagrams shown in Fig. 4 indicate that stiffer capsules can at-
tain full wrapping more easily than softer ones. This generic
conclusion is also valid for vesicular nanoparticles.12

The elastic effects on the capsule deformation can be char-
acterized by the longitudinal stretch λs and latitudinal stretch
λϕ . Fig. 5 shows λs and λϕ of elastic capsules as functions
of the normalized reference arclength s0/(πa) at σ̄ = 2 and
γ̄ = 6. It is seen that the thin shell structure near the contact
edge is under longitudinal compression and latitudinal stretch-
ing. The latitudinal stretching results from the flattening of the
curved shell, which in turn leads to longitudinal compression
to reduce the area dilatation and hence save stretching energy.
As the capsule becomes soft and easily deformed, the region
under longitudinal compression and latitudinal stretching en-
larges with increasing extent of deformation. In Fig. 5, the
results are shown only for sc

0/(πa) < 0.5 but a similar phe-
nomenon exists for sc

0/(πa)> 0.5.

Previous theoretical studies on the adhesion of a spherical
thin elastic shell on a flat rigid substrate indicate that strong
long-range adhesive interactions can induce a stable buckled

4 | 1–9

Page 4 of 9Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



0 2 4 6 8 100

1

2

3

V

IVIIIII

I

(a)

mD/   =

0 2 4 6 8 100

1

2

3(b)

V

IVIIIII

I  

 

mD/   =5

0 2 4 6 8 100

1

2

3

mD/   =0.1

V

IVIII

II
I  

 

(d)

0 2 4 6 8 100

1

2

3

V

IVIII
II

I  

 

 

(c)

mD/   =1

Fig. 4 Wrapping phase diagrams with respect to normalized adhesion energy γ̄ and surface tension σ̄ for D/κm = ∞,5,1 and 0.1. Dotted lines
indicate boundaries between phases I and II(II′); dashed lines represent boundaries between phases II or II′ and III (as well as IV and V for
D/κm = 1 and 0.1); dash-dotted lines are boundaries between phases III and IV; solid lines serve as boundaries between phases IV and V. The
definition of phases I to V are referred to Fig. 3.

state in which the central part of the adhesion region of the
shell buckles away from the substrate, the so-called curvature-
inversion buckling;21,22 while this phenomenon is not ob-
served in the case of short-range21 or weak long-range adhe-
sive interactions.22 In our model, the specific adhesive interac-
tion between the nanocapsule and membrane is characterized
by a contact potential with vanishing interaction range, a lim-
iting case of short-range adhesive interactions. Therefore, the
curvature-inversion buckled state cannot be appropriately ad-
dressed by the current model. Besides the possible curvature-
inversion buckling, the adhesive interaction might also induce
wrinkling in the shell near the contact edge, as observed in the
capillary wrinkling of thin films.23,24 It will be interesting to
conduct a thorough theoretical analysis of these issues in the
future.

In addition to nanocapsules, vesicular nanoparticles such as
liposomes serving as another important type of soft particles
have also attracted much attention in the fields of drug deliv-
ery and diagnostics.25 It may be interesting to compare the
membrane wrapping of spherical vesicles investigated in our
previous study12 with that of a linear elastic solid thin shelled
capsules in the present study. The elastic energy density of
axisymmetric vesicles with a given surface area but no con-
straints on volume or osmotic pressure is given as

Wv =
κv

2
(c(v)s + c(v)ϕ − c(v)0 )2, (3)

where κv, c(v)s , c(v)ϕ , and c(v)0 are the bending stiffness, merid-
ional curvature, circumferential curvature, and spontaneous
curvature of the vesicle, respectively. In eqn (3) we have omit-
ted the energy contribution from the Gaussian curvature of the
vesicle since it does not affect the vesicle shape according to
the Gauss-Bonnet theorem.26 Thus, the total energy is

Etot =
∫

2πr(Wv +Σv)dsv +
∫ ∞

0
2πrWmdt − γA3, (4)

where Σv is a Lagrange multiplier to enforce the conserved to-
tal surface area of the vesicle, and sv is the arclength measured
along the meridian from the bottom pole of the vesicle. The
governing equations of the system energy in eqn (4) can be
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elastic capsules with D/κm = 5,1 and 0.1 at σ̄ = 2 and γ̄ = 6. The
solid symbols indicate contact edge positions of the corresponding
state of minimum energy in the reference configuration. Inset,
zoom-in plot of λs and λϕ for the case of D/κm = 5.
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determined by using variational methods, which together with
boundary conditions are then solved via shooting methods.12

Here we consider vesicles with two illustrative spontaneous
curvatures: zero spontaneous (c(v)0 = 0) and c(v)0 = 2/a, with
a being the initial radius of the vesicle. In the first case, the
vesicle before contact has a ground energy of 8πκv; while in
the latter case, the ground energy is zero, the same as the solid
capsule considered here. Fig. 6 plots the elastic energy change
∆Eel = E(v,m)

el −E0
el as a function of the wrapping degree f for

different κv/κm at σ̄ = 2, where E(v,m)
el is the elastic energy of

the deformed vesicle and wrapping membrane and E0
el is the

ground energy before the vesicle comes in contact with the
membrane. The normalized membrane tension here is still de-
fined as σ̄ ≡ 2σa2/κm. In contrast to solid capsules, ∆Eel for
vesicles are independent of γ due to the constraint of a con-
stant area. For vesicles with c(v)0 = 0, ∆Eel is slightly higher

than those with c(v)0 = 2/a. As κv/κm decreases, the slope of
the energy profiles around f = 0 decreases and that around
f = 1 increases. This means that softer vesicle particles re-
quire less γ̄min to achieve partial wrapping but need higher γ̄
to attain full wrapping. This is qualitatively similar to the case
of solid capsules (see Fig. 2a).

For an isolated vesicle, the bending stiffness κv serves as
the single material property governing its elastic deformation;
while for an isolated solid capsule made of an isotropic linear
elastic shell, its deformation depends on two independent ma-
terial properties: the Poisson ratio ν and bending rigidity D.
Although the energy dependence on the bending rigidity D for
solid capsules and that on the bending stiffness κv in eqn (3)
for vesicles have different forms, D does represent the ability
to resist bending deformation and can be used to measure the
softness of an elastic capsule as κv does for a vesicle, espe-
cially recalling that isotropic linear elastic thin shells typically
exhibit a low degree of stretching. Since solid capsules con-
sidered here have zero elastic energy before contact, we com-
pare vesicles with c(v)0 = 2/a with solid capsules at σ̄ = 2 in
Fig. 7a-c. At κv =D, the energy profiles of the vesicle is lower
than those of the solid capsule. Note that the wrapping degree
f of a vesicle is defined as the area ratio between the contact
region and the whole vesicle in the deformed state.12 As par-
ticles become softer, the difference in ∆Eel between capsules
and vesicles becomes larger. Compared to soft capsules with
D/κm = 0.1, vesicles with κv/κm = 0.1 exhibit a larger region
with a gentle slope in the early wrapping stage, which results
from spreading of the vesicle along the membrane. This in-
dicates that soft vesicles require a lower γ̄min to attain partial
wrapping than soft capsules of comparable bending stiffness.
Since the vesicles exhibit similar trends of ∆Eel as solid cap-
sules, it is not surprising that the wrapping phase diagrams
of vesicular particles (see Fig. 3b-e in ref. [12]) show similar
structures as those of thin-shelled solid capsules (Fig. 4a-d).
However, the lower energy profiles of vesicles compared to
those of solid capsules indicate that under comparable bend-
ing rigidity, fluid vesicles would behave as softer capsules in

their interactions with cells.

4 Discussion

The capsids of spherical viruses with icosahedral symmetry3,4

and synthetic colloidosomes and polymeric capsules with
spherical geometry1,2 can be considered as typical nanocap-
sules. Their bending rigidity D and size can vary con-
siderably. Here we give a few examples of viral capsids
whose geometry and mechanical properties have been quan-
titatively characterized experimentally and theoretically, and
then compare their bending rigidity D with that of the cell
membrane, κm, which falls in a wide range from 20 kBT
(1 kBT = 4.11×10−21 J) to 150 kBT depending on the mem-
brane composition.27 For example, κm = 20 kBT for the egg
yolk phosphatidylcholine, κm = 30 kBT for pure dimyristoyl
phosphatidylcholine (DMPC) lipid bilayers, and κm of the
DMPC membrane containing 50 mol % cholesterol is as high
as 150 kBT at 30◦C.27 For representative spherical viruses,
the capsid radius a varies from 10 nm to 75 nm,3 the Young’s
modulus E falls in the range of 100 MPa to a few (2 to 4) GPa,
the average or effective thickness h of the capsids is about
1.6 nm to 5 nm, and the Poisson ratio ν is suggested as 0.4.4

Representative viruses with capsids of bending stiffness D
comparable to κm include the hepatitis B virus (HBV), cowpea
chlorotic mottle virus (CCMV), and bacteriophage λ (see Ta-
ble 1).4 It has also been reported that influenza virions exhibit
a higher but comparable stiffness with respect to egg phos-
phatidylcholine liposomes.28 For these nanocapsules, elastic-
ity might play an important role in membrane wrapping. Rep-
resentative viruses whose capsids are much stiffer than the
cell membrane include the minute virus of mice (MVM),4

mature human immunodeficiency virus (HIV),29 herpes sim-
plex virus type 1 (HSV1)4 and mature murine leukemia virus
(MLV)30 (see Table 1). These viruses can be considered as
rigid particles compared to cell membrane. In addition to bi-
ological nanocapsules, it might be feasible to produce engi-
neered nanocapsules as soft as cell membranes through, e.g.,
synthesis of polymeric nanocapsules fabricated with ultra-soft
materials such as PDMS whose Young’s modulus E is in
the range of 0.57 MPa to 3.7 MPa.31 It has been reported
that polymeric nanocapsules and lipid-core nanocapsules pre-

Table 1 Geometrical and mechanical properties of viral capsids.

a (nm) h (nm) E (GPa) D (kBT )

HBV4 14.22 2.24 0.26 70.5
CCMV4 11.8 2.8 0.14 74.2
bacteriophage λ 4 30 1.8 1 140.8
MVM4 12.5 2 1.25 241.4
mature HIV29 50 5 0.44 1330
HSV14 49.5 4 1 1540
mature MLV30 50 4 1.027 1590
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Fig. 7 Comparison of ∆Eel at σ̄ = 2 between the membrane wrapping of a capsule at γ̄ = 0 and a vesicle with c(v)0 = 2/a at different stiffness
ratios D/κm (or κv/κm) as (a) 5, (b) 1, and (c) 0.1.

pared with a mixture of organic compounds exhibit a low
Young’s modulus E on the order of 0.1 MPa.32 Other soft en-
gineered nanocapsules may include spherical nanostructures
made of single-layered graphene (D = 56.2 kBT )33 or hexag-
onal boron-nitride (D = 37 kBT ).34

To reduce membrane bending and tension energies in cell
interactions with a soft nanoparticle, the particle usually flat-
tens and spreads along the wrapping membrane. In the case
of thin-shelled solid capsules, the flattening and spreading
of adhesion region are mainly associated with stretching and
bending of the shell. For a linear elastic thin shell of thick-
ness h, the stretching energy scales as ∼ h and the bend-
ing energy as ∼ h3. Therefore, the thin-shelled capsule dis-
plays substantial bending deformation with slight expansion,
as indicated in Figs. 2b and 5. Further bending deformation
would cause considerable latitudinal stretching and longitudi-
nal compression, which in turn results in significant stretch-
ing energy as analyzed in Fig. 5. In the case of a vesicular
particle whose stretching modulus is much larger than bend-
ing modulus, the total surface area of the vesicle is approxi-
mately conserved and stretching energy is negligible. In addi-
tion, lipid molecules are free to move laterally in the bilayer.
Thus, even with significant spreading of the vesicle along the
membrane, no stretching energy arises and only bending en-
ergy results from the flattening of the adhered vesicle. Due to
the fluidity of lipid membranes and consequent zero stretch-
ing energy, vesicles under membrane wrapping can achieve
substantially higher bending deformation compared to solid
capsules at comparable bending rigidities.

Thin-shelled solid capsules made of hyperelastic materials
can undergo large deformation (both bending and stretching).
Therefore, hyperelastic capsules under membrane wrapping
are expected to display an intermediate extent of bending and
stretching between that of linear elastic solid capsules and
fluid vesicles. As a result, the wrapping phase diagrams for
hyperelastic capsules would be somewhere in between those
for linear elastic capsules (Fig. 4) and for vesicles (Fig. 3b-e in
ref. [12]). Since the particles are expected to deform and equi-
librate on a time scale much smaller than that of cell uptake
which typically requires relatively long range diffusive trans-

port of receptors along the cell membrane, the cell-particle
system can be assumed in a static state of minimum energy
during cell uptake. It would be interesting and challenging to
investigate the cell uptake of viscoelastic capsules whose re-
laxation time scales are comparable to the time scale of recep-
tor diffusion in cell membranes.35 A size-dependent uptake
behavior can also be expected based on earlier studies on rigid
nanoparticles.35–39

The conclusion that stiff particles can achieve full wrap-
ping more easily than soft ones has been obtained for both
solid capsules (Fig. 4) and fluid vesicles,7,12 confirming our
previous conjecture that this conclusion should be generic and
not specific to the specific particle model.12 The elasticity ef-
fect on cellular uptake has important implications on thera-
peutic drug delivery. Soft thin-shelled capsules require larger
adhesion energy to reach full wrapping and should lead to a
longer circulating time than stiff capsules. The stiffness of
solid capsules can be tuned over a wide range by many meth-
ods such as varying the shell thickness, using materials of dif-
ferent compositions and changing degrees of cross-linking.1,2

Since the circulating time depends on capsule stiffness, the
latter can thus be tuned to adjust the former into a specific
therapeutic time window of drug delivery. The same strat-
egy of tuning bending stiffness of nanoparticles can also be
applied to vesicles such as liposomes whose membrane bend-
ing stiffness can be tuned by adjusting cholesterol content.27

Therefore, it should be possible to control the therapeutic time
in drug delivery using liposome-based nanocapsules with li-
posomal subcompartments, called capsosomes, which can be
fabricated by a layer-by-layer approach.40,41 By tuning prop-
erties of the capsule shell and interior liposome membrane,
capsosomes can enhance the protection of liposomal subcom-
partments and achieved sequenced drug release.

In some cases, singular therapies might not be as benefi-
cial as proposed due to the development of drug resistance by
target cells. To overcome this disadvantage, researchers have
developed drug delivery systems of multiagent chemotherapy
to improve the delivery efficiency. For example, liposomes
containing erlotinib and doxorubicin have been designed to
enhance tumor killing through the primary release of the lipid-
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soluble bilayer-embedded erlotinib which in turn sensitizes
tumor cells to subsequent exposure to cytotoxic doxorubicin
encapsulated in liposomes.42 A similar strategy can be em-
ployed for capsosomes, in which multiple types of drugs are
loaded such that both the prevenient facilitating drugs and li-
posomal subcompartments are encapsulated in capsules while
drugs aiming for subsequent exposure are loaded in the lipo-
somal subcompartments. Cell uptake tuned by stiffness is ex-
pected to provide a possible approach to designing controlled,
efficient and effective drug delivery and release systems.

5 Conclusions

A theoretical study has been performed on cell uptake of lin-
ear elastic thin-shelled solid nanocapsules. In this study, the
deformation of the capsule and cell membrane is modeled in a
coupled Lagrangian-Eulerian description. The interior point
method was employed to optimize the system energy, then
results were obtained on the corresponding morphologies of
the nanocapsule and cell membrane, and finally the wrap-
ping phase diagrams were determined to describe transition
boundaries between different wrapping phases. The wrapping
phases exhibit strong dependence on the size of nanocapsules,
adhesion energy, membrane tension, and bending rigidity ra-
tio between the capsule and membrane. It has been found that
stiffer nanocapsules require less adhesion energy to achieve
full wrapping than softer ones. This result is also valid in
the case of cell uptake of fluid vesicular nanoparticles such
as liposomes.12 Further calculations indicated that the elastic
energy change in the case of cell uptake of nanocapsules with
bending rigidity D is larger than that for vesicles with the same
bending stiffness κv = D, and the energy distinction becomes
especially significant in the case of very soft nanoparticles.
This result suggests that nanocapsules with bending rigidity D
can achieve full wrapping more easily than vesicles with the
same bending stiffness κv = D; and the softer the particles, the
more distinct this effect. The elasticity effects in cell uptake of
nanocapsules and vesicles should have broad implications on
drug delivery systems. Several methods capable of tuning par-
ticle elasticity and sequence of drug release can be suggested
to control cellular uptake and therapeutic efficiency.

Further studies on cell uptake of solid capsules could take
into account other constitutive laws for capsules,43 effects
of capsule thickness, shape,36,39,44–47 surface properties,13,48

residual stress or pre-stress in capsules, and constraints such
as given capsule pressure or volume.5–7 The optimization
method based on B-spline parameterization can be immedi-
ately employed in the studies of adhesive contact between thin
shell structures and rigid or elastic substrates,21,22,49–51 mi-
cropipette aspiration of elastic capsules or vesicles, axisym-
metric indentation on thin films and other cases displaying ax-
isymmetric configuration.
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