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We investigate the dynamics of a single inextensible eld#iment subject to anisotropic friction in a viscous statgpn-point
flow, by employing both a continuum model represented by keairgtype stochastic partial differential equations (SBp&nd

a Dissipative Particle Dynamics (DPD) method. Unlike poexs works, the filament is free to rotate and the tension along the
filament is determined by the local inextensible constralite kinematics of the filament is recorded and studied wathmal
modes analysis. The results show that the filament displaysstability induced by negative tension, which is analogjm Euler
buckling of a beam. Symmetry breaking of normal modes dyoamnd stretch-coil transitions are observed above thelibte

of the buckling instability point. Furthermore, both temaloand spatial noise are amplified resulting from the irdg8om of
thermal fluctuations and nonlinear filament dynamics. Sjpadly, the spatial noise is amplified with even normal modeing
excited due to symmetry breaking, while the temporal na@seplified with increasing time correlation length and ande.

1 Introduction response due to the thermal noise has become a central topic
in studies of various dynamical systems. For example, as was
Bio-polymers, such as F-actin, protein fibers, DNA, and mghown recently, thermal noise is greatly amplified in a dynam
crotubules are all semiflexible elastic filaments. Theretae ical system due to the interaction between stochasticity an
unique characteristic properties distinguishing thenmfroost nonlinearity near bifurcation point&27 i.e., low dimensional
of the other natural and synthetic polymers: they posess-a ¢eodels with a small number of modes are sufficient to capture
tain stiffness that energetically suppresses bending,tlaeyl the physics in these complex systems only up to the bifionati
are to a high degree inextensible, i.e., their back-boneaanpoints, after which, higher modes will make significant ebnt
be stretched or compressed too much. The cytoskeletong@tions to the full dynamics.
cells and tissues are mostly built by such bio-polymerss,thu
studying the dynamics of inextensible elastic filaments- sub The objective of the current work is to study the role of ther-
ject to hydrodynamic forces can be a first step towards undeyal fluctuations on the deformation of single linear filament
standing the cytoskeleton networks and tissue motionszi-Praubject to stretching and compression near a stagnatiim-po
ous works focused mainly on the stretching dynamics of filaithin a viscous flow. The filaments are represented by two
ments with tension applied lengthw#s&, both with and with- models. The first is the inextensible elastic filament destti
out hydrodynamics. However, recent works on the dynams a continuous curve for which the solvent flow acts through
ics of elastic filaments subject to hydrodynamic forces leas the anisotropic viscous resistance and thermal noise, leand t
vealed complex nonlinear dynamical behavior both in simmggnamics of the inextensible filament is governed by Langevi
shear flows®*°and in the neighborhood of stagnation-poinype stochastic partial differential equations (SPDESS. The
of stretching flow$:16:17. Specifically, the negative tension insecond is a Dissipative Particle Dynamics (DPD) bead-gprin
duced along the filament by simple hydrodynamic forces abateain model immersed in a solvent of DPD particles subject to
some critical value can lead to buckling known as “stretoli*c the stagnation-point flow. Details about these two modeds ar
instability'®18:1% Hence, it is very important to fully under-given in Sec. 2. These two models are then simulated by ob-
stand the inextensible elastic filament dynamics for celt meining numerical solutions to the governing SPDEs and DPD
chanicg®. equations, respectively (see Sec. 3). A reader who is not in-
Suspended in stretching flow, these filaments respondterested in technical details can skip directly to Sec. 4eneh
mesoscopic entities~ um), and hence the forces on thenmthe main numerical results are obtained from each model. We
Brownian, hydrodynamic and elastic, are of the same ordese normal mode analysis to identify the stretch-coil titéors
This, in turn, implies the importance of thermal fluctuati&m and amplification of thermal noise during filament dynamics.
that the Brownian forces cannot be neglected. However, Tthese physical phenomena can also analyzed with Proper Or-
the best of our knowledge, only a few papers have addresgeatjonal Decomposition (POD) analysis, which is included i
the thermal fluctuation effect&1221.22 Moreover, nonlinear the Appendix. Finally, a short conclusion about the lindtat
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of the current models and further work are included in Sec. ®nces hydrodynamic resistance governed by the Stokes equa-
tion, which exceeds inertia by several orders of magnitude;
hence, inertial forces can be safely neglected. Also, thidi
bance of the flow field by the filament motion is absorbed into

. . . . .the Brownian force effects. Thus, the mesoscopic level equa
In this section, we present models for continuum inextdasib. . )
elastic filaments and for bead-spring chains in stagnagtmint lon of_motlon reduces to a balance betwe_en three fo_rc;as. the
flow. Brownian forge & kBT /L), the hydrodynamic fqrcN UEL?)

and the elastic bending force-(A/L?). The motion generated

by these forces must satisfy the local inextensibility @ tita-

2.1 Modelsof Linear Fibers ment, which requires the magnitude of its tangent vectoseto b

Most of the bio-polymers are generally modeled as inextecno-nStr&Ilned locally o bfir /ds| = 1 along its contour; the lat-

sible elastic filaments whose deformations are dominatedtgr condition yields the line tension generated by the Liagea

elastic bending resistance. This contrasts with other ftag n}}ilr:lpltljert. F|n.aI.Iy',:.thfe govelrjnllng que;)notr#s f\|N rltttent.mm
ible molecules, which have little bending resistance, ared z? de. e irmml.s ICforces balanced by the fiuctuating
generally modelled as freely-jointed chathd314 Two linear "¢ @"VING force:
inextensible elastic filament models are simulated in our cu %
rent work: a continuous elastic filaméft®and a bead-spring nb[ar —u(r)]+ (A@ + as(/\(s)o'?sr)) =fson(st), (3)
chain.

The energy functional for eontinuousfilament, constrained
to be inextensible, is expressible as a line integral altsgan-
tour, 0< s<L, as follows:

2 Mode Description

where D is the dimensionless anisotropic drag tenddr=
| — %dsr ® dsr, andn = (2mu/In(L/a) is the effective vis-
cosity derived from the known Stokes resistance for a rigai r
of radiusa. The latter is usually approximated by rough esti-
1 L2 5 5 mates, but the inaccuracy is tolerable since it appearsianly
E=3 /—L/Z d5<A(K(S) —Ko)* —/\(s) (0sr) >7 (1) the logarithm. This form of the hydrodynamic resistancecis a
curate provided the filament remains nearly straight, but as
where® andk = ds6(s) are the tangent angle and the curvdleparts from a linear configuration accuracy is lost. Alse, t
ture at arc lengtts as shown in Figure 1(upper), respectivelyonfiguration of a compliant filament may depart so far from
and kg is zero for a rigid rod filament. Bending resistance f&raightness as to induce significant hydrodynamic interas
characterized by the flexural rigidity, which in the theorfy Joetween its parts. These restrictions are avoided for the DP
elastic beams is given b§ = GI, with a material modulu& model since the DPD solvent accounts implicitly for hydro-
and second moment of cross-section dr¥a By definition a dynamic effects. The tensor Lagrange multipligfs) is an
filament is very thin, and filament theory is applied to eatiti Unknown introduced to impose the inextensibility constrai
where the cross-section dimensions are not easily deterni@nd is the one-dimensional analog of the pressure Lagrange-
Thus, A is the preferred elastic parameter to characterize thglltiplier employed to impose incompressibility on a conti
bending elasticity. The second term of the integrand intoegs UUM velocity field. The Langevin equation is scaled with the
the Lagrange multiplien\(s) to impose the local constraint ofcontour lengttL, the hydrodynamic timé~* and the charac-
inextensibility by the requirement that the tangent vedtoibe  teristic Brownian forcésT /L to yield the dimensionless equa-
of constant magnitude along the entire filament contourttengf!on.
Division of Eq.(1) bykgT and with all lengths scaled lyyield -1 0%
the dimensionless total filament elastic eneEyikgT relative &r —Ir = e (— B@ — 0s(N\(s)0sr) +fstoch(3,t)) , (4)
to the energy imposed on it by the thermal fluctuations. Withi _ ) ) )
the integral, the dimensionless coefficient of the locastida Wherer is the velocity gradient tensor given below. Hence, the
term becomeg = A/ (ksTL), a measure of the local bendin&omt'on 2of thls.equanon requires, in additionf£o the Peclet
momentM (s) = A(K(s) — ko) relative to the moment imposed*“mbe’?’ a defined as

by the thermal transverse load. At the mesoscopic dimession B néLs 5
where thermal fluctuations are important, an alternativa-me T kgT (5)
sure of bending resistance is the persistence lelpgtiated to

which measures the hydrodynamic forces induced by the
stretching flow relative to the thermal Brownian force. The d
A lp(d—1) . . .
B= = , (2) mensionless paramet@ measures the elastic bending force
keTL 2L relative to the thermal Brownian force, which is the typidaf-
whered is the dimension of the deformation space. A Langeviinition of relative persistence length in polymer sciefftélhe
type equation models the motion of an elastic inextensible fatio a /B = n&L*/A measures the relative strengths of the vis-
ament immersed in a continuous Newtonian solvent. The neaus and elastic forces. Its limiting values: (0, — ), re-
trally buoyant filament, of radius~ O(um), a/L < 1, experi- spectively, indicate a nearly-rigid rod dominated by begdi

B by
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elasticity and a flexible string drawn out to align symmetrby determined by the number of bonds. The constraint of in-
cally by the dominant hydrodynamic forces about the stagrextensibility is approximated locally with very stiff coaators
tion point. However, the latter configuration ignores thieets (large ks) between every pair of consecutive beads. Another
of the Brownian fluctuations which induce a coiled configuraquation incorporates the bending constaninto the persis-
tion, as will be seen below. The key parametef3 in our tence lengtHp analogously to equation (2) of the continuous
manuscript is essentially the samerps Guglielmini et all, filament case as

p in Manikantan et af® and % in Kantsler et alt®, but with lp — kabo- ©)
different constant pre-factors. In the limit of vanishinggdino- keT

dynamic force ¢ — 0), the Langevin equation reduces to @omparison of the two definitions of the persistence lengths
linear problem, i.e, elastic bending vibrations forced bp®8- equations (2) and (9), suggests that the filament and the bead
nian fluctuations. The Brownian fordgqen(s,t) satisfies the spring chain models are elastically equivalent provikigs =

fluctuation-dissipation theorem as follows: 2A/(d—1). In addition, the bond spring constaatneeds to
be large enough to approximate the local constraints of-inex
(fsocn(s1)) =0 (6) tensibility. This in turn limits the simulation time steps\ery
(fsoen(s,t) @ fgoen(S,t')) = 2aD(s—5)d(t —t') small value.

Thereforefgocn represents white-noise excitation and can thus ) )
be expressed in terms of generalized derivatives of theimu®&2 Stagnation-Point Flow

dimensional standard Wiener process, The stagnation-point flow has long been realized in the four-

92W(s,t) role-mill apparatus of Lagnado et al. and Yang et al., respec
— (7) tively3*35 and has been employed in the study of drops and
osot : S . !
other objects of macroscopic dimensiéhs The stagnation-
Here, C is a matrix satisfyingCC" = D and according t&°, point flow can be realized in the cross micro-channel arrange
C=1I+ (4 —1)0 ® 0. ment of Kantsler & Goldsteitf to observe the response of
mesoscopic particles such as actin molecules in the wcinit
of the stagnation point. The micro-channel system requires
ny smaller sample volumes, and hence appears to be more suit-
t able for the observation of macromolecules, cells, etcthén
vicinity of the stagnation point the velocity fieldr) is spa-
X tially homogeneous, and can be written as,

v(iry=r-r, F:é{_ol (ﬂ V=¢&/(x+y2), (10)

M\.“‘."D with V the velocity magnitudeg the shear rate and the ve-
locity field matrix. For particle-based simulation methedgh

as DPD, simple flows (i.e., shear flows) are commonly gen-
Fig. 1 Sketches of (upper) continuous filament with geometric ~ €rated by imposing a constant driving force (Poiseuille Jlow
parameter definitions and (lower) bead-spring chain model. equivalent to a pressure gradient, or a driving velocity loa t

boundary shear planes (Couette flow). However, with a gartic

based method it is not trivial to implement the stagnatiomp

The bead-spring chain model used in aeticle-based sim-  flow together with periodic boundary conditions. Recerfign

ulations, as shown in Figure 1(lower), is designed to mifé tet al3” devised a periodic uniaxial stretching flow for DPD
continuous filament. The discrete elastic enegyis a sum of simulations in which a smaller box is placed inside an outer
angle-dependent bending energies and stretching endegiesarger box. Periodic boundary conditions are applied on the

fgoch = V2aC

every consecutive pair of bonds, surfaces of the latter, while the flow is driven by a distribat
1 1 of velocities on opposing vertical surfaces of the inner.box
Eps = z E|<a(e —60)%+ z Eks(b_ bo)?, (8) By reversal of the direction of the driving velocities stiet

ing/compressing can be imposed along the x/y-axes. Known
where k; and ks are the elastic constants for bending arghalytic stretching flows are defined on infinite domains, and
stretching, respectively. The deformation measures batwéence the box-inside-a-box is a convenient way to have fully
consecutive bond8— 6y andb — by, for bending and stretchingperiodic conditions with simplicity of implementation. e
respectively, are taken relative to their equilibrium refece ever, the outer box size should be large enough to ensure mini
valuesBy, bg. In this work, 8y is taken to bet along the entire mal effect on the stagnation-point flow. Our experience & th
contour, which sets the reference state to be a straight itbd whe large size and slow convergence to the steady state makes
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the box-in-a-box scheme computationally expensive. Ewrth
more, the stagnation stretch rate cannot be specified, ant ha
be determined by trial. We have developed a driving-fordd fie
to yield a stagnation-point flow in a DPD computational box
with periodic boundary conditions. The new scheme takes ad-
vantage of the well-known fact that the Navier-Stokes equat

is satisfied by a potential flow. The—y plane of the box is a
periodic square in a lattice of vortices. Itis bounded bgaitn-
lines, and contains four counter-rotating vortices lodatethe
centers of each quadrant. In potential flow, Bernoulli's &qu
tion is H = 1/2pv?+ P + px = constant. The velocity field
can be thought of as being driven by the body force per unit
mass(x + P/p), which by Bernoulli's equation i§\v2. The
derivation of this driving force will be given in a forthcony
publication, where it will be shown that use of this driviroggée
yields accurate simulations. Furthermore, excellent engnis
achieved due to rapid convergence from a startup at reseto th
steady state. The simulated streamline and pressure ipaiter
shown in Figure 2 (left), and the velocity-vector patterrihie
vicinity of the center shows it to be a stagnation point; $ee t
velocities along the centerlines= 0,y = 0 plotted in Figure
2(right). In the DPD simulation, a single bead-spring filatne
model is released with its center of mass at the stagnation-
point (center of simulation box) of the flow shown in Figure
2(left). No constraints are imposed on the motion of fibernea
stagnation-point, while Guglielmini et &l.use Brownian dy-
namics to study an elastic filament tethered to the stagmatio
point. The kinematics of fiber is then recorded as functidns o
time, as shown in Figure 3 as well as online video. Because
of the accurate symmetry of the analytic stagnation-poanut fl
driving the filament motion, the dwell time of the filament in
the region of uniform strain rate was always sufficient to ob-
serve its complete reorientation along the stretching. axis
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50 5 0 5 19
1 1 Fig. 3Instantaneous streamlines and velocity vectors showiag th
disturbance of the stagnation-point flow caused by the lspaidg
X0 05 chain constrained to deform in the plane. (see online video)
1 -1
I sulting disturbance flow as fully three-dimensional. Hoagyv
X X in the crossed-channel configuration, the classical stagna
point flow is realized only in the mid-vertical plane, and the
Fig. 2(left) Streamlines derived from DPD simulations of a small gap will tend to constrain a suspended object to move
Newtonian fluid undergoing stagnation-point flow in the pdi¢ within that plane. This is the motivation for the 2D simudets

box; (right) Velocities along the X(red)- and the Y(blu&lia The  qascribed below.

strain rate is uniform (linear velocities) fof,Y < +/ — 4.

3 Numerical Methods 3.1 Numerical Methodsfor Governing SPDEs

With sufficient depth, the Yang et al.’s four-role-mill agpa The numerical approach taken here was inspired by Chorin’s
tus should allow a suspended object to move freely in amethod for incompressible Navier-Stokes equatforFirst, we
direction, and therefore it is appropriate to simulate tee rintroduce the auxiliary systems for the positidis, t) along the
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fiber, as follows 107

-1 4
Gr T — DT (_ B% — A(A(9)dsr) +fstoch(svt)>

AN [ar\? W15
ot ! (ﬁ_s> 0 g slope =-1.0
A(s=0)=A(s=1)=0
02r 33 o . S
E(SZO,S:D:E(SZO,SZDZO 1105 10i1 107
(11) dt

We shall calld the artificial extensibility, and in the second
equation is an auxiliary variable whose role is analogotksab Fig. 4 Numerical (weak ) convergence of the solution of equation
of time in extensible fiber problem. Numerically, we choodé) as measured by the mean square error (MSE) of filament
5 ~ O(At), and our auxiliary system indeed converges to ine&kad-to-end dista_nce asa fgnction of time spThe exact solutions
tensible filament system @s goes to zero. are computed witét = 10",

The auxiliary system (11) can be used with various differ-
ence schemes. Here, considering the stiffness introductteb

elastic term%, the SPDEs are discretized discretized by ceB2 Dissipative Particle Dynamics Simulation

tral finite difference in space and a stiffly-stable schentane. . . . . .
To this end, we considet + 1 discrete points in timé = iAt We the.n study the |nextenS|b!e fiber dynamlc_:s subject .to
with i € {0,1,2,...,Nt}, and the arc length in space is OIiS§tagnat|on-p0|nt flow by employing DPD simulations. DPD is
cretized unifo7rrr71ly,b)4\l,s+ 1 nodess, — kAs, ke 0.1,2, .. Ns & mesoscale method for studying coarse-grained modelstof so
andAs— 1/Ns. A staggered grid is used io calcyzulyatyan7d/\ matter and complex fl4uzid systems over rel_ativel_y long Ien_gth
for stability reasons, i.e., the displacementre calculated at an_d t|_me sca_ll_es, se&*% In DPD the part|c|e_s Interact via
the center points of each interval with tolds points, while the pairwise add|t|ye forces, congstmg (|n"the b_as!c fqrm)ttrée
line tensions are updated every timestep on the bounddrie o({npogents. 0 adcons;ervzfg/egorl?e, (|;)ha(€||?s:aatlve force,
each interval with totaNs+ 1 points. Ghost points are used and (iii) a random forcet™. Hence, the total force on par-
to approximate the high-order derivatives near the bouesarticlei is given byfi = 5;.; ( fG +f2 +fF} |, where the sum acts
We approximate the stochastic force as piece-wise constant . - . o .
on distinct time and space intervalis andAt, i.e., the dis- over alllparucles within a cut-off radiug. Specifically, in our
crete stochastic forces are Gaussian random numbers and are lations we have
uniquely characterized by zero mean value and the covaria o P Gj .

quely y nf‘i::;aijw(rij)rij—sz(rij)(rij'Vij)rij+aw(ri])#rij

I#]

matrix: VAL
2a 14)

PO AN X 12 (
stochk Atasok (0 (12) wherea;j is a maximum repulsion between particieand j.

with .#7(0,1) denoting the normalized Gaussian distributior\{ye seta; = a = 250 for both solvent and filaments particles

: . : . . _ in our simulations.r;; is the distance with the corresponding
Finally, the discretized equations can be written usingi@th = . PN . o
, unit vectorfij, Vjj is the difference between the two velocities,
order stiffly stable schenié as

¢ij is a Gaussian random number with zero mean and unit vari-

1 187 9.1 25, 6 i v ance, and/ and o are parameters coupled o = 2ykgT 4.
N = 1_1rk_ 1_1rk + 1_1rk + 11 (P + Tsoeni) (13) Typically, the weighting functions(ri;) are given by

i 18 . 9 .. 2 6 At
/\I-‘rl: _/\I __/\I—l _AI—Z __Gl-‘rl _rI_J -

k 11 k 11 k + 11 k + 119 k w(rij) _ { Orc r'l'J <TI¢ (15)

where F and G are numerical discretizations of the terms
rr+ D%l( — Bg—;ﬁ — 0s(\(s)dsr)) and (1— (dsr)?), respec- The filaments are represented as bead-spring chainsNwith
tively, with central differences. At each time step, thesa-c 32 segments, with additional bond and angle forceSEg)

pled two equations are iteratively solved by fixed-point-itederived from equation (8). The average particle number den-
ation. In equation (13), the stochastic terms are treatedsity of the DPD solvent ip = 3.0r; 2 and the temperature is
the Ito sense. We then sample the stochastic trajactoribs set atksT = 1.0. The simulations are performed using a mod-
the Monte Carlo method. High order discretization formulédfed version of the DPD code based on the open source code
are used both in time and space, nevertheless, we can aiIMPS, se¢“. Time integration of the equation of motion
achieve first-order convergence in the weak sence becausi obtained by a modified velocity-Verlert algorithm, firsop

the Wiener process, as shown in Figure 4. posed by, with time stepAt = 0.001 (in DPD time units).
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4 Results and Discussion

In order to obtain a quantitative understanding of the dyicam

of a fiber undergoing large distortions near the stagngpioint

of flow, we interpret the solutions of system (Eq.(11)) imter

of the shape anglé. Previous studie$ have employed the
eigen-modes analysis of the familar transverse displaneafe
elastic beam theory. However, such displacements become in
creasingly difficult to interpret for fiber distorted far bayd
straight. Thus, normal modes analySiof angle 6 is used ‘
to study the fiber deformation during its motion. The bend- ' 57L

ing momentM due to the transverse load along the fiber is

A(K(s) — Ko), and the differential of the elastic energy at an aFig. 5 First five normal modes (eigenfunctions) for the biharmonic
bitrary pointsalong the fiber iSIE = A(k (s) — Ko)zds, Hence, operator with boundary conditions (Eq.18), cycle, crosstangle,

the shape angle can be expressed as f(]_/MdE) For a diamond and triangle symobls represent Oth, 1st, 2nd, Jidi&n
nearly straight fiber aligned with the stretching flow the dhenmode, respectively.

ing load will be mainly that imposed by the thermal fluctua-

tions. ThusM will be &(ksgT) while dE is &(A/L), and hence

6 ~ 0(B). However, as the fiber becomes highly distorted the

hydrodynamic drag will also contribute M, and we then must

includea in the functional denpendence 6f fiber dynamics, cannot be obtained analytically since the te
sion A(s) is unknown in general. For a nearly straight fiber
aligned along the stretching or compression axis with stisdl
tortions, the tensioi\(s) can be obtained analytically. In such
We can express the shapgs), as defined in Figure 1, as aase, the eigen-functions for the displacement are alsorwat

4.1 Normal Modes Analysis

superposition of normal “modes”, analytically by Kantsler et at®. However, here, we study the
" fiber deformation during an entire cycle of fiber rotatingrfro

0(st) = Z)uq(t)%(s) (16) aligned along compression axis to stretching axis. Thereige

q= modes for angleé instead of displacement are simply chosen

as the eigen-functions of the biharmonic operator with hatu
where ug and @, are, respectively, the temporal and spaa| boundary conditions. We only include the linear part of
tial normal modes, where(s) are complete set of orthog-the deterministic operator, thus, these eigen-modes sheven
onal basis functions. The choice of the eigen-functions d}ﬁ not correspond to real dynamic modes. We projected the
the biharmonic operator with natural boundary conditiongll modes onto these linear normal modes for both geomet-
(0s6(—L/2) = 3s6(L/2) =0,0s0(—L/2) = dsB(L/2) = 0) as ric and computational reasons, and these linear normal snode
appropriate normal modes is motivated by the term with thige appropriate to study fiber deformations, because thay fo
highest spatial derivative in the equation of motion. Kkantst a Comp|ete set. Moreover, the tensiMS) a|0ng the fiber
al.1® represented the displacements in terms of normal mogeganges sign from negative to positive during a full rotagio
derived from the full elastic-beam equation in the limit ofall  and hence the nonlinear term contribution cancels out (thou
displacements. It is not clear if such modes are appropioatenot perfectly to zero) in an average sense. This is one of the
large distortions. An alternative set of modes is numelycamain reasons that we chose the linear eigen-modes in adlditio
derived in the Appendix by a Proper Orthogonal Decompag- simplifying the computation. The real dynamic modes can
tion(POD). Thus, the normal modes are determinedby  pe obtained numerically via Proper Orthogonal Decompmrsiti
4 (POD) over a certain time window, i.e., before significarntiou
Poss = Nq@ =0, Aq=kg/(TAL)", a7) ling and reorientation, the POD modes correspond to the ana-
1 lytical eigen-modes obtained by Kantsler et'@l. A simple
wherek is theg-th root ofE cogx)(e“+e*)—1=0and the comparison between POD and normal modes is included in the
eigenfunctionsg, of this biharmonic operator are of the form, Appendix. The spatial normal modes of Eq.(17) shown in Fig.
4 are appropiate to describe the deformed fiber by means of
@ (S) = Asinkgs+ Bsinhkgs+ Dcoskgs+ Ecostkgs  (18) the shape anglé for all levels of distortion. The linearity of
the operator of Eq.(17) guarantees that the spatial modés wi
The coefficients are determined by the boundary conditioRgmain unchanged for all levels of non-linearity. For a sienp
and the first five normal modes are shown in Figure 4. scenario, if there are no interactions or correlations ketw
Here, we note that the eigen-functions of the full operateach mode dynamics, i.e., the mode dynamics is all decoupled
Bg—zﬁ + 0s((A\(s))0sr), which correspond to the eigen-modes dghe bending energy can be represented as quadratic summatio
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transformatiorr — > —r they are even or odd functions. Our
results show that forr /3 < 1 odd modes are suppressed, which
each quadratic term contributes afkgT from the equiparti- indicates fore-aft symmetry (Figure (6a)). As we increagg,

keT 1 - the first mode is excited (Figure (6b)), further, fayB > 1,
T@ However, itis not 4 modes are excited, which implies that symmetry is broken
true for inextensible filament dynamics here due to the menlis in Figure (6¢). The even/odd modes behaviour is mainly
ear interactions between different modes, which arise fitzen because of the anti-symmetry of the eigen-functions ofitie |
local inextensible constraint. ear biharmonic operator with natural boundary conditidrtse
eigen-functionsin Eq.(18) only keep the first and last twote

for even and odd modes, respectively. Essentially, these ph
nomena come from the geometric constraints. Since our de-
composition is done on the angle, the Oth mode corresponds to
the pure rotation, which has the most dominant energy.

. . 1 2
of the normal modes amplitudes, ig.= Ay kgug. Then,
2" 2

tion theorem, thus, we hau% =

0.4WMW~MW

(\IVD'
S OZWMMNW >

10+
0
0 0.02 0.04 A
t NJU]_O—z.
V
o. 4VMWMVWWWPM _
10
T 0.2} i At At 10° 10" 10%

0 Fig. 7 Time average normal modes energy as functions of mode
0 0.02 0.04 numberky, with a /8 = 1000 (red), 100 (blue), 10 (green). Data
t represented by solid symobls are derived from the numesation

of continuum SPDEs, while data represented by open symbels a
obtained from DPD simulations.The upper and lower dashrezs lare
reference lines for linear and quadratic decay, respdgtive

An alternative way to illustrate the amplitude data is dis-
played in Figure 7, where the time averaged vaIuesﬁo&re
plotted against mode numbky display a sawtooth-trend due
to the suppression of odd modes (two to three orders smaller
than the even modes) and follow the equi-partition theor@m f

0 0.02 0.04 smalla/B <1, i.e., the modal energy exhibikg2 decay, as
t indicated by the dashed line wighope = 2.0. However, the
modal energy decay is much slower for la@gB > 1, which
Eig. 6 First four normal modal energies as functions of dimenssl g indicated by a dashed line withope = 1.0, and the saw-
gr;;r":]‘togaggé Lrge:relp;?e’s febgtgé g S: ig.?e’d(?a)n%/ gr ;ioz(in?j. ai‘;eztznglatooth behavior disappears due to the excitation of odd modes
and blue the 1st and_3rd, reSpective_ly. All of _the data is@di‘rom (C?F??L?rl;ii:?n(\a/\éirt]ign;.?:?ﬁ;.mo dal dynamics in time, we show
normal mode analysis of the numerical solution of equatin ( A . -
the probability distribution functions (PDFs) 6t defined as

Oug (t) = Ug (t) — (uq(t)) (19)

in Figure 8, compared to a normal distribution fitting. The
First, we show that the spatial modes of the filament motion cgorresponding variances increase continuously as wedsere
be seperated into symmetric (even) and antisymmetric (o(ﬁt, see inset in Figure 9. There is a three orders increase
relative to the mass center depending on whether under dfi@ariance within our parameters range, which implies tnat

4.2 Numerical Results
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Fig. 8 PDF ofduy with o/ = 10.0. (inset) PDF variance a@iu; as . . . . . .
a function ofa /. Fig. 9 Power spectral density function as a function of dimensissil

frequency scaled witl'af/(or/B)l/2 and (inset) original data, (from

top to bottom)red, blue and green lines represefft = 1000,

a/B =10.0 anda /B = 1.0, respectively, witto = 10.0. Data of
significant amplification of thermal fluctuations is takinigge. solid and dashed lines are from solution of SPDEs and DPD
Another interesting physical property for studying modg d Simulations, respectively.
namics is the autocorrelation function, which is definedhia t
usual way as,

Cq(t) = (duq(to+1) dug(to)) (20)

~ Auseful observable to get insight into the stochastic bengy, ment model Eq.(3), which is valid only for rigid rods. In
for in time is the power spectral density (PSB)f), which ¢ ¢l regime, the hydrodynamic resistance is undereséich

is the Fourier transform of the autocorrelation functiyit), i the continuum model. Thus, the results from the continuum
I.e., P(f) := FFTCq(t). In Figure 9, we show the PSD of they g will be closer to the DPD results if we increase the hy-
first modeuy, at several values of/(. For large frequen- 4.4y namic resistance coefficientto 217, while keepinga /8

cies (short time regime), the PSDs obey the same power i@ same. These results and sensitivities are shown indggur
P(f) Ll (ef)"". We note that our results are from 2D simulag 504 11, Another difference between the two models origi-
tion, thus the slopes here are different from previous 3WStthae from the hydrodynamics near the filament and the distur-
ies™”. All of these PSD data with different parameters Clogapﬁ%nce to the steady flow field by the filament deforming dynam-
onto a single line with a simple rescalig~ f/(a/B)"? ics The DPD model captures the instantaneous hydrodynamic
However, at small frequencies (long time regime), there jigq 4 ctions of the fluctuating flow field shown in Figure 3¢dan

a pronounced increase in PSD with largefp, indicating 5 yore detailed video included as supplementary material.
stronger long-time correlations due to the interactiormiaen

nonlinearity and stochasticity. Throughout the paperx/B is used to measure the sys-
To further quantify the Euler-buckling like instability dthe tem, which is also adopted by other deterministic motfels

transition point, we defink” motivated by a similar expressionj e, models that do not include thermal fluctuations. How-

derived empirically as a wrinkling criterion for vesicle me ever, a short discussion about these dimensionless paemet

branes in previous studié¥** is needed for stochastic models, when the thermal energy dom
inates. We note thar = £1 has the form of a Weissenberg
12 12 . 3 : .
K — Z q2|u |2/ Z |u |2 1) number, witht = % corresponding to the time the center of
=) a & a mass of the fiber takes to diffuse its own contour length, Whic

is independent of the persistence lenigthThus, it seems more

The results both from the continuous filament model amagpropriate to consider the fiber relaxation time as theadzar
the bead-spring chain model show that a transition occuis wieristic time, since we focus on fiber deformation dynamics.
a/B increasing ta'(1) as in Figure 10. This interesting tranThe characteristic relaxation time is widely used to study-l
sition can also be identified by the average end-to-endrdistaible polymer extension with hydrodynamic effects. For weak
R¢ of the fiber as shown in Figure 11. This is the Eulebending resistance, we can renormalize the semiflexible fibe
buckling like transition observed in previous experiméstad- into freely-jointed chain model with effective Kuhn lendih
ies'®. The departure in the flexible limit /B — « appears to and number of segments|p. Motivated by the Zimm model
be due to the use of steady flow Stokes resistence in consnuiou flexible polymeré, we then define the relaxation time to
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X ¢ &=
| 0.25 %,
—
$ ¢
4 . . . . 0 é é é .
107" 10° 10" 10° 10t 10° 10" 107
a/B a/B
Fig. 10 Critical mode numbek* for buckling instability as a Fig. 11 Effictive compresion - R¢ /L as a function oty /3

function of a /B determined from the planar motion of the Langevindetermined from the planar motion of the Langevin filameaoli¢s
filament and the 2D motion of the DPD bead-spring chain with blue line) and the 2D motion of the DPD bead-spring chain ifapeel

a = 10.0. Data for the solid blue line and open red symbols are frosymbols) witha = 10.0. The green symbols represent the variation
numerical solution of SPDEs and DPD simulations, respelgtiihe of Rt /L as the hydrodynamic resistance coefficients in the contmuu
green symbols represent the variatiorkbfas the hydrodynamic model are changed from to 21 (upper symbol) and.8n (lower
resistance coefficients in the continuum models are chafngetn symbol) at constant /3.

to 2 (lower symbol) and ®n (upper symbol) at constant/f3.

friction acting on the filament derived from the Stokes egurat

be 3 for a rigid rod subject to three-dimensional flow. The laiter
’7((%)‘%) nL3p3(-v) subject to uncertainties, which we investigate by varying t
RO keT ke T (22) magnitude of the friction coefficient by50%. In particular,

. . B we were interested in investigating the effect of thermattfiu
W:r:atr?nvols rtzemFlgt)'/(;EdeTxhagd wee ;k: - 0'5.t:]0;:]2?;1r53\|/'e.a§i0ns on the dynamic response of the filament and the presenc
v bl " Ibel;\/—l 23/2 u dvtv limiti up WII indicate f _'8f a possible stretch-coil instability from two differentoael-
?\i/n_?g)n;l nr:early;igig ro:rgjoIrnsinlgle;n%)\//ab:ié?n;;:s t?(; t;/ng perspectives. We found that the filament displays a ligkl
with negligible thermal fluctuations, while for\( — 0) a flex- hstability induced by tension, analogous to the Euler baatm

ible string dominated by Brawnian forces. Howevatis only Weissenberg number of order one. Above this value, both the

) . o . . ) temporal and spatial thermal noise are amplified due to-inter
'Sl'%lctaa:;reer:ct)sr ggsrounngsérpgsgggifsnjf;eie:;egz'\?: t:aer‘gg aFaction between the thermal fluctuations and the nonlinear fil

- y . Y Ment dynamics. Normal mode analysis of the filament motion

difficult to understand, hence, a new dimensionless nunsber

required to capture accurately the physics of fiber dynanmies bbtained by both models shows the response to be composed

der neaative tension and thermal fluctuations of the same modes, but the transition from nearly straigtis ro
9 ' to loose coils suggests that constant resistance coetiaiesy

overestimates the amplitude of the filament response. Agho
5 Summary and Discussion we have dealt only with the single continuous filament dynam-
ics in an undisturbed stretching flow, the framework emptbye
We considered here the dynamic response of a single inerd numerical schemes can be applied to concentrated fitamen
tensible, elastic filament subject to stretching/compoess  solutions and filament networks with large disturbancesef t
a stagnation-point flow. We developed two different modelow field, where a Stokes or a Navier-Stokes solver should be
the first based on a stochastic PDE treating the filament as cemployed together with our current framewofksComparing
tinuum, and the second based on dissipative particle dyesamvith previous studies [2], we considered the stochastiovBro
(DPD) treating the filament as bead-spring chain. In thers@cadan force in the governing equation of fiber dynamics. Withou
model, the two-dimensional stagnation-point flow is acatevthermal fluctuations (or temperature), the fiber only exgibi
by driving the particles with a body force derived from thegr a single mode subjected to specific tension. However, a con-
sure gradient of a potential flow in a lattice of vortices. bitlb figuration is a summation of each normal mode with different
models, the elastic properties are matched and the filament modal energy in the finite temperature case, where the modal
tion is constrained to the plane. In the DPD simulations tkeergy follows or deviates from the equi-partition theorteen
solvent is simulated explicitly and the correspondingipbes fore and after the bifurcation point, respectively. Indetcd
are free to move in three-dimensions. On the other handgin Hifurcation point ¢/ ~ ¢(1)) is independent of the temper-
continuum model, the solvent is simulated implicitly witiet ature, but the fiber dynamics is highly dependent on the tem-
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perature. Before the bifurcation point, the dynamics degerl5 M. Harasim, B. Wunderlich, O. Peleg, M. Kroger and

linearly on temperature since the modal energies can be well A. BauschPhys. Rev. Lett., 2013,110, 108302.
separated and scaled by thermal energy. However, the non-

linear dependence of fiber dynamics on thermal fluctuatisns
extremely complicated after the bifurcation point and dese

further studies.
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7 Appendix: Proper Orthogonal Decomposition
Analysis

tool often employed for data compression and low-dimeraiol
modeling, which is also known as principal component ana
sis (PCA), singular value decomposition (SVD). Here, PC
decomposes the time-space fiber configura@gns) into an
expansion of orthogonal temporal and spatial modes, i.e.,

Npod

0(t,s) = Y @(9)aq(t) (23)
g=1

To compute the space- time- POD modes, a temporal at
correlation covariance matrig is constructed from the inner
product of6(1',s) and6(t!,s) as

Ci= [0 90(tgds ij=12

,--Npop  (24)

The temporal modesq(t) are the eigenvectors @, and the

10

<

10° ~
10 10
q

Fig. 13 POD modes energy as functions of mode nunthevith

spatial modesy(s) are computed via orthogonality relationsg /g = 1000 (red), 100 (blue), 10 (green).

ie.,
(25)

As expected, we observe a typical power-law decay of high-

@(9) = [ aq(t)o(r.s)dr

order POD modes in all simulations. Fay3 < 1, the power-

In a time average sense, the real dynamic modes can belal-decay corresponds to a thermal white-noise energy spec-
tained numerically via Proper Orthogonal Decompositioarovirum indicated by black dashed line (slope = 2.0) in the plots

11
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and only small amount of POD modes are enough to character-
ize the fiber dynamics. However, the power-law decay becomes
slower as we increase/ 3, which shows that the fiber dynam-

ics is accompanied by the excitement of high-order deforma-
tion modes, and hence more degrees of freedoms are needed
to describe such motions. In general, POD and normal modes
analysis reveal the same physics as described above.
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