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We investigate the dynamics of a single inextensible elastic filament subject to anisotropic friction in a viscous stagnation-point
flow, by employing both a continuum model represented by Langevin type stochastic partial differential equations (SPDEs) and
a Dissipative Particle Dynamics (DPD) method. Unlike previous works1, the filament is free to rotate and the tension along the
filament is determined by the local inextensible constraint. The kinematics of the filament is recorded and studied with normal
modes analysis. The results show that the filament displays an instability induced by negative tension, which is analogous to Euler
buckling of a beam. Symmetry breaking of normal modes dynamics and stretch-coil transitions are observed above the threshold
of the buckling instability point. Furthermore, both temporal and spatial noise are amplified resulting from the interaction of
thermal fluctuations and nonlinear filament dynamics. Specifically, the spatial noise is amplified with even normal modesbeing
excited due to symmetry breaking, while the temporal noise is amplified with increasing time correlation length and variance.

1 Introduction

Bio-polymers, such as F-actin, protein fibers, DNA, and mi-
crotubules are all semiflexible elastic filaments. There aretwo
unique characteristic properties distinguishing them from most
of the other natural and synthetic polymers: they posess a cer-
tain stiffness that energetically suppresses bending, andthey
are to a high degree inextensible, i.e., their back-bone cannot
be stretched or compressed too much. The cytoskeletons of
cells and tissues are mostly built by such bio-polymers, thus,
studying the dynamics of inextensible elastic filaments sub-
ject to hydrodynamic forces can be a first step towards under-
standing the cytoskeleton networks and tissue motions. Previ-
ous works focused mainly on the stretching dynamics of fila-
ments with tension applied lengthwise2–9, both with and with-
out hydrodynamics. However, recent works on the dynam-
ics of elastic filaments subject to hydrodynamic forces has re-
vealed complex nonlinear dynamical behavior both in simple
shear flows10–15 and in the neighborhood of stagnation-point
of stretching flows6,16,17. Specifically, the negative tension in-
duced along the filament by simple hydrodynamic forces above
some critical value can lead to buckling known as “stretch-coil”
instability16,18,19. Hence, it is very important to fully under-
stand the inextensible elastic filament dynamics for cell me-
chanics20.

Suspended in stretching flow, these filaments respond as
mesoscopic entities (∼ µm), and hence the forces on them,
Brownian, hydrodynamic and elastic, are of the same order.
This, in turn, implies the importance of thermal fluctuationso
that the Brownian forces cannot be neglected. However, to
the best of our knowledge, only a few papers have addressed
the thermal fluctuation effects10–12,21,22. Moreover, nonlinear

response due to the thermal noise has become a central topic
in studies of various dynamical systems. For example, as was
shown recently, thermal noise is greatly amplified in a dynam-
ical system due to the interaction between stochasticity and
nonlinearity near bifurcation points23–27, i.e., low dimensional
models with a small number of modes are sufficient to capture
the physics in these complex systems only up to the bifurcation
points, after which, higher modes will make significant contri-
butions to the full dynamics.

The objective of the current work is to study the role of ther-
mal fluctuations on the deformation of single linear filament
subject to stretching and compression near a stagnation-point
within a viscous flow. The filaments are represented by two
models. The first is the inextensible elastic filament described
as a continuous curve for which the solvent flow acts through
the anisotropic viscous resistance and thermal noise, and the
dynamics of the inextensible filament is governed by Langevin
type stochastic partial differential equations (SPDEs)12,28. The
second is a Dissipative Particle Dynamics (DPD) bead-spring
chain model immersed in a solvent of DPD particles subject to
the stagnation-point flow. Details about these two models are
given in Sec. 2. These two models are then simulated by ob-
taining numerical solutions to the governing SPDEs and DPD
equations, respectively (see Sec. 3). A reader who is not in-
terested in technical details can skip directly to Sec. 4, where
the main numerical results are obtained from each model. We
use normal mode analysis to identify the stretch-coil transition
and amplification of thermal noise during filament dynamics.
These physical phenomena can also analyzed with Proper Or-
thogonal Decomposition (POD) analysis, which is included in
the Appendix. Finally, a short conclusion about the limitation
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of the current models and further work are included in Sec. 5.

2 Model Description

In this section, we present models for continuum inextensible
elastic filaments and for bead-spring chains in stagnation-point
flow.

2.1 Models of Linear Fibers

Most of the bio-polymers are generally modeled as inexten-
sible elastic filaments whose deformations are dominated by
elastic bending resistance. This contrasts with other longflex-
ible molecules, which have little bending resistance, and are
generally modelled as freely-jointed chains11,13,14. Two linear
inextensible elastic filament models are simulated in our cur-
rent work: a continuous elastic filament29,30and a bead-spring
chain.

The energy functional for acontinuous filament, constrained
to be inextensible, is expressible as a line integral along its con-
tour, 0≤ s ≤ L, as follows:

E =
1
2

∫ L/2

−L/2
ds

(

A(κ(s)−κ0)
2−Λ(s)(∂sr)

2
)

, (1)

whereθ andκ = ∂sθ (s) are the tangent angle and the curva-
ture at arc lengths as shown in Figure 1(upper), respectively,
andκ0 is zero for a rigid rod filament. Bending resistance is
characterized by the flexural rigidity, which in the theory of
elastic beams is given byA = GI, with a material modulusG
and second moment of cross-section areaI 31. By definition a
filament is very thin, and filament theory is applied to entities
where the cross-section dimensions are not easily determined.
Thus,A is the preferred elastic parameter to characterize the
bending elasticity. The second term of the integrand introduces
the Lagrange multiplierΛ(s) to impose the local constraint of
inextensibility by the requirement that the tangent vector∂sr be
of constant magnitude along the entire filament contour length.
Division of Eq.(1) bykBT and with all lengths scaled byL yield
the dimensionless total filament elastic energyE/kBT relative
to the energy imposed on it by the thermal fluctuations. Within
the integral, the dimensionless coefficient of the local elastic
term becomesβ = A/(kBT L), a measure of the local bending
momentM(s) = A(κ(s)−κ0) relative to the moment imposed
by the thermal transverse load. At the mesoscopic dimensions,
where thermal fluctuations are important, an alternative mea-
sure of bending resistance is the persistence lengthlP related to
β by

β =
A

kBT L
=

lp(d −1)

2L
, (2)

whered is the dimension of the deformation space. A Langevin
type equation models the motion of an elastic inextensible fil-
ament immersed in a continuous Newtonian solvent. The neu-
trally buoyant filament, of radiusa ∼ O(µm), a/L ≪ 1, experi-

ences hydrodynamic resistance governed by the Stokes equa-
tion, which exceeds inertia by several orders of magnitude;
hence, inertial forces can be safely neglected. Also, the distur-
bance of the flow field by the filament motion is absorbed into
the Brownian force effects. Thus, the mesoscopic level equa-
tion of motion reduces to a balance between three forces: the
Brownian force (∼ kBT/L), the hydrodynamic force (∼ µε̇L2)
and the elastic bending force (∼ A/L2). The motion generated
by these forces must satisfy the local inextensibility of the fila-
ment, which requires the magnitude of its tangent vector to be
constrained locally to be|dr/ds| = 1 along its contour; the lat-
ter condition yields the line tension generated by the Lagrange
multiplier. Finally, the governing equation is written as the sum
of the deterministic forces balanced by the fluctuating stochas-
tic driving force:

ηD[∂tr−u(r)]+
(

A
∂ 4r
∂ s4 + ∂s

(

Λ(s)∂sr
)

)

= fstoch(s,t), (3)

where D is the dimensionless anisotropic drag tensor,D =
I − 1

2∂sr ⊗ ∂sr, and η = (2π)µ/ln(L/a) is the effective vis-
cosity derived from the known Stokes resistance for a rigid rod
of radiusa. The latter is usually approximated by rough esti-
mates, but the inaccuracy is tolerable since it appears onlyin
the logarithm. This form of the hydrodynamic resistance is ac-
curate provided the filament remains nearly straight, but asit
departs from a linear configuration accuracy is lost. Also, the
configuration of a compliant filament may depart so far from
straightness as to induce significant hydrodynamic interactions
between its parts. These restrictions are avoided for the DPD
model since the DPD solvent accounts implicitly for hydro-
dynamic effects. The tensor Lagrange multiplierΛ(s) is an
unknown introduced to impose the inextensibility constraint,
and is the one-dimensional analog of the pressure Lagrange-
multiplier employed to impose incompressibility on a contin-
uum velocity field. The Langevin equation is scaled with the
contour lengthL, the hydrodynamic timėε−1 and the charac-
teristic Brownian forcekBT/L to yield the dimensionless equa-
tion,

∂tr−Γ·r =
D−1

α

(

−β
∂ 4r
∂ s4 − ∂s (Λ(s)∂sr)+ fstoch(s,t)

)

, (4)

whereΓ is the velocity gradient tensor given below. Hence, the
solution of this equation requires, in addition toβ , the Peclet
number32 α defined as

α =
ηε̇L3

kBT
, (5)

which measures the hydrodynamic forces induced by the
stretching flow relative to the thermal Brownian force. The di-
mensionless parameterβ measures the elastic bending force
relative to the thermal Brownian force, which is the typicaldef-
inition of relative persistence length in polymer science28. The
ratioα/β = ηε̇L4/A measures the relative strengths of the vis-
cous and elastic forces. Its limiting values (→ 0, → ∞), re-
spectively, indicate a nearly-rigid rod dominated by bending
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elasticity and a flexible string drawn out to align symmetri-
cally by the dominant hydrodynamic forces about the stagna-
tion point. However, the latter configuration ignores the effects
of the Brownian fluctuations which induce a coiled configura-
tion, as will be seen below. The key parameterα/β in our
manuscript is essentially the same asη in Guglielmini et al.1,
µ in Manikantan et al.33 andΣ in Kantsler et al.16, but with
different constant pre-factors. In the limit of vanishing hydro-
dynamic force (α → 0), the Langevin equation reduces to a
linear problem, i.e, elastic bending vibrations forced by Brow-
nian fluctuations. The Brownian forcefstoch(s,t) satisfies the
fluctuation-dissipation theorem as follows:

〈fstoch(s,t)〉 = 0

〈fstoch(s,t)⊗ fstoch(s
′,t ′)〉 = 2αDδ (s− s′)δ (t − t ′)

(6)

Therefore,fstoch represents white-noise excitation and can thus
be expressed in terms of generalized derivatives of the multi-
dimensional standard Wiener process,

fstoch =
√

2αC
∂ 2W(s,t)

∂ s∂ t
. (7)

Here,C is a matrix satisfyingCCT = D and according to25,
C = I+(

√
2

2 −1)∂sr⊗ ∂sr.

Fig. 1 Sketches of (upper) continuous filament with geometric
parameter definitions and (lower) bead-spring chain model.

The bead-spring chain model used in theparticle-based sim-
ulations, as shown in Figure 1(lower), is designed to mimic the
continuous filament. The discrete elastic energyEbs is a sum of
angle-dependent bending energies and stretching energiesfor
every consecutive pair of bonds,

Ebs = ∑ 1
2

ka(θ −θ0)
2 +∑ 1

2
ks(b−b0)

2, (8)

where ka and ks are the elastic constants for bending and
stretching, respectively. The deformation measures between
consecutive bondsθ −θ0 andb−b0, for bending and stretching
respectively, are taken relative to their equilibrium reference
valuesθ0, b0. In this work,θ0 is taken to beπ along the entire
contour, which sets the reference state to be a straight rod with

b0 determined by the number of bonds. The constraint of in-
extensibility is approximated locally with very stiff connectors
(large ks) between every pair of consecutive beads. Another
equation incorporates the bending constantka into the persis-
tence lengthlP analogously to equation (2) of the continuous
filament case as

lP =
kab0

kBT
. (9)

Comparison of the two definitions of the persistence lengths,
equations (2) and (9), suggests that the filament and the bead-
spring chain models are elastically equivalent providedkab0 =
2A/(d − 1). In addition, the bond spring constantks needs to
be large enough to approximate the local constraints of inex-
tensibility. This in turn limits the simulation time steps to very
small value.

2.2 Stagnation-Point Flow

The stagnation-point flow has long been realized in the four-
role-mill apparatus of Lagnado et al. and Yang et al., respec-
tively34,35, and has been employed in the study of drops and
other objects of macroscopic dimensions36. The stagnation-
point flow can be realized in the cross micro-channel arrange-
ment of Kantsler & Goldstein16 to observe the response of
mesoscopic particles such as actin molecules in the vicinity
of the stagnation point. The micro-channel system requires
smaller sample volumes, and hence appears to be more suit-
able for the observation of macromolecules, cells, etc.. Inthe
vicinity of the stagnation point the velocity fieldv(r) is spa-
tially homogeneous, and can be written as,

v(r) = Γ · r , Γ = ε̇
[

0 1
−1 0

]

,V = ε̇
√

(x2 + y2) , (10)

with V the velocity magnitude,̇ε the shear rate andΓ the ve-
locity field matrix. For particle-based simulation methodssuch
as DPD, simple flows (i.e., shear flows) are commonly gen-
erated by imposing a constant driving force (Poiseuille flow),
equivalent to a pressure gradient, or a driving velocity on the
boundary shear planes (Couette flow). However, with a particle
based method it is not trivial to implement the stagnation-point
flow together with periodic boundary conditions. Recently,Pan
et al.37 devised a periodic uniaxial stretching flow for DPD
simulations in which a smaller box is placed inside an outer
larger box. Periodic boundary conditions are applied on the
surfaces of the latter, while the flow is driven by a distribution
of velocities on opposing vertical surfaces of the inner box.
By reversal of the direction of the driving velocities stretch-
ing/compressing can be imposed along the x/y-axes. Known
analytic stretching flows are defined on infinite domains, and
hence the box-inside-a-box is a convenient way to have fully
periodic conditions with simplicity of implementation. How-
ever, the outer box size should be large enough to ensure mini-
mal effect on the stagnation-point flow. Our experience is that
the large size and slow convergence to the steady state makes
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the box-in-a-box scheme computationally expensive. Further-
more, the stagnation stretch rate cannot be specified, and has to
be determined by trial. We have developed a driving-force field
to yield a stagnation-point flow in a DPD computational box
with periodic boundary conditions. The new scheme takes ad-
vantage of the well-known fact that the Navier-Stokes equation
is satisfied by a potential flow. Thex− y plane of the box is a
periodic square in a lattice of vortices. It is bounded by stream-
lines, and contains four counter-rotating vortices located at the
centers of each quadrant. In potential flow, Bernoulli’s equa-
tion is H = 1/2ρv2 + P + ρχ = constant. The velocity field
can be thought of as being driven by the body force per unit
mass∇(χ + P/ρ), which by Bernoulli’s equation is∇v2. The
derivation of this driving force will be given in a forthcoming
publication, where it will be shown that use of this driving force
yields accurate simulations. Furthermore, excellent economy is
achieved due to rapid convergence from a startup at rest to the
steady state. The simulated streamline and pressure pattern is
shown in Figure 2 (left), and the velocity-vector pattern inthe
vicinity of the center shows it to be a stagnation point; see the
velocities along the centerlinesx = 0,y = 0 plotted in Figure
2(right). In the DPD simulation, a single bead-spring filament
model is released with its center of mass at the stagnation-
point (center of simulation box) of the flow shown in Figure
2(left). No constraints are imposed on the motion of fiber near
stagnation-point, while Guglielmini et al.1 use Brownian dy-
namics to study an elastic filament tethered to the stagnation
point. The kinematics of fiber is then recorded as functions of
time, as shown in Figure 3 as well as online video. Because
of the accurate symmetry of the analytic stagnation-point flow
driving the filament motion, the dwell time of the filament in
the region of uniform strain rate was always sufficient to ob-
serve its complete reorientation along the stretching axis.

x

y

Fig. 2 ( left ) Streamlines derived from DPD simulations of a
Newtonian fluid undergoing stagnation-point flow in the periodic
box; ( right ) Velocities along the X(red)- and the Y(blue)-axis. The
strain rate is uniform (linear velocities) forX ,Y < +/−4.

3 Numerical Methods

With sufficient depth, the Yang et al.’s four-role-mill appara-
tus should allow a suspended object to move freely in any
direction, and therefore it is appropriate to simulate the re-

−2 −1 0 1 2
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−1

0

1

2

−2 −1 0 1 2

−2

−1

0

1

2

−2 −1 0 1 2

−2

−1

0

1

2

Fig. 3 Instantaneous streamlines and velocity vectors showing the
disturbance of the stagnation-point flow caused by the bead-spring
chain constrained to deform in the plane. (see online video)

sulting disturbance flow as fully three-dimensional. However,
in the crossed-channel configuration, the classical stagnation-
point flow is realized only in the mid-vertical plane, and the
small gap will tend to constrain a suspended object to move
within that plane. This is the motivation for the 2D simulations
described below.

3.1 Numerical Methods for Governing SPDEs

The numerical approach taken here was inspired by Chorin’s
method for incompressible Navier-Stokes equation38. First, we
introduce the auxiliary systems for the positionr(s, t) along the
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fiber, as follows

∂tr−Γ·r =
D−1

α

(

−β
∂ 4r
∂ s4 − ∂s (Λ(s)∂sr)+ fstoch(s,t)

)

∂ (δΛ)

∂ t
+

(

∂r
∂ s

)2

−1 = 0

Λ(s = 0) = Λ(s = 1) = 0

∂ 2r
∂ s2 (s = 0,s = 1) =

∂ 3r
∂ s3 (s = 0,s = 1) = 0

(11)
We shall callδ the artificial extensibility, andt in the second
equation is an auxiliary variable whose role is analogous tothat
of time in extensible fiber problem. Numerically, we choose
δ ∼ O(∆t), and our auxiliary system indeed converges to inex-
tensible filament system as∆t goes to zero.

The auxiliary system (11) can be used with various differ-
ence schemes. Here, considering the stiffness introduced by the
elastic term∂ 4r

∂ s4 , the SPDEs are discretized discretized by cen-
tral finite difference in space and a stiffly-stable scheme intime.
To this end, we considerNt +1 discrete points in timet i = i∆t
with i ∈ {0,1,2, ...,Nt}, and the arc length in space is dis-
cretized uniformly byNs+1 nodessk = k∆s, k ∈ 0,1,2, ...,Ns
and∆s = 1/Ns. A staggered grid is used to calculater andΛ
for stability reasons, i.e., the displacementsr are calculated at
the center points of each interval with totalNs points, while the
line tensions are updated every timestep on the boundaries of
each interval with totalNs + 1 points. Ghost points are used
to approximate the high-order derivatives near the boundaries.
We approximate the stochastic force as piece-wise constant
on distinct time and space intervals,∆s and ∆t, i.e., the dis-
crete stochastic forces are Gaussian random numbers and are
uniquely characterized by zero mean value and the covariance
matrix:

fi
stoch k ≈

√

2α
△t△s

Ci
kN (0,1) (12)

with N (0,1) denoting the normalized Gaussian distribution.
Finally, the discretized equations can be written using a third-
order stiffly stable scheme39 as

ri+1
k =

18
11

ri
k −

9
11

ri−1
k +

2
11

ri−2
k +

6
11

∆t
(

Fi+1
k + fi+1

stoch k

)

Λi+1
k =

18
11

Λi
k −

9
11

Λi−1
k +

2
11

Λi−2
k +

6
11

∆t
δ

Gi+1
k

(13)

where F and G are numerical discretizations of the terms
Γ·r + D−1

α
(

− β ∂ 4r
∂ s4 − ∂s (Λ(s)∂sr)

)

and
(

1− (∂sr)2
)

, respec-
tively, with central differences. At each time step, these cou-
pled two equations are iteratively solved by fixed-point iter-
ation. In equation (13), the stochastic terms are treated in
the Ito sense. We then sample the stochastic trajactories with
the Monte Carlo method. High order discretization formulas
are used both in time and space, nevertheless, we can only
achieve first-order convergence in the weak sence because of
the Wiener process, as shown in Figure 4.

10
5

10
6

10
710

−4

10
−3

10
−2

dt −1

M
S
E
 

slope = −1.0

Fig. 4 Numerical ( weak ) convergence of the solution of equation
(4) as measured by the mean square error (MSE) of filament
end-to-end distance as a function of time step∆t. The exact solutions
are computed with∆t = 10−9.

3.2 Dissipative Particle Dynamics Simulation

We then study the inextensible fiber dynamics subject to
stagnation-point flow by employing DPD simulations. DPD is
a mesoscale method for studying coarse-grained models of soft
matter and complex fluid systems over relatively long length
and time scales, see40–42. In DPD, the particles interact via
pairwise additive forces, consisting (in the basic form) ofthree
components: (i) a conservative forcefC ; (ii) a dissipative force,
fD ; and (iii) a random force,fR. Hence, the total force on par-

ticle i is given byfi = ∑i6= j

(

fC
i j + fD

i j + fR
i j

)

, where the sum acts

over all particles within a cut-off radiusrc. Specifically, in our
simulations we have

fi = ∑
i6= j

ai jω(ri j)r̂i j − γω2(ri j)(r̂i j · v̂i j)r̂i j + σω(ri j)
ζi j√
△t

r̂i j

(14)
whereai j is a maximum repulsion between particlesi and j.
We setai j = a = 25.0 for both solvent and filaments particles
in our simulations.ri j is the distance with the corresponding
unit vectorr̂i j, v̂i j is the difference between the two velocities,
ζi j is a Gaussian random number with zero mean and unit vari-
ance, andγ andσ are parameters coupled byσ2 = 2γkBT 43.
Typically, the weighting functionsω (ri j) are given by

ω (ri j) =

{

1− ri j
rc

ri j < rc

0 ri j ≥ rc.
(15)

The filaments are represented as bead-spring chains withN =
32 segments, with additional bond and angle forces (−∇Ebs)
derived from equation (8). The average particle number den-
sity of the DPD solvent isρ = 3.0r−3

c and the temperature is
set atkBT = 1.0. The simulations are performed using a mod-
ified version of the DPD code based on the open source code
LAMMPS, see44. Time integration of the equation of motion
is obtained by a modified velocity-Verlert algorithm, first pro-
posed by41, with time step∆t = 0.001 (in DPD time units).
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4 Results and Discussion

In order to obtain a quantitative understanding of the dynamics
of a fiber undergoing large distortions near the stagnation-point
of flow, we interpret the solutions of system (Eq.(11)) in terms
of the shape angleθ . Previous studies16 have employed the
eigen-modes analysis of the familar transverse displacement of
elastic beam theory. However, such displacements become in-
creasingly difficult to interpret for fiber distorted far beyond
straight. Thus, normal modes analysis45 of angleθ is used
to study the fiber deformation during its motion. The bend-
ing momentM due to the transverse load along the fiber is
A(κ(s)−κ0), and the differential of the elastic energy at an ar-
bitrary points along the fiber isdE = A(κ(s)−κ0)

2ds. Hence,
the shape angle can be expressed asθ =

∫

(1/MdE). For a
nearly straight fiber aligned with the stretching flow the bend-
ing load will be mainly that imposed by the thermal fluctua-
tions. Thus,M will be O(kBT ) while dE is O(A/L), and hence
θ ∼ O(β ). However, as the fiber becomes highly distorted the
hydrodynamic drag will also contribute toM, and we then must
includeα in the functional denpendence ofθ .

4.1 Normal Modes Analysis

We can express the shapeθ (s), as defined in Figure 1, as a
superposition of normal “modes”,

θ (s,t) =
∞

∑
q=0

uq(t)φq(s) (16)

where uq and φq are, respectively, the temporal and spa-
tial normal modes, whereφq(s) are complete set of orthog-
onal basis functions. The choice of the eigen-functions of
the biharmonic operator with natural boundary conditions
(∂sθ (−L/2) = ∂sθ (L/2) = 0,∂ssθ (−L/2) = ∂ssθ (L/2) = 0) as
appropriate normal modes is motivated by the term with this
highest spatial derivative in the equation of motion. Kantsler et
al.16 represented the displacements in terms of normal modes
derived from the full elastic-beam equation in the limit of small
displacements. It is not clear if such modes are appropriatefor
large distortions. An alternative set of modes is numerically
derived in the Appendix by a Proper Orthogonal Decompos-
tion(POD). Thus, the normal modes are determined by

φssss −Λqφ = 0 , Λq = kq/(πAL)4 , (17)

wherekq is theq-th root of
1
2

cos(x)(ex + e−x)−1 = 0 and the

eigenfunctionsφq of this biharmonic operator are of the form,

φq (s) = Asinkqs+ Bsinhkqs+ Dcoskqs+ E coshkqs (18)

The coefficients are determined by the boundary conditions,
and the first five normal modes are shown in Figure 4.

Here, we note that the eigen-functions of the full operator
β ∂ 4r

∂ s4 +∂s((Λ(s))∂sr), which correspond to the eigen-modes of

−0.5 0 0.5
−2

−1

0

1

2

s/L

φ
q
(s
)

Fig. 5 First five normal modes (eigenfunctions) for the biharmonic
operator with boundary conditions (Eq.18), cycle, cross, rectangle,
diamond and triangle symobls represent 0th, 1st, 2nd, 3rd and 4th
mode, respectively.

fiber dynamics, cannot be obtained analytically since the ten-
sion Λ(s) is unknown in general. For a nearly straight fiber
aligned along the stretching or compression axis with smalldis-
tortions, the tensionΛ(s) can be obtained analytically. In such
case, the eigen-functions for the displacement are also obtained
analytically by Kantsler et al.16. However, here, we study the
fiber deformation during an entire cycle of fiber rotating from
aligned along compression axis to stretching axis. The eigen-
modes for angleθ instead of displacement are simply chosen
as the eigen-functions of the biharmonic operator with natu-
ral boundary conditions. We only include the linear part of
the deterministic operator, thus, these eigen-modes shownhere
do not correspond to real dynamic modes. We projected the
full modes onto these linear normal modes for both geomet-
ric and computational reasons, and these linear normal modes
are appropriate to study fiber deformations, because they form
a complete set. Moreover, the tensionΛ(s) along the fiber
changes sign from negative to positive during a full rotation,
and hence the nonlinear term contribution cancels out (though
not perfectly to zero) in an average sense. This is one of the
main reasons that we chose the linear eigen-modes in addition
to simplifying the computation. The real dynamic modes can
be obtained numerically via Proper Orthogonal Decomposition
(POD) over a certain time window, i.e., before significant buck-
ling and reorientation, the POD modes correspond to the ana-
lytical eigen-modes obtained by Kantsler et al.16. A simple
comparison between POD and normal modes is included in the
Appendix. The spatial normal modes of Eq.(17) shown in Fig.
4 are appropiate to describe the deformed fiber by means of
the shape angleθ for all levels of distortion. The linearity of
the operator of Eq.(17) guarantees that the spatial modes will
remain unchanged for all levels of non-linearity. For a simple
scenario, if there are no interactions or correlations between
each mode dynamics, i.e., the mode dynamics is all decoupled,
the bending energy can be represented as quadratic summation
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of the normal modes amplitudes, i.e.U =
1
2

A
∞

∑
q=1

k2
qu2

q. Then,

each quadratic term contributes an 1/2kBT from the equiparti-

tion theorem, thus, we haveu2
q =

kBT
A

1
k2

q
. However, it is not

true for inextensible filament dynamics here due to the nonlin-
ear interactions between different modes, which arise fromthe
local inextensible constraint.

0 0.02 0.04

0

0.2

0.4

t

u2 q(t)

0 0.02 0.04

0

0.2

0.4

t

u2 q(t)

0 0.02 0.04

0

0.2

0.4

t

u2 q(t)

Fig. 6 First four normal modal energies as functions of dimensionless
time at (a)α/β = 1.0 , (b)α/β = 10.0 , (c)α/β = 100.0. Even and
odd modes are represented as: by red and green 2nd and 4th, black
and blue the 1st and 3rd, respectively. All of the data is derived from
normal mode analysis of the numerical solution of equation (4).

4.2 Numerical Results

First, we show that the spatial modes of the filament motion can
be seperated into symmetric (even) and antisymmetric (odd)
relative to the mass center depending on whether under the

transformationr− > −r they are even or odd functions. Our
results show that forα/β ≤ 1 odd modes are suppressed, which
indicates fore-aft symmetry (Figure (6a)). As we increaseα/β ,
the first mode is excited (Figure (6b)), further, forα/β ≫ 1,
odd modes are excited, which implies that symmetry is broken
as in Figure (6c). The even/odd modes behaviour is mainly
because of the anti-symmetry of the eigen-functions of the lin-
ear biharmonic operator with natural boundary conditions.The
eigen-functions in Eq.(18) only keep the first and last two terms
for even and odd modes, respectively. Essentially, these phe-
nomena come from the geometric constraints. Since our de-
composition is done on the angle, the 0th mode corresponds to
the pure rotation, which has the most dominant energy.

10
0

10
1

10
2

10
−4

10
−2

10
0

k
q

<
u

q2
>

slope = 1.0

slope = 2.0

Fig. 7 Time average normal modes energy as functions of mode
numberkq, with α/β = 100.0 (red), 10.0 (blue), 1.0 (green). Data
represented by solid symobls are derived from the numericalsolution
of continuum SPDEs, while data represented by open symbols are
obtained from DPD simulations.The upper and lower dashed lines are
reference lines for linear and quadratic decay, respectively.

An alternative way to illustrate the amplitude data is dis-
played in Figure 7, where the time averaged values ofu2

q are
plotted against mode numberkq display a sawtooth-trend due
to the suppression of odd modes (two to three orders smaller
than the even modes) and follow the equi-partition theorem for
small α/β ≤ 1, i.e., the modal energy exhibitsk−2

q decay, as
indicated by the dashed line withslope = 2.0. However, the
modal energy decay is much slower for largeα/β ≫ 1, which
is indicated by a dashed line withslope = 1.0, and the saw-
tooth behavior disappears due to the excitation of odd modes
(compared to even modes).

To further investigate the modal dynamics in time, we show
the probability distribution functions (PDFs) ofδuq defined as

δuq (t) = uq (t)−
〈

uq (t)
〉

(19)

in Figure 8, compared to a normal distribution fitting. The
corresponding variances increase continuously as we increase

1
α/β , see inset in Figure 9. There is a three orders increase
of variance within our parameters range, which implies thata
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Fig. 8 PDF ofδu1 with α/β = 10.0. (inset) PDF variance ofδu1 as
a function ofα/β .

significant amplification of thermal fluctuations is taking place.
Another interesting physical property for studying modal dy-
namics is the autocorrelation function, which is defined in the
usual way as,

Cq (t) =
〈

δuq (t0 + t)δuq (t0)
〉

. (20)

A useful observable to get insight into the stochastic behav-
ior in time is the power spectral density (PSD)P( f ), which
is the Fourier transform of the autocorrelation functionCq(t),
i.e., P( f ) := FFTCq(t). In Figure 9, we show the PSD of the
first modeu1, at several values ofα/β . For large frequen-
cies (short time regime), the PSDs obey the same power law
P( f ) ∝ (ε̇ f )−1. We note that our results are from 2D simula-
tion, thus the slopes here are different from previous 3D stud-
ies12. All of these PSD data with different parameters collapse
onto a single line with a simple rescalingf ∼ f/(α/β )1/2.
However, at small frequencies (long time regime), there is
a pronounced increase in PSD with largerα/β , indicating
stronger long-time correlations due to the interaction between
nonlinearity and stochasticity.

To further quantify the Euler-buckling like instability and the
transition point, we definek∗ motivated by a similar expression
derived empirically as a wrinkling criterion for vesicle mem-
branes in previous studies23,24

k∗ =

√

√

√

√

12

∑
q=2

q2
∣

∣uq
∣

∣

2
/

12

∑
q=2

∣

∣uq
∣

∣

2
(21)

The results both from the continuous filament model and
the bead-spring chain model show that a transition occurs with
α/β increasing toO(1) as in Figure 10. This interesting tran-
sition can also be identified by the average end-to-end distance
R f of the fiber as shown in Figure 11. This is the Euler-
buckling like transition observed in previous experimental stud-
ies16. The departure in the flexible limitα/β → ∞ appears to
be due to the use of steady flow Stokes resistence in continuous

10
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10
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−6

10
−4

10
−2
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γ̇f(α/β)−1/2

P
(f

) 10
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10
6

10
7

10
810

−6

10
−3

10
0

γ̇f

P
(f
)

Fig. 9 Power spectral density function as a function of dimensionless
frequency scaled witḣε f /(α/β )1/2 and (inset) original data, (from
top to bottom)red, blue and green lines representα/β = 100.0,
α/β = 10.0 andα/β = 1.0, respectively, withα = 10.0. Data of
solid and dashed lines are from solution of SPDEs and DPD
simulations, respectively.

.

filament model Eq.(3), which is valid only for rigid rods. In
the coil regime, the hydrodynamic resistance is underestimated
in the continuum model. Thus, the results from the continuum
model will be closer to the DPD results if we increase the hy-
drodynamic resistance coefficientη to 2η , while keepingα/β
the same. These results and sensitivities are shown in Figures
10 and 11. Another difference between the two models origi-
nate from the hydrodynamics near the filament and the distur-
bance to the steady flow field by the filament deforming dynam-
ics. The DPD model captures the instantaneous hydrodynamic
interactions of the fluctuating flow field shown in Figure 3, and
a more detailed video included as supplementary material.

Throughout the paper,α/β is used to measure the sys-
tem, which is also adopted by other deterministic models16,
i.e., models that do not include thermal fluctuations. How-
ever, a short discussion about these dimensionless parameters
is needed for stochastic models, when the thermal energy dom-
inates. We note thatα = ε̇τ has the form of a Weissenberg

number, withτ = ηL3

kBT corresponding to the time the center of
mass of the fiber takes to diffuse its own contour length, which
is independent of the persistence lengthlP. Thus, it seems more
appropriate to consider the fiber relaxation time as the charac-
teristic time, since we focus on fiber deformation dynamics.
The characteristic relaxation time is widely used to study flex-
ible polymer extension with hydrodynamic effects. For weak
bending resistance, we can renormalize the semiflexible fiber
into freely-jointed chain model with effective Kuhn lengthlP
and number of segmentsL/lP. Motivated by the Zimm model
for flexible polymers46, we then define the relaxation time to
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Fig. 10 Critical mode numberk∗ for buckling instability as a
function ofα/β determined from the planar motion of the Langevin
filament and the 2D motion of the DPD bead-spring chain with
α = 10.0. Data for the solid blue line and open red symbols are from
numerical solution of SPDEs and DPD simulations, respectively. The
green symbols represent the variation ofk∗ as the hydrodynamic
resistance coefficients in the continuum models are changedfrom η
to 2η (lower symbol) and 0.5η (upper symbol) at constantα/β .

be

τR ∝
η

(

( L
lP

)ν lP
)3

kBT
∝

ηL3β 3(1−ν)

kBT
(22)

whereν is the Flory index and we takeν = 0.5 for theta sol-
vent in our simulation. Thus, we end up with another Weis-
senberg numberW = αβ 3/2 and its limiting value indicate for:
(W → ∞) a nearly-rigid rod dominated by bending elasticity
with negligible thermal fluctuations, while for (W → 0) a flex-
ible string dominated by Brownian forces. However,W is only
suitable for fiber under positive tension (extension relaxation).
The effects ofW on fiber dynamics under negative tension are
difficult to understand, hence, a new dimensionless number is
required to capture accurately the physics of fiber dynamicsun-
der negative tension and thermal fluctuations.

5 Summary and Discussion

We considered here the dynamic response of a single inex-
tensible, elastic filament subject to stretching/compression in
a stagnation-point flow. We developed two different models,
the first based on a stochastic PDE treating the filament as con-
tinuum, and the second based on dissipative particle dynamics
(DPD) treating the filament as bead-spring chain. In the second
model, the two-dimensional stagnation-point flow is achieved
by driving the particles with a body force derived from the pres-
sure gradient of a potential flow in a lattice of vortices. In both
models, the elastic properties are matched and the filament mo-
tion is constrained to the plane. In the DPD simulations the
solvent is simulated explicitly and the corresponding particles
are free to move in three-dimensions. On the other hand, in the
continuum model, the solvent is simulated implicitly with the

10
−1

10
0

10
1

10
20

0.25

0.5

α/β

1
−
R

f
/L

coil

rod

Fig. 11 Effictive compresion 1−R f /L as a function ofα/β
determined from the planar motion of the Langevin filament (solid
blue line) and the 2D motion of the DPD bead-spring chain (open red
symbols) withα = 10.0. The green symbols represent the variation
of R f /L as the hydrodynamic resistance coefficients in the continuum
model are changed fromη to 2η (upper symbol) and 0.5η (lower
symbol) at constantα/β .

friction acting on the filament derived from the Stokes equation
for a rigid rod subject to three-dimensional flow. The latteris
subject to uncertainties, which we investigate by varying the
magnitude of the friction coefficient by±50%. In particular,
we were interested in investigating the effect of thermal fluctu-
ations on the dynamic response of the filament and the presence
of a possible stretch-coil instability from two different model-
ing perspectives. We found that the filament displays a buckling
instability induced by tension, analogous to the Euler beam, at
Weissenberg number of order one. Above this value, both the
temporal and spatial thermal noise are amplified due to inter-
action between the thermal fluctuations and the nonlinear fila-
ment dynamics. Normal mode analysis of the filament motion
obtained by both models shows the response to be composed
of the same modes, but the transition from nearly straight rods
to loose coils suggests that constant resistance coefficients may
overestimates the amplitude of the filament response. Although
we have dealt only with the single continuous filament dynam-
ics in an undisturbed stretching flow, the framework employed
and numerical schemes can be applied to concentrated filament
solutions and filament networks with large disturbances of the
flow field, where a Stokes or a Navier-Stokes solver should be
employed together with our current frameworks47. Comparing
with previous studies [2], we considered the stochastic Brown-
ian force in the governing equation of fiber dynamics. Without
thermal fluctuations (or temperature), the fiber only exhibits
a single mode subjected to specific tension. However, a con-
figuration is a summation of each normal mode with different
modal energy in the finite temperature case, where the modal
energy follows or deviates from the equi-partition theorembe-
fore and after the bifurcation point, respectively. Indeed, the
bifurcation point (α/β ∼ O(1)) is independent of the temper-
ature, but the fiber dynamics is highly dependent on the tem-
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perature. Before the bifurcation point, the dynamics depends
linearly on temperature since the modal energies can be well
separated and scaled by thermal energy. However, the non-
linear dependence of fiber dynamics on thermal fluctuations is
extremely complicated after the bifurcation point and deserves
further studies.
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7 Appendix: Proper Orthogonal Decomposition
Analysis

Proper Orthogonal Decomposition (POD) is a spectral analysis
tool often employed for data compression and low-dimensional
modeling, which is also known as principal component analy-
sis (PCA), singular value decomposition (SVD). Here, POD
decomposes the time-space fiber configurationθ (t,s) into an
expansion of orthogonal temporal and spatial modes, i.e.,

θ (t,s) =

Npod

∑
q=1

φq(s)aq(t) (23)

To compute the space- time- POD modes, a temporal auto-
correlation covariance matrixC is constructed from the inner
product ofθ (τ i,s) andθ (τ j,s) as

Ci j =

∫

θ (τ i,s)θ (τ j,s)ds, , i, j = 1,2, ...,NPOD (24)

The temporal modesaq(t) are the eigenvectors ofC, and the
spatial modesφq(s) are computed via orthogonality relations,
i.e.,

φq(s) =
∫

aq(t)θ (τ,s)dτ (25)

In a time average sense, the real dynamic modes can be ob-
tained numerically via Proper Orthogonal Decomposition over

−0.5 0 0.5

−2
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s/L

φ
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(
s
)

Fig. 12 First four eigen-modes for the full biharmonic operator with
natural boundary conditions; the dash lines are the analytical resutls
obtained by Kantsler et al.16 with known tension, and the symbols
represent the eigen-modes obtained with POD within a short time
period for fiber aligned along the stretching axis.

a certain time window. For example, we chose the time win-
dow to be before significant buckling and reorientation, andob-
tain the POD modes. They correspond to the analytical eigen-
modes obtained by Kantsler et al.16, as can be seen in Figure
(12).

The eigenvaluesλk of the autocorrelation matrixC (with
λ1 > λ2 > ... > λNpod ) represent the energy level associated with
the POD modeq, as shown in Figure (13)
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λ q

Fig. 13 POD modes energy as functions of mode numberq, with
α/β = 100.0 (red), 10.0 (blue), 1.0 (green).

As expected, we observe a typical power-law decay of high-
order POD modes in all simulations. Forα/β ≤ 1, the power-
law decay corresponds to a thermal white-noise energy spec-
trum indicated by black dashed line (slope = 2.0) in the plots,
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and only small amount of POD modes are enough to character-
ize the fiber dynamics. However, the power-law decay becomes
slower as we increaseα/β , which shows that the fiber dynam-
ics is accompanied by the excitement of high-order deforma-
tion modes, and hence more degrees of freedoms are needed
to describe such motions. In general, POD and normal modes
analysis reveal the same physics as described above.
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