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A tilted two-layer colloidal system is constructed for the study of force-assisted barrier-crossing
dynamics over a periodic potential. The periodic potential is provided by the bottom layer colloidal
spheres forming a fixed crystalline pattern on a glass substrate. The corrugated surface of the bottom
colloidal crystal provides a gravitational potential field for the top layer diffusing particles. By tilting
the sample at an angle θ with respect to the vertical (gravity) direction, a tangential component
of the gravitational force F is applied to the diffusing particles. The measured mean drift velocity
v(F,Eb) and diffusion coefficient D(F,Eb) of the particles as a function of F and energy barrier
height Eb agree well with the exact results of the one-dimensional drift velocity [1] and diffusion
coefficient [2, 3]. Based on these exact results, we show analytically and verify experimentally that
there exists a scaling region, in which v(F,Eb) and D(F,Eb) both scale as ν′(F ) exp[−E∗

b (F )/kBT ],
where the Arrhenius pre-factor ν′(F ) and effective barrier height E∗

b (F ) are both modified by F .
The experiment demonstrates the applications of this model system in evaluating different scaling
forms of ν′(F ) and E∗

b (F ) and their accuracy, in order to extract useful information about the
external potential, such as the intrinsic barrier height Eb.

PACS numbers: 82.70.Dd, 05.10.Gg, 05.40.-a.

I. INTRODUCTION

Energy landscape is an important concept in science,
which has been widely used in many areas of physics,
chemistry and biology [4]. In surface science for in-
stance, the motion of atoms adsorbed on a crystal sur-
face (adatoms) under thermal agitations is determined by
the electronic interactions with the substrate atoms [5–7].
In cell biology, the lateral motion of membrane-bounded
proteins on a cell membrane is determined by a complex
interaction landscape with the surrounding proteins and
lipids and with the underlying cytoskeleton [8, 9]. In the
study of protein folding, the change of protein configura-
tions is thought of as a diffusion in a funnel-like energy
landscape along the reaction coordinates [10, 11]. Our
general understanding of this type of problem is through
the well-known Arrhenius-Kramers equation [12, 13],

k = (k0ν)e
−Eb/kBT , (1)

which connects the reaction (or diffusion) rate k to the
energy barrier height Eb with k0 being an attempt fre-
quency and ν the Arrhenius pre-factor. Equation (1)
provides a simple physical picture for a common class of
diffusive barrier-crossing problem. It is valid for reac-
tions or transitions involving a large energy barrier, for
example with Eb/kBT & 6-7 [14–16].
The diffusive barrier crossing is made under constant

thermal agitations and the probability for such random
events to occur becomes very small if Eb is much larger
than the thermal energy kBT . This situation is changed
completely when an external force F is applied to the par-
ticle, so that the energy barrier is lowered in the direction

of forcing. Understanding the effect of the external force
on thermally activated kinetics is a concern of a common
class of transport problem, such as particle separation by
electrophoresis [17, 18], electromigration of atoms on the
surface of metals [19] and semiconductors [20], motion
of a three-phase contact line under the influence of an
unbalanced capillary force [21], control of crystal growth
[22] and design of nano-scale machineries [23, 24]. In
biology and biophysics, force-assisted thermal activation
is employed in various single molecule stretching experi-
ments to study the binding and folding energy landscape
of bio-molecules, such as DNA [25], RNA [26], nucleic
acids [27], receptors/ligands [28] and proteins [29], and
the adhesion between bio-membranes of vesicles, capsules
and living cells [30, 31].

To obtain useful information about the underlying en-
ergy landscape, such as the energy barrier height Eb,
from the experiment, various theoretical models [30, 32–
37] have been proposed; most of them are modified ver-
sions of the Arrhenius-Kramers equation. In developing
these models and facilitating their applications in the ex-
periment, a number of assumptions and approximations
have been made at different levels in order to calculate
how the Arrhenius factor ν and barrier height Eb change
with the external force F . For many practical applica-
tions, however, one often encounters complications, such
as highly hierarchical structures and heterogeneous kinet-
ics [38], making it difficult to directly apply the sophis-
ticated statistical mechanics models to connect the kine-
matics with the energetics [39–41]. While some models
have been widely used to explain the experimental data,
there are few experimental systems in which one can ac-
tually visualize the energy landscape and test the theory.
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Thus much of the work done so far is through computer
simulations. Finding an experimental model system in
which one can directly measure the energy landscape
and track individual particle trajectories with adequate
statistics is, therefore, extremely valuable in testing dif-
ferent theoretical ideas.

Attempts have been made to use an external potential
field to mimic the effect of an energy landscape, which is
usually imposed by the surrounding molecules to a test
particle. Examples include the study of colloidal trans-
port and diffusion in a one-dimensional (1D) optical trap
(optical tweezers) with either a periodic or random vari-
ation of the laser light intensity [42–45]. Recently, we
developed a two-layer colloidal system to study colloidal
diffusion over a periodic potential [16]. The periodic po-
tential is provided by the bottom layer of colloidal spheres
forming a crystalline pattern on a glass substrate. The
corrugated surface of the colloidal crystal provides a grav-
itational potential field for the diffusing particles on the
top layer. Using the techniques of optical microscopy
and multi-particle tracking, we measured the population
statistics of the diffusing particles and constructed the
external potential via the Boltzmann distribution. The
dynamical properties of the diffusing particle, such as
its escape time and diffusion coefficient, were simultane-
ously measured from the particle’s trajectories. With the
simultaneously obtained energetics and dynamics infor-
mation, we tested the theory and demonstrated the ap-
plications of the colloidal potential. This work opens up a
new realm of investigation at the single-particle level for
a range of interesting problems associated with the dif-
fusive and force-assisted barrier-crossing dynamics over
complex potentials.

In this paper, we report a systematic study of the ef-
fects of an external force F on the barrier crossing dy-
namics of the diffusing particles over a periodic poten-
tial. By tilting the entire two-layer system at an an-
gle θ with respect to the vertical (gravity) direction, a
tangential component of the gravitational force F is ap-
plied to the top layer particles. In the experiment, we
measure the particle’s mean drift velocity v(F,Eb) and
diffusion coefficient D(F,Eb) as a function of F (by vary-
ing the tilt angle θ) and Eb (by using different colloidal
samples). The experimental results are compared with
the exact results of the 1D drift velocity [1] and diffu-
sion coefficient [2, 3]. Based on these exact results, we
show analytically and verify experimentally that there
exists a scaling region, in which v(F,Eb) and D(F,Eb)
both have an approximate Arrhenius-Kramers-like form,
ν′(F ) exp[−E∗

b (F )/kBT ], where the Arrhenius pre-factor
ν′(F ) and the effective energy barrier height E∗

b (F ) are
both modified by the external force F .

A primary objective of the paper is to find some
approximate but simpler expressions for v(F,Eb) and
D(F,Eb) in different scaling regimes, based on the ex-
act results [1–3], and to delineate the proper conditions
under which one can use these scaling results in the ex-
periment to accurately extract the characteristics of the

external potential, such as the intrinsic barrier height Eb.
The remainder of the paper is organized as follows. We
first describe the theory of the 1D Brownian dynamics
of colloidal particles over a tilted periodic potential in
Section II. The experimental procedures and image pro-
cessing methods are presented in Section III. The exper-
imental results and discussions are given in Section IV.
Finally, the work is summarized in Section V.

II. THEORY

We consider the 1D motion of a Brownian particle of
massm under the influence of an external potential U(x).
The particle’s motion can be described by the Langevin
equation [46]

m
d2x

dt2
+ ξ

dx

dt
= fB(t)−

dU(x)

dx
, (2)

where x(t) is the particle’s position at time t, ξdx/dt is
the drag force experienced by the particle with ξ being
the friction coefficient, and fB(t) is the random Brownian
force due to thermal fluctuations of the surrounding fluid.
While the mean value of fB(t) is zero, its autocorrelation
function C(τ) is non-zero and has a form [47],

C(τ) ≡ ⟨fB(t+ τ)fB(t)⟩ = 2kBTξδ(τ), (3)

where kBT is the thermal energy of the system and δ(t) is
the δ-function. The last term, −dU(x)/dx, is the conser-
vative force experienced by the particle resulting from the
external potential. If the motion is over-damped, which
is the case for colloidal particles in an aqueous solution,
the first term in Eq. (2) can be omitted.

When there is an external constant force F acting on
the particle and the potential U0(x) without forcing is
periodic, one can find an exact solution of Eq. (2) [2, 3].
In this case, one has U(x) = U0(x)−Fx, where U0(x) =
U0(x + λ) with λ being the period. The introduction
of the external force F breaks the detailed balance and
generates a net particle flux along the direction of F .
After a short period of relaxation, the system reaches a
steady state and the particles obtain a mean drift velocity
v, which has the form [1]

v =

[
D0

λ

]
1− e−Fλ/kBT

1

λ

∫ λ

0
dxI+(x)

, (4)

where

I+(x) =
1

λ

∫ λ

0

dye[U(x)−U(x−y)]/kBT , (5)

and D0 = kBT/ξ is the particle’s free diffusion coeffi-
cient without the influence of the potential U(x). In the
moving reference frame with the velocity v, the long-time
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behavior of the particle’s motion is diffusive and the dif-
fusion coefficient D has the form [2, 3]:

D = D0

1

λ

∫ λ

0
dxI2+(x)I−(x)[

1

λ

∫ λ

0
dxI+(x)

]3 , (6)

where

I−(x) =
1

λ

∫ λ

0

dye[−U(x)−U(x+y)]/kBT . (7)

While Eqs. (4) and (6) are the exact analytic results,
their integration forms make it quite difficult to under-
stand the physical meaning of these equations. In the
following, we will use different approximations to sim-
plify these equations, so that one can use them directly
in the experiment.

A. Small force expansion

We first define a force unit associated with the thermal
energy kBT as FT ≡ kBT/λ. When F < FT , both v and
D can be expanded in terms of F/FT and we find

v ≃ v0
R
{1 + 1

2

(
1

3
−
∫ λ

0
dxK

(0)
+ (x)∫ λ

0
dxI

(0)
+ (x)

)(
F

FT

)2

+O

[(
F

FT

)4
]
}, (8)

and

D ≃ D0

R
{1 + 3

(∫ λ

0
dxI

(0)
+ (x)J

(0)
+ (x)J

(0)
− (x)∫ λ

0
dx[I

(0)
+ (x)]2I

(0)
− (x)

− 1

4

)
(

F

FT

)2

+O

[(
F

FT

)4
]
}, (9)

where

R =

[
1

λ

∫ λ

0

dxeU0(x)/kBT

][
1

λ

∫ λ

0

dxe−U0(x)/kBT

]
,

(10)

I
(0)
± (x) =

1

λ

∫ λ

0

dye[±U0(x)−U0(x∓y)]/kBT , (11)

J
(0)
± (x) =

1

λ2

∫ λ

0

dyye[±U0(x)−U0(x∓y)]/kBT , (12)

and

K
(0)
± (x) =

1

λ3

∫ λ

0

dyy2e[±U0(x)−U0(x∓y)]/kBT . (13)

In the above, v0 = F/ξ is the drift velocity of the particle
over a flat incline (U0(x) = 0). In the limit F → 0,
v vanishes and D recovers the form given by Lifson and
Jackson [48]. Because of the symmetry, one has v(−F ) =
−v(F ) and D(−F ) = D(F ).

Equation (10) can be further simplified if variations
of U0(x) are much larger than kBT for some values of x.
Under the steepest descent approximation, one finds that
both v and D have the Arrhenius-Kramers form [12, 13]
at the lowest order of F/FT ,

v ≃ v0νe
−Eb/kBT , (14)

and

D ≃ D0νe
−Eb/kBT . (15)

In the above, Eb is the energy barrier height and
ν = (|U ′′

aU
′′
b |)1/2λ2/(2πkBT ) is the Arrhenius pre-factor,

which contains the second derivatives of U0(x) at the en-
ergy minimum xa and at the energy barrier xb. From
Eqs. (8) and (14), we find the effective friction coefficient
via the equation v = F/ξeff , where ξeff has the form

ξeff = ξR ≃ ξ

ν
eEb/kBT . (16)

In the above, ξ is the friction coefficient for a flat incline.
When F < FT , v is proportional to F (linear response)
and thus ξeff is independent of F . With Eq. (16), the
diffusion coefficient D in Eq. (15) can be written as the
Stokes-Einstein form D = kBT/ξeff .

For a given potential U0(x), there exists a critical
force Fc, which is given by the positive root of Fc =
U ′
0(xc), where xc is the inflection point of U0(x) given

by U ′′
0 (xc) = 0. At the critical force Fc, the effective

barrier to escape vanishes [32, 33]. When F >> Fc, one
asymptotically recovers v ≃ v0 and D ≃ D0.

B. Steepest descent approximation for
intermediate forces FT . F . Fc

To simplify the expressions to be given below, we write
U0(x) = (Eb/2)u(x) with the barrier height Eb being ex-
plicitly factored out and u(x) ∈ [−1, 1] is a unit periodic
function. Then the 2D integration in Eqs. (4) and (6)
can be written as

1

λ

∫ λ

0

dxI+(x) =
1

λ2

∫
R1

dr1e
−(Eb/2kBT )g1(x,y), (17)

where
∫
R1

dr1 ≡
∫ λ

0

∫ λ

0
dxdy and

g1(x, y) ≡ u(x)− u(x+ y) +
2Fλ

Eb
y. (18)

The 4D integration in Eq. (6) can be expressed as

1

λ

∫ λ

0

dxI2+(x)I−(x) =
1

λ4

∫
R2

dr2e
−(Eb/2kBT )g2(x,y,w,z),

(19)

Page 3 of 16 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



4

where
∫
R2

dr2 ≡
∫ λ

0

∫ λ

0

∫ λ

0

∫ λ

0
dxdydwdz and

g2(x, y, w, z) = u(x)− u(x+ y)− u(x+ w)

+u(x− z) +
2Fλ

Eb
(y + w + z). (20)

For high energy barriers (Eb >> kBT ), one can use
the saddle point method to carry out the integrations in
Eqs. (17) and (19) and obtain

1

λ

∫ λ

0

dxI+(x) ≃
4πkBT

Eb

exp[− Eb

2kBT
g1(r

∗
1)]

[det ∂2g1(r∗1)]
1/2

, (21)

and

1

λ

∫ λ

0

dxI2+(x)I−(x) ≃
(4πkBT )

2

E2
b

exp[− Eb

2kBT
g2(r

∗
2)]

[det ∂2g2(r∗2)]
1/2

,

(22)
where r∗1 ≡ (x∗

1, y
∗
1) and r∗2 ≡ (x∗

2, y
∗
2 , w

∗
2 , z

∗
2) are, re-

spectively, the saddle points of g1(r1) and g2(r2). The
location of the saddle points can be determined by

u′(x∗
1) = u′(x∗

1 + y∗1) =
Fλ

kBT
, (23)

and

u′(x∗
2) = u′(x∗

2+y∗2) = u′(x∗
2+w∗

2) = u′(x∗
2−z∗2) =

Fλ

kBT
.

(24)
The determinants of the Hessian matrix ∂2g(r∗) at the
two saddle points in Eqs. (21) and (22) are, respectively,

det
[
∂2g1(x

∗
1, y

∗
1)
]
= −u′′(x∗

1)u
′′(x∗

1 + y∗1), (25)

and

det
[
∂2g2(x

∗
2, y

∗
2 , w

∗
2 , z

∗
2)
]

= u′′(x∗
2)u

′′(x∗
2 + y∗2)u

′′(x∗
2 + w∗

2)u
′′(x∗

2 − z∗2). (26)

To make further progress, one needs to know the func-
tional form of u(x). Hereafter, we use the trial func-
tion, u(x) = cos(2πx/λ), to evaluate the above equa-
tions. From Eq. (23) we find the location of the saddle
point r∗1,

(x∗
1, y

∗
1) =

[
1

2
+

1

2π
sin−1

(
F

Fc

)
,
1

2
− 1

π
sin−1

(
F

Fc

)]
,

(27)
where the critical force Fc = πEb/λ. Eq. (21) then
becomes

1

λ

∫ λ

0

dxI+(x) ≃
kBT

Fcλ

eE
∗
b /kBT

[1− (F/Fc)2]1/2
, (28)

where

E∗
b = Eb

[
1−

(
F

Fc

)2
]1/2

− Fλ

[
1

2
− 1

π
sin−1

(
F

Fc

)]
(29)

is the actual barrier height of the new potential U(x) =
U0(x) − Fx. Under the influence of the external force
F , the value of E∗

b is reduced compared with the original
barrier height Eb of U0(x). Thus under the steepest de-
scent approximation, Eq. (4) is simplified to the following
scaling form,

v ≃ vcν
′e−E∗

b /kBT , (30)

where vc = Fc/ξ and

ν′ =

[
1−

(
F

Fc

)2
]1/2

. (31)

The effective friction coefficient ξeff in this case becomes

ξeff (F ) ≃ ξ
F

Fcν′
eE

∗
b /kBT . (32)

In the intermediate force range FT . F . Fc, v is not
a linear function of F anymore (linear response does not
work here) and thus ξeff (F ) becomes a function of F .

Similarly, we find the location of the saddle point r∗2,

[x∗
2, y

∗
2 , w

∗
2 , z

∗
2 ] = [

1

2
+

1

2π
sin−1

(
F

Fc

)
,

1

2
− 1

π
sin−1

(
F

Fc

)
,
1

2
− 1

π
sin−1

(
F

Fc

)
, 0], (33)

and the steepest descent approximation gives

1

λ

∫ λ

0

dxI2+(x)I−(x) ≃
1

2

[
kBT

Fcλ

eE
∗
b /kBT

[1− (F/Fc)2]1/2

]2
,

(34)
Note that because the saddle point is located at the inte-
gration boundary z∗ = 0 in the z direction, the steepest
descent result is twice larger than it should be. There-
fore, a factor of 1/2 is introduced in Eq. (34). Eq. (6)
then becomes

D ≃ Dcν
′e−E∗

b /kBT , (35)

where Dc = Fcλ/(2ξ). With Eq. (32), the diffusion coef-
ficient D in Eq. (35) can be written as D = F (λ/2)/ξeff .
While this is of the Stokes-Einstein form, the thermal
energy kBT is now replaced by the work (Fλ/2) done by
the external force to the energy barrier.

For a periodic potential, the transition rate k over one
period can be written as k = k+ − k−, where k+ is the
forward rate and k− is the backward rate. Because k− =
k+e

−F/FT , one can assume that k ≃ k+ when F >> FT .
In this case, Eq. (30) can be re-written as a rate equation

k ≡ v/λ = kcν
′e−E∗

b /kBT , (36)

where kc = vc/λ. This rate equation has been derived
previously [33–36], by assuming that the effect of the ex-
ternal force is to modify both the barrier height and pre-
factor in the Kramers’ rate equation. Herein we provide
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FIG. 1. (color online) Schematic diagram of the sample cell
(side view): SC, stainless steel cell; GC, glass cover slip; GA,
gravity axis; OA, optical axis; θ, tilt angle of the sample cell;
red particles, large silica spheres forming a monolayer crystal
on the bottom glass substrate; blue particles, smaller diffusing
particles on top of the colloidal crystal; arrow, direction of
force F acting on the diffusing particles.

a rigorous proof based on the exact solution as shown in
Eqs. (4).
In addition, we also provide a direct proof of the scal-

ing form of D based on the exact solution. Our results
clearly demonstrate that the transport behavior of the
particles driven by an external force F over a periodic
potential U0(x) is governed by the actual barrier height
E∗

b and the scaling factor ν′. In this case, the diffusion
coefficient D scales with the particle-flux-induced diffu-
sivity Dc = Fcλ/(2ξ), which is independent of kBT and
can be much larger than the particle’s free diffusion co-
efficient D0. Furthermore, from Eqs. (4) and (6), and
the steepest descent results in Eqs. (28) and (34), one
obtains

v

D
≃ 2

λ

(
1− e−F/FT

)
, (37)

for F/FT > 1. For F/FT < 1, one finds v ≃ (D/kBT )F .
In the experiment to be described below, we measure

v(F,Eb) and D(F,Eb) as a function of F for different
potentials U0(x). The experimental results will be com-
pared with the approximate solutions discussed above.
We will also examine the scaling behavior of the mea-
sured v(F,Eb) and D(F,Eb).

III. EXPERIMENT

A. Apparatus and sample preparation

Figure 1 shows the sample cell used in the experiment,
which is tilted at an angle θ with respect to the vertical
(gravity) direction. A central hole of 6 mm in diame-
ter and 1 mm in depth is drilled through the center of
a circular stainless steel cell (SC). The cell has a cir-
cular chamber of a slightly larger diameter surrounding

the hole and is sealed from the bottom by a glass cover
slip (GC). The entire sample cell has two fluid chambers;
the central hole is used to hold the colloidal sample and
the outer surrounding chamber contains additional sol-
vent (water with the same salt concentration) to prevent
sample evaporation. The central hole is first filled with
the colloidal sample and is covered by another glass cover
slip (GC). Under the action of capillary forces, the con-
tact gap between the top cover slip and central sample
cell (both are hydrophilic) is sealed by the sample solvent.
The outer chamber is then filled with additional solvent,
keeping the central sample chamber from being in con-
tact with the outside air. In this way, sample evaporation
is minimized so long as there is some solvent remained in
the outer chamber. Extra solvent is added to the outer
chamber from time to time during the experiment using
an embedded syringe.

The sample cell is placed on the stage of an in-
verted microscope (Leica DM-IRB), and the motion of
the particles is viewed from below using bright field mi-
croscopy. Movies of particle motion are recorded using a
monochrome CCD camera (CoolSNAP, Media Cybernet-
ics) and streamed to the hard drive of a host computer.
They are taken at 7 frames per second. A commercial
image acquisition software (ImagePro, Media Cybernet-
ics) is used to control the camera. The recorded images
have a spatial resolution of 1392×1040 pixels and 256
gray scales.

Plain silica spheres of different sizes are used in the
experiment and they are purchased from Bangs Labora-
tories. All the purchased samples are thoroughly washed
using deionized water by repeated centrifugation. The
original aqueous solution of particles with 5% (g/mL)
solid concentration is diluted at a 1:100 ratio by weight
by deionized water. The solution is centrifuged at 1,000
rpm (at ∼100g centrifugal acceleration) for 5 minutes
and the particles in the centrifuge sample settle down to
the bottom of the test tube. The supernatant is then
removed as much as possible using a pipet and the re-
maining solid is further diluted by deionized water for a
repeated centrifugation. Typically, we repeat this proce-
dure for 8-10 times to make sure that all the impurities in
the solution are removed. To further remove the particle
aggregates from the cleaned solution, we fill the solution
in a thin test tube for free sedimentation until the in-
terface between the supernatant and particle-containing
solution falls to less than 1/2 of the original height. Then
we pipet out a small amount of the solution just below
the interface. The selected solution is found to contain
only monodisperse silica spheres.

To prepare a close-packed monolayer of colloidal
spheres near the bottom glass substrate, we add the col-
loidal solution into the sample cell one drop (∼200 µL)
at a time until the area fraction n occupied by the sil-
ica spheres in the bottom layer reaches n ≃ 0.7. This
process is monitored in real-time using a camera on the
microscope and the particles take 1-2 minutes to settle
on the glass substrate. The image analysis software Im-
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TABLE I. Two colloidal samples used in the experiment with
different pairs of top/bottom particles and the obtained ex-
ternal potential parameters, including lattice constant λ, en-
ergy barrier height Eb/kBT , critical force Fc/FT , and R ≡
⟨exp[U(x)/kBT ]⟩λ⟨exp[−U(x)/kBT ]⟩λ (see text).

Samples Top/bottom (µm) λ(µm) Eb/kBT Fc/FT R
S1 2.1/2.9 1.7 1.5 5.9±2 1.3
S2 3.6/3.6 2.1 6.7 22.8±2 40.0

agePro is used to calculate the area fraction n. Then
a 1-mL syringe is used to continue the process with a
smaller drop (10-20 µL) of the particle solution added
at a time until n approaches the packing limit nc ≃ 0.8.
The sample is then left open for complete evaporation
of water in the solution and the remaining particles are
attached to the glass substrate by Van de Waals forces.
The evaporation process takes several hours to complete
at room temperature with a relative humidity of ∼ 70%.
During evaporation, the silica spheres self-assemble

into a monolayer close-packed crystal patches. By lat-
erally moving the sample stage, we are able to find a sin-
gle crystal patch within the view area of 150×113µm2,
which is achieved by using a 63× oil objective. Then we
fill the sample cell with a 0.1 mM aqueous solution of
NaCl followed by addition of a drop of silica suspension
into the salt solution using a 1 mL syringe. After sev-
eral minutes, the silica spheres settle down on top of the
bottom layer colloidal crystal, and the particle number
in the view area is counted using ImagePro. This pro-
cedure is repeated until a desired area fraction n for the
second layer particles is reached. The sample cell is then
covered with a glass cover slip to prevent solvent evapo-
ration. Two colloidal samples, S1 and S2, with different
top/bottom particle sizes are used in the experiment and
their properties are given in Table I.

B. Optical microscopy and image analysis

Figure 2 shows the silica spheres of diameter d =
3.6 µm (bright spots with a non-uniform intensity profile)
diffusing over the bottom layer colloidal crystal (honey-
comb lattice) made of the same silica spheres (sample
S2). The image is taken with the focal plane located in
between the two layers of silica spheres so that the out-
of-focus image of the bottom colloidal crystal becomes a
honey-comb lattice and the top diffusing particles appear
as bright spots. The non-uniform intensity profile of the
diffusing particles is caused by the interference with the
bottom layer particles. The white arrow indicates the
[1,0] crystalline direction of the bottom layer crystal.
The microscope is placed on a homemade incline with

an adjustable tilt angle θ up to 350 with respect to the
horizontal base. During the adjustment of tilt angle θ,
the optical axis (OA) of the microscope, as shown in Fig.

FIG. 2. Microscopic image of sample S2. The uniform honey-
comb pattern in the background is the image pattern resulting
from the bottom layer colloidal crystal. The bright spots with
a non-uniform intensity profile are the diffusing particles on
the top layer. The arrow indicates the [1,0] crystalline orien-
tation. The scale bar is 10 µm.

1, is always kept perpendicular to the plane of the bot-
tom colloidal crystal. Therefore, the focus plane of the
objective does not change with increasing (or decreasing)
θ. With this setup the external force F acting on the top
layer diffusing particles is provided by gravity,

F = ∆mg sin(θ), (38)

where ∆m is the buoyant mass of the diffusing particles
and g is the gravitational acceleration. For sample S2, we
find F ≃ (0.2pN) sin(θ). Note that because the potential
U0(X) to be discussed below only involves the normal
component of the gravity, Fn = ∆mg cos(θ), it does not
change much for small values of θ. For example, at θ =
20◦, we have cos(20◦) ≃ 0.94.

For convenience, we rotate the CCD camera so that
one pair of the rectangular boarders of the view area are
exactly parallel to the direction of F . Thus we can use the
boarders of the view area as the reference lines to align
the crystalline orientation with respect to the direction
of F by rotating the sample cell on the stage holder. For
all the measurements to be discussed below, the direction
of F is kept parallel to the [1,0] orientation of the bottom
colloidal crystal.

By applying a standard Gaussian image filter from the
Matlab image process toolbox, we can recover the uni-
form Gaussian-like intensity profile for each diffusing par-
ticle. The central position of the intensity profile is thus
chosen as the center of the diffusing particle. With this
method we are able to obtain a repeatable tracking accu-
racy of ∼1 pixel, which is 74 nm. A homemade Matlab
program based on the standard tracking algorithm [49]
is used to track the trajectory of the diffusing particles
from consecutive images.
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FIG. 3. (color online) Measured potential U0(X)/kBT as a
function of X for samples S1 (red solid circles) and S2 (black
solid triangles).

IV. RESULTS AND DISCUSSIONS

A. Periodic potential

The method described in Ref. [16] is used to measure
the periodic potential of the two colloidal samples. We
find the occupation statistics of the top layer diffusing
particles by adding together 105 images, each contain-
ing ∼100 particles, and counting the number of parti-
cles in each pixel. In doing so we obtain the population
probability histogram (pph) P (x, y) of finding a diffusing
particle at location (x, y), which is related to the (grav-
itational) potential U0(x, y) over the rugged surface via
the Boltzmann distribution,

P (x, y) ∝ e−U0(x,y)/kBT . (39)

All the measurements are made at the area fraction
n ≃ 0.15. At this area fraction, the interaction between
the diffusing particles is negligibly small and Eq. (39)
is valid [16]. Because the bottom layer is periodic, we
divide the measured P (x, y) into repetitive cells, each
containing two nearby probability peaks together with a
connecting valley. We then sum up the values of P (x, y)
from different cells with correct symmetry, and generate
the single-cell pph Ps(x, y), which has a higher statisti-
cal accuracy. Eq. (39) is then used to find the potential
U0(x, y)/kBT ≃ − ln[P (x, y)]. As will be shown below,
the particle’s trajectory follows a quasi-1D path X, and
thus the 2D potential is simplified into a 1D potential
U0(X).
Figure 3 shows the measured U0(X) for the two col-

loidal samples, S1 (red solid circles) and S2 (black solid
triangles). The unit of X has been converted from pixels
to micrometers using 1 pixel = 74 nm for our microscope
setup. The measured U0(X) has a double-well structure
with the distance λ between the two potential wells be-
ing given by λ = d/

√
3, where d is the diameter of the

bottom layer spheres. The obtained value of λ from the

FIG. 4. (color online) Measured trajectory (green) of a dif-
fusing particle over the bottom colloidal crystal for samples
S1 (a) and S2 (b). The white arrow indicates the direction of
the gravitational pulling force F .

measured U0(X) agrees well with that obtained from the
honeycomb lattice pattern, as shown in Fig. 2. The en-
ergy barrier height Eb between the two potential wells
and the critical force Fc are determined, respectively, by
the maximum values of U0(X) and its first derivative
U ′
0(X). The measured values of λ, Eb and Fc are given

in Table I.

B. Steady-state probability distribution function of
particle’s displacement ∆x

Figure 4 shows a comparison of particle’s trajectories
between sample S1 (a) with F/FT ≃ 1 (FT ≡ kBT/λ)
and sample S2 (b) with F/FT ≃ 4. Also shown is the
bottom colloidal crystal pattern, which serves as a vi-
sual guide of the underlying potential. The arrow indi-
cates the direction of the gravitational pulling force F ,
which coincides with the [1,0] orientation of the bottom
colloidal crystal as shown in Fig. 2. As will be shown
below, when the forcing is along the [1,0] orientation, the
particle’s motion is essentially quasi-1D and thus we can
compare the experimental results with the 1D theory as
described in Sec. II. For other forcing directions, the par-
ticle’s motion becomes increasingly 2D with increasing
F . Hereafter, we focus our attention on the quasi-1D
results, and we will report the 2D results elsewhere.

Figure 4(a) reveals several interesting features of the
particle trajectories in sample S1. (i) At large length
scales (>> λ), the particle drifts from the left to the
right, following the direction of F . At smaller length
scales (< λ), however, the particle spends most of its
time diffusing within a potential well. The mean drift of
the particles is thus caused by the break-down of the de-
tailed balance between the forward barrier hopping and
backward barrier hopping due to the external force. As
a result, the mean velocity v of the particle becomes
physically meaningful only when its traveling distance
becomes larger than λ. (ii) Most of the barrier cross-
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ing events take place between the two nearby potential
wells. The particle has a higher probability to visit the
transition paths which directly connect the two potential
wells with a lower energy barrier, whereas occasionally it
takes a path with a higher energy barrier. (iii) The par-
ticle also undergoes significant lateral barrier crossings;
they are symmetric relative to F and their mean value
over a long period of time tends to vanish. (iv) Backward
hopping against the gravitational pulling force F is also
observed but with a much lower frequency.

In contrast to sample S1 which only involves low en-
ergy barrier crossing with a small pulling force, sample
S2 involves higher energy barrier crossing and a large
pulling force and reveals some interesting new features as
shown in Fig. 4(b). (i) The particle’s trajectory follows
a straight zig-zag path guided by the underlying low-
energy path connecting the adjacent potential wells. (ii)
The particle’s trajectory is much more centered around
the quasi-1D transition path connecting the two adjacent
energy well without much spreading. (iii) Lateral barrier
crossing is rarely observed in sample S2.

The difference in particle’s trajectories between sam-
ples S1 and S2 can be explained as follows. For a leveled
periodic potential (i.e., when F = 0), the particle has an
equal probability to jump out of its current potential well
and move into one of its three neighboring wells. How-
ever, when the sample is tilted with F ̸= 0, the forward
transition rate is increased by a factor of eF/FT , whereas
the backward transition rate is reduced by a factor of
e−F/FT . If one assumes that the 2D potential consists
of many quasi-1D transition paths, the lateral transition
rate will remain the same as that for the untilted sam-
ple with F = 0. Therefore, to observe a lateral hop-
ping event, the particle’s trajectory must have, on aver-
age, eF/FT forward moving jumps. In other words, the
chance of observing lateral transitions becomes exponen-
tially small with increasing F . For S2, the smallest tilting
force is F/FT = 4, and thus the chance of observing a
lateral jump is only e−4 ≃ 1.8%. For sample S1, however,
the chance is significantly larger, as e−1 ≃ 37%.

From the measured particle trajectories, we compute
the probability density function (PDF) G(∆x, τ) of the
particle’s displacement, ∆x(τ) = x(t + τ) − x(t), over a
lag time τ . To observe the particle’s long-time dynam-
ics, we deliberately take the value of τ to be larger than
the mean-first-passage-time for the particle to crossover
a single energy barrier. Figure 5(a) shows the measured
PDFs as a function of ∆x(τ) for sample S1 at F/FT = 2.4
(titled angle θ = 9.2o) with three different delay times.
The measured PDFs all have a shifted Gaussian shape
with the most probable value of ∆x(τ) increasing with τ .
Figure 5(a) thus demonstrates that the diffusing particle
over the tilted periodic potential undergoes a combined
motion of random diffusion together with a mean drift
velocity v. All the measured PDFs with different values

FIG. 5. (color online) (a) Measured probability density func-
tion (PDF) G(∆x, τ) of the particle’s displacement ∆x(τ) for
sample S1 at F/FT = 2.4 (titled angle θ = 9.2o) with three
different delay times: τ = 30 s (black squares), 60 s (red cir-
cles) and 90 s (green triangles). (b) Replot of the measured
PDFs in (a) as a function of the normalized displacement,

∆x′ = (∆x(τ) − vτ)/(2Dτ)1/2. The color code used is the
same as that in (a). The solid line is a plot of Eq. (40).

of τ can be well described by the equation,

G(∆x, τ) = G0e
−
1

2

∆x(τ)− vτ√
2Dτ

2

, (40)

where G0 is a normalization constant, and D is particle’s
diffusion coefficient. In the experiment, both v and D
are used as the fitting parameters. Once the values of v
and D are determined from the fitting, we find that all
the measured PDFs can be collapsed into a master curve
when they are plotted as a function of the normalized
displacement, ∆x′ = (∆x(τ)−vτ)/(2Dτ)1/2. Figure 5(b)
shows the collapsed PDFs as a function of ∆x′. The solid
line is a plot of Eq. (40), which fits the data well.

In the above discussion, the direction of the pulling
force F [see Fig. 4(a)] is denoted as the x-direction, and
the direction normal to the x-direction is denoted as the
y-direction. For sample S2, because the particle’s tra-
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jectories follow the zig-zag path as shown in Fig. 4(b),
what we actually measured are the components vx and
Dx projected onto the x-direction in the lab frame. To
recover the values useful for the 1D potential discussed
in Sec. II, we use the notions v = vx/ cos(π/6) and
D = Dx/ cos

2(π/6) in the following discussion. Similarly,
the force projected along the 1D potential can be written
as F = Fx cos(π/6), where Fx is given in Eq. (38). For
sample S1, we also measure the drift velocity vy and dif-
fusion coefficient Dy in the y-direction. It is found that
vy = 0, indicating that the detailed balance is still main-
tained in the transverse transition, in which no external
force is applied.

C. Measured mean drift velocity v

We first discuss the measured drift velocity v0 for the
top layer particles used in samples S1 and S2 over a flat
incline without any energy barrier (U0(X) = 0) at vari-
ous tilting angles θ. Figure 6(a) shows the measured v0
as a function of F for samples S1 (red triangles) and S2
(black squares). In the plot, the measured v0 is normal-
ized by the thermal velocity vT = D0/λ, where D0 is the
measured diffusion coefficient of the same particles over
the flat surface at θ = 0. The force F is normalized by
the thermal force FT = kBT/λ. It is seen that the mea-
sured v0 increases linearly with the applied force F for
both samples. The dashed line shows the expected equa-
tion v0/vT = F/FT (i.e., v0 = F/ξ), which agrees well
with the measurements. In the above plot, we used one
of the data points to calibrate the buoyancy force ∆mg.
In this way, all the parameters used in Fig. 6 are the di-
rectly measured quantities and hence one can reduce the
uncertainties of the nominal value of ∆mg provided by
the manufacturer.
The blue circles in Fig. 6(a) are the measured v/vT for

sample S2. The error bars indicate the standard devia-
tion of the measurements at each tilt angle. Compared
to the black squares, the measured v/vT for sample S2
is found to be significantly hindered by the underlying
potential U0(X); the measured values of v/vT are much
smaller than the corresponding values of v0/vT for a flat
incline. The measured v/vT is first flattened out when
the force F is in the range 1 . F/FT . 12 followed by a
curving-up rise in the force range 12 . F/FT . Fc/FT ≃
22.8. When F exceeds its critical value Fc, the measured
v begins to approach the asymptotic value v0 and be-
comes very close to the measured v0 when F/FT ≃ 60.
Figure 6(b) shows a comparison of the measured v/vT

between samples S1 and S2. Because F scales with d3 [see
Eq. (38)], the magnitude of F for S1 is only about 1/5 of
the value for S2 at the same tilt angle θ. The error bars
indicate the standard deviation of the measurements at
each tilt angle. While the measured v/vT for sample S1
is still reduced by the underlying potential, the difference
between the measured v and v0 is small. This is because
the barrier height for S1 is comparable to kBT (Eb =

FIG. 6. (color online) (a) Measured drift velocity v0/vT and
v/vT as a function of F/FT for three different samples: (i) d =
2.14 µm silica spheres on a flat incline (S1/flat, red triangles),
(ii) d = 3.6 µm silica spheres on a flat incline (S2/flat, black
squares with an error bar), and (iii) sample S2 (blue circles
with an error bar). The black dashed line is a plot of the
equation v/vT = F/FT . The blue solid line is a numerical
plot of Eq. (4) using the measured U0(X) for S2. (b) An
enlarged plot of the measured v0/vT and v/vT as a function
of F/FT for three different samples: (i) d = 2.14 µm silica
spheres on a flat incline (S1/flat, red triangles), (ii) sample
S1 (green squares with an error bar), and (iii) sample S2 (blue
circles with an error bar). The black dashed line is a plot of
the equation v/vT = F/FT . The green and blue solid lines
are, respectively, the numerical plots of Eq. (4) using the
measured U0(X) for S1 and S2.

1.5kBT ), so that the critical force Fc is small (Fc/FT ≃
5.9±2 for S1) and so is the hindering effect of the external
potential. With the measured potential U0(X) as shown
in Fig. 3, we numerically calculate v as a function of F
using Eq. (4). The calculated v for samples S1 and S2
are, respectively, plotted as the green and blue solid lines
in Fig. 6. The exact theoretical results agree well with
the experimental data for both colloidal samples.
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FIG. 7. (color online) (a) Measured diffusion coefficientD/D0

as a function of F/FT for sample S2. The error bars indicate
the standard deviation of the measurements at each tilt angle.
The solid line shows the numerically calculated D/D0 using
Eq. (6) with the measured U0(X) for S2, as shown in Fig. 3.
(b) Measured Dx/D0 (black squares) and Dy/D0 (red circles)
as a function F/FT for sample S1. The solid line shows the
numerically calculated D/D0 using Eq. (6) with the measured
U0(X) for S1, as shown in Fig. 3.

D. Measured diffusion coefficient D

Figure 7(a) shows the measured diffusion coefficient
D as a function of F for sample S2. In the plot, the
measured D [= Dx/ cos

2(π/6)] along the quasi-1D po-
tential is normalized by D0 = 0.065 µm2/s, which is the
measured diffusion coefficient of the same particles over
the flat incline at θ = 0. The force F is normalized
by the thermal force FT . The error bars indicate the
standard deviation of the measurements at each tilt an-
gle. The measured D/D0 at the zero tilt angle (F = 0)
is D/D0 ≃ 0.02 ± 0.007, which is in good agreement
with the obtained value of 1/R = 0.025 ± 0.003 for S2
[see Eq. (9)], as shown in Table I. As F increases, the
value of D increases quickly and reaches a peak value of
Dmax/D0 ≃ 2.6 at F/FT ≃ 22, which is very close to

the critical force Fc/FT = 22.8± 2 as measured from the
potential for sample S2. When F exceeds Fc, the mea-
sured D starts to decrease with increasing F . For the
largest value of F achieved in experiment (F/FT ≃ 60),
we find D/D0 ≃ 1.5. The solid line in Fig. 7(a) shows
the numerically calculated D/D0 using Eq. (6) with the
measured U0(X) for S2, as shown in Fig. 3. The calcu-
lated D/D0 shows a peak at the position F/FT ≃ 22 and
is in good agreement with the measured D/D0 (within
the experimental uncertainties). The asymptotic value
of D/D0 should be unity when F >> Fc, and we have
found that the calculated D/D0 ≃ 1.05 at F/FT ≃ 120
[not shown in Fig. 7(a)].

Figure 7(b) shows the measured diffusion coefficients
Dx/D0 (black squares) and Dy/D0 (red circles) for sam-
ple S1. The error bars indicate the standard deviation
of the measurements at each tilt angle. When F = 0,
we find Dx/D0 ≃ Dy/D0 ≃ 0.75 ± 0.2, which is close
to the measured value of 3/(4R) ≃ 0.58 for S1, as shown
in Table I. The numerical prefactor 3/4 is introduced
here owing to the fact that for each potential well there
are three exits [16]. Because there is no preferred di-
rection in the untilted sample, the diffusion coefficients
along the two orthogonal directions are indistinguishable.
When the external force F is turned on, the measured
Dx/D0 and Dy/D0 both increase slowly with F and
reach a maximum value when F/FT is in the range of
4-5. The obtained peak position is close to the calcu-
lated critical force Fc/FT ≃ 5.9 ± 2 using the measured
U0(X) for S1. The obtained maximum value of Dx/D0

is about 1.2 and that for Dy/D0 is 1.1. The solid line
in Fig. 7(b) shows the numerically calculated D/D0 us-
ing Eq. (6) with the measured U0(X) for S1, as shown
in Fig. 3. The calculated D/D0 shows a good agreement
with the measured Dy/D0, but the measured Dx/D0 is
notably larger than the 1D theoretical calculation. Fig-
ure 7(b) clearly reveals that the enhancement of diffusion
in the x-direction is larger than that in the y direction.
Our analysis, however, is only semi-quantitative as the
particle’s trajectories for S1 are not exactly 1D.

E. Scaling behavior of the measured v and D

1. Steepest descent approximation for small forces

We now discuss the scaling behavior of the measured
drift velocity v and diffusion coefficient D under the
steepest descent approximation. When the applied force
F is small (i.e., F/FT < 1) and the energy barrier height
Eb is large (i.e., Eb/kBT >> 1), both v and D have a
similar scaling form, as shown in Eqs. (14) and (15). The
dimensional scaling factors are, respectively, v0 = F/ξ
and D0 = kBT/ξ, which are independent of the poten-
tial U0(X). The common scaling factor ν exp[−Eb/kBT ]
is of the Arrhenius-Kramers form, which only involves
the potential U0(X) and is independent of the external
force F . The scaling form for v and D thus suggests that
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in the small F limit, the particle’s diffusion remains the
same as that at equilibrium (F = 0), except that there
is a net particle flux, Js ∝ nv, along the direction of the
external force F , where n is the area fraction occupied
by the top layer particles.

2. Steepest descent approximation for
intermediate forces FT . F . Fc

Equations (30) and (35) are the new scaling forms ob-
tained for v and D when the external force is in the in-
termediate range FT . F . Fc. The dimensional scaling
factor for v is vc = Fc/ξ, which is the drift velocity of
the particle over a flat incline under the influence of the
constant force Fc. The dimensional scaling factor for D
is Dc = Fcλ/2ξ = vcλ/2, which is an enhanced diffu-
sion coefficient due to the drift velocity vc. Compared to
the particle’s free diffusion coefficient D0 = kBT/ξ, we
find the enhancement factor Dc/D0 = Fc/(2FT ), which
is independent of the thermal energy kBT . The enhance-
ment factor can also be expressed as the Peclet number
Pe = vcλ/2D0, which measures how far the system is
driven away from equilibrium by the external force Fc.
The value of Dc sets up an upper bound for the peak
value of D obtained at F ≃ Fc. For example, we find the
calculated Dc/D0 ≃ 3.1 for sample S2. The measured
peak value of D is D/D0 ≃ 2.6 and the calculated peak
value of D at F ≃ Fc using the exact solution in Eq. (6)
is D/D0 ≃ 2.1.
The normalized drift velocity v/vc and diffusion

coefficient D/Dc share the common scaling form,
ν′ exp[−E∗

b /kBT ], which is of the Arrhenius-Kramers
form, but both the pre-factor ν′ and the energy bar-
rier height E∗

b are modified by the external force F . As
shown in Eq. (31), the pre-factor ν′ only involves F/Fc.
This new form of the Arrhenius-Kramers equation has
been obtained previously [33] and here we gave an exact
proof. Owing to the change of the effective potential to
U(x) = U0(x) − Fx, the position of the saddle points
is altered and so does the new effective barrier height
E∗

b . To calculate E∗
b , one needs to know the functional

form of U0(x). Equation (29) shows an example for the
trial function U0(x) = (Eb/2) cos(2πx/λ). In many prac-
tical situations of interest, however, one does not know
the functional form of U0(x) a priori. Having a general
expression of E∗

b (and ν′) for a model potential is, there-
fore, very useful for the experiment to extract reliable
characteristic information about the external potential.
A simple linear-cubic potential of the form [37, 50]

U(x) ≃ Fcx− α(x− xc)
3, (41)

where α is a constant proportional to U ′′′
0 (xc), is of-

ten used to approximate the tilted potential U(x) =
U0(x) − Fx near the inflection point xc [33, 51]. Fig-
ure 8 shows a sketch of the linear-cubic potential U(x) for
three different characteristic forces FT (top black curve)
< F2 (middle green curve) < Fc (bottom red curve). As

FIG. 8. Sketch of the linear-cubic potential U(x) for three dif-
ferent characteristic forces FT (top black curve) < F2 (middle
green curve) < Fc (bottom red curve). The three curves are
displaced vertically for clarity. The intrinsic barrier height Eb

is shown for F = FT .

the force F increases, the effective barrier height E∗
b de-

creases and vanishes at F = Fc. Substituting Eq. (41)
into Eqs. (23-26), one finds [37]

E∗
b = Eb

(
1− F

Fc

)3/2

, (42)

and

ν′ =
√
2

(
1− F

Fc

)1/2

. (43)

Clearly, the expression of E∗
b in Eq. (42) is simpler than

that in Eq. (29).
In another simplified model, one assumes that the bar-

rier shape U0(x) does not change much with Fx under
the so-called “sharp barrier” approximation [30, 32]. The
main effect of the force F is to change the barrier height
from the intrinsic value Eb to

E∗
b = Eb − F

λ

2
≃ Eb

(
1− F

Fc

)
, (44)

where λ/2 is a characteristic distance between the energy
minimum and maximum, and Fc ≃ Eb/(λ/2) is the crit-
ical force. Note that for the tilted cosine potential we
find Fc = πEb/λ, and for the linear-cubic potential one
has Fc = 3Eb/λ. In this simple model, the prefactor ν′

was assumed to be a constant equal to the prefactor ν
without the influence of the applied force. This model
was first proposed by Bell [30] and further improvements
were considered recently to include the effect of the force
on ν′ [33] and corrections in the vicinity of Fc [52].

Figure 9 shows a comparison of the calculated E∗
b as

a function of F/Fc using Eq. (29) for the tilted cosine
potential (red solid line), Eq. (42) for the linear-cubic po-
tential (black dashed line), and Eq. (44) for the “sharp
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FIG. 9. (color online) Comparison of the calculated barrier
height E∗

b /kBT as a function of F/Fc using Eq. (29) (red solid
line), Eq. (42) (black dashed line), and Eq. (44) (blue dotted
line) all with Eb = 6.7kBT . The open circles are the obtained
values of E∗

b /kBT using the measured U(X) for sample S2.

barrier” case (blue dotted line) all with Eb = 6.7kBT .
The open circles are the obtained values of E∗

b /kBT us-
ing the measured U0(X) for sample S2. It is seen that the
two curves for the tilted cosine potential and linear-cubic
potential are very close to each other and they show lit-
tle difference in the whole range of 0 . F/Fc . 1. These
two curves fit the data at both the small and large force
ends but in the middle force range (F/Fc ≃ 0.5), the cal-
culated E∗

b is off by ∼0.8kBT compared with the mea-
sured value. The Bell’s expression for the “sharp bar-
rier” case is clearly a good approximation in the small
force range. For larger values of F/Fc, Eq. (44) under-
estimates the true value of E∗

b significantly. Figure 9
thus demonstrates that Eq. (42) gives an upper bound
of the measured E∗

b /kBT , whereas Eq. (44) gives a lower
bound of the measured E∗

b /kBT . Overall, Eq. (42) gives
a reasonably good estimate of the effective barrier height
E∗

b /kBT without knowing the fine details of the poten-
tial, so long as the critical force Fc is known.
Figure 10 shows a comparison of the calculated ν′

as a function of F/Fc using Eq. (31) for the tilted
cosine potential (red solid line) and Eq. (43) for the
linear-cubic potential (black dashed line). The open
circles are the numerically calculated values of ν′ =
(|U ′′

aU
′′
b |)1/2λ2/(2πkBT ), where U ′′

a and U ′′
b are, respec-

tively, the second derivatives of the tilted potential
U(x) = U0(x) − Fx at the energy minimum xa and at
the energy barrier xb. The measured values of U0(X) for
sample S2 are used in the numerical calculation. The er-
ror bars result mainly from the uncertainties involved in
the numerical calculation of U ′′

a and U ′′
b . It is seen that

the two calculated curves agree with each other only in

FIG. 10. (color online) Comparison of the calculated pre-
factor v′ as a function of F/Fc using Eq. (31) (red solid line)
and Eq. (43) (black dashed line). The open circles are the
obtained values of v′ using the measured U(X) for sample
S2.

FIG. 11. (color online) Normalized drift velocity v∗ =
v/(vcν

′) (black circles) and diffusion coefficient D∗ =
D/(Dcν

′) (red triangles) as a function of the effective bar-
rier height Eb∗/kBT for sample S2. The solid line is a plot of
the scaling function, v∗, D∗ = exp[−E∗

b /kBT ].

the large force end (F ≃ Fc), whereas at smaller values of
F/Fc the black dashed line for the linear-cubic potential
shows a large deviation from the data. The red solid line
for the tilted cosine potential fits the data well, except in
the vicinity of Fc in which a small deviation is observed.
Figure 10 thus demonstrates that Eq. (31) gives a good
estimate of the prefactor ν′, which is not very sensitive
to the fine details of the potential so long as the critical
force is known.

With this understanding of the effective barrier height
E∗

b and prefactor ν′, we now can examine the scaling
behavior of the measured drift velocity v and diffusion
coefficient D. Figure 11 is a re-plot of the measured
v∗ = v/(vcν

′) (black circles) and D∗ = D/(Dcν
′) (red

Page 12 of 16Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



13

triangles) for sample S2 as a function of E∗
b . In the

plot, the measured v and D are normalized, respectively,
by vcν

′ and Dcν
′, where vc = Fc/ξ, Dc = Fcλ/ξ and

ν′ = [1− (F/Fc)
2]1/2 are all calculated using the value of

Fc obtained at the peak position of the measured D, as
shown in Fig. 7(a). The values of E∗

b are obtained using
Eq. (42) with the measured values of Eb and Fc for S2
given in Table I. It is seen that the two sets of data over-
lap with each other well, indicating that they share the
same scaling form. The solid line is a plot of the scaling
function v∗, D∗ = exp[−E∗

b /kBT ], which fits data well,
especially in the region with E∗

b /kBT & 3. It has been
shown recently [16] that the inclusion of the (modified)
Arrhenius factor ν′ in the scaling plot helps to reduce de-
viations of the data from the simple exponential function
for small values of E∗

b /kBT . Figure 11 thus verifies the
scaling behavior of the measured v and D, as predicted
in Eqs. (30) and (35).

3. Approximations in the F > Fc regime

While the scaling behavior of the measured v and D
improves in general for larger values of F when F is in the
intermediate range FT . F . Fc, the steepest descent
approximation will eventually become invalid when F is
getting so close to Fc that the effective barrier height
becomes very small (E∗

b /kBT . 1). Figures 12(a) and
12(b) show, respectively, comparisons between the cal-
culated scaling functions and the exact solution of v/vc
and D/Dc as a function of F/Fc for the tilted cosine po-
tential with Eb = 6.7kBT . The calculations are made
under three different approximations. The black solid
lines in Figs. 12(a) and 12(b) show, respectively, the nu-
merical results of the exact solutions of v/vc in Eq. (4)
and D/Dc in Eq. (6), for the tilted cosine potential with
Eb = 6.7kBT . The green dash-dotted lines show the same
scaling solution in Eq. (30) [or in Eq. (35)] with E∗

b and
ν′ being given, respectively, in Eqs. (42) and (43) for the
linear-cubic potential. The red dashed line in Fig. 12(a)
shows the scaling solution in Eq. (30) with E∗

b and ν′

being given, respectively, in Eqs. (29) and (31) for the
tilted cosine potential.
It is seen from Fig. 12(a) that while the red dashed line

follows the exact solution slightly better than the green
dash dotted line (as its E∗

b and ν′ are calculated par-
ticularly for the tilted cosine potential), the two scaling
solutions are very close with each other over the entire
force range 0 ≤ F/Fc ≤ 1. Both the scaling solutions,
however, show significant deviations from the exact so-
lution of v/vc (and D/Dc) when F approaches to Fc,
at which E∗

b = 0 and ν′ = 0. Figures 12(a) and 12(b)
reveal that the scaling solution in Eq. (30) follows the
exact solution of v/vc over a larger range of F/Fc up to
F/Fc . 0.9, whereas it can only follow the exact solution
of D/Dc up to F/Fc . 0.5. From the exact solutions
of v/vc and D/Dc, one finds that they have different
asymptotic behavior when F/Fc > 1.

FIG. 12. (color online) (a) Comparison between the calcu-
lated scaling functions and the exact solution of v/vc as a
function of F/Fc for the tilted cosine potential with Eb =
6.7kBT . The calculations are made under different approxi-
mations: (i) exact solution of v/vc in Eq. (4) (black solid line),
(ii) scaling solution in Eq. (30) with E∗

b and ν′ being given, re-
spectively, in Eqs. (29) and (31) for the tilted cosine potential
(red dashed line), and (iii) scaling solution in Eq. (30) with
E∗

b and ν′ being given, respectively, in Eqs. (42) and (43)
for the linear-cubic potential (green dash-dotted line). The
blue dot-dot dashed line shows the approximate expression in
Eq. (47) for F > Fc. (b) Comparison between the calculated
scaling functions and the exact solution of D/Dc as a func-
tion of F/Fc for the tilted cosine potential with Eb = 6.7kBT .
The calculations are made under different approximations: (i)
exact solution of D/Dc in Eq. (6) (black solid line), and (ii)
scaling solution in Eq. (35) with E∗

b and ν′ being given, re-
spectively, in Eqs. (42) and (43) for the linear-cubic potential
(green dash-dotted line). The blue dashed line shows the ap-
proximate expression in Eq. (52) for F > Fc.

We now derive an approximate expression for v(F,Eb)
in the F > Fc regime. As mentioned above, the critical
force Fc is given by the positive root of Fc = U ′

o(xc),
where xc is the point of inflexion of U given by U ′′

o (xc) =
0. For Uo(x) =

Eb

2 u(x), we have Fc = Eb

2 u′(xc). When
F > Fc, g1(x, y) in Eq. (18) has no saddle point or local
extremum in the λ2 square. The minimal value of g1(x, y)
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on the λ× λ square is at y = 0 with g1(x, 0) = 0. Hence

the integral
∫ λ

0
dy exp[− Eb

2kBT g1(x, y)] is dominated by

the y & 0 region, and one can expand near y = 0 to
get g1(x, y) ≃ [2F/Eb − u′(x)]y +O(y2). Therefore, one
has

1

λ

∫ λ

0

dye
−Ebg1(x,y)

2kBT ≃ 1− e[−Fλ+Ebu
′(x)/2]/kBT

[Fλ− Ebu′(x)/2]/kBT
. (45)

For F > Fc =
Eb

2 u′(xc) and keeping the leading orders in
F , one obtains an approximate expression for the scaled
velocity,

v

vc
≃ F

Fc
− u′2

[u′(xc)]2
Fc

F
+O

[(
Fc

F

)2
]
, (46)

where u′2 ≡ 1
λ

∫ λ

0
[u′(x)]2dx.

For u(x) = cos(2πx/λ), one has

v

vc
≃ F

Fc
− Fc

2F
. (47)

Equation (47) is plotted in Fig. 12(a) (blue dot-dot
dashed line) to compare with the exact result. It is seen
that the approximate expression in Eq. (47) holds very
well up to F & Fc. Note that the above result can be
interpreted in terms of the effective friction coefficient

ξeff (F ) ≃ ξ[1 +

(
Eb

2F

)2

u′2 + · · · ], (48)

for F > Fc.
Similarly, when F > Fc, g2(x, y, w, z) in Eq. (20) also

has no saddle point or local extremum in the λ4 hyper-
cube and its minimal value is g2(x, 0, 0, 0). Thus one can
expand g2(x, y, w, z) around y = z = w = 0 to get

g2(x, y, w, z) ≃
[
2F

Eb
− u′(x)

]
(y + w + z) + · · · . (49)

Hence

1

λ

∫ λ

0

dxI2+(x)I−(x)

≃ 1

λ

∫ λ

0

dx

[
1

λ

∫ λ

0

dye[−F+
Eb
2 u′(x)]y/(kBT )

]3

≃
(
kBT

Fλ

)3
[
1 + 6

(
Eb

2F

)2

u′2 + · · ·

]
. (50)

Using Eq. (6), one finally obtains

D

Dc
≃ 2kBT

Fcλ

[
1 + 3

(
Fc

F

)2
u′2

[u′(xc)]2

]
. (51)

For u(x) = cos(2πx/λ), we find

D

Dc
≃ 2kBT

Fcλ

[
1 +

3

2

(
Fc

F

)2
]
. (52)

Equation (52) is plotted in Fig. 12(b) (blue dashed line)
to compare with the exact result. It is seen that the
approximate expression in Eq. (52) holds well for F > Fc.

FIG. 13. (color online) Overall “phase diagram” of the col-
loidal transport and diffusion dynamics over a tilted periodic
potential in the plane of the normalized external force F/FT

and intrinsic barrier height Eb/kBT . The black solid line in-
dicates F/FT = πEb/kBT (i.e., F = Fc). The black dashed
line indicates F/FT = 1 and the black dotted line indicates
Eb/kBT = 1. The entire phase diagram is divided by the
three lines into four (colored) regions, A (yellow), B (pink), C
(light green), and D (light blue), each representing a unique
dynamic phase (see text for more details).

4. Scaling regions of the measured v and D

Based on the above discussion, we now can character-
ize the dynamics of colloidal diffusion over a tilted pe-
riodic potential in a 2D “phase diagram,” as shown in
Fig. 13. The phase diagram is plotted as a function of
the normalized external force F/FT and intrinsic energy
barrier height Eb/kBT . The black solid line indicates
F/FT = πEb/kBT (i.e., F = Fc). The critical force Fc

scales with Eb/(λ/2) and here π/2 is used as an indica-
tive prefactor. The black dashed line indicates F/FT = 1
and the black dotted line indicates Eb/kBT = 1. The en-
tire phase diagram is divided by the three lines into four
(colored) regions, A (yellow), B (pink), C (light green),
and D (light blue), each representing a unique dynamic
phase.

In region A (yellow) where both F/FT and Eb/kBT are
small, the small force expansion of Eqs. (8) and (9) can
be used to describe the dynamics of colloidal diffusion
as measured by the mean drift velocity v and diffusion
coefficient D. In region B (pink) where F/FT is small
but Eb/kBT is large, Eqs. (8) and (9) can be further
simplified under the steepest descent approximation. As
a result, both the normalized drift velocity v/v0 and dif-
fusion coefficient D/D0 share the same scaling form of
Arrhenius-Kramers type at the lowest order of F/FT , as
shown in Eqs. (14) and (15). Between the solid line
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F = Fc and the dashed line F = FT is region C (light
green), in which the tilted potential U(x)/kBT is large
enough so that the steepest descent approximation ap-
plies. In this case, the normalized drift velocity v/vc and
diffusion coefficient D/Dc share the same scaling form as
shown in Eqs. (30) and (35). While the scaling function
is of Arrhenius-Kramers form, both the pre-factor ν′(F )
and the effective barrier height E∗

b (F ) are modified by
the external force F . It is found that Eq. (42) provides
a simple (upper bound) estimate on how E∗

b (F ) varies
with F/Fc, whereas Eq. (44) only gives a linear expan-
sion of E∗

b (F ) for small values of F/Fc. We also find
that Eq. (31) provides a good estimate on how ν′ varies
with F/Fc. In region D (light blue) where F/Fc & 1,
the effect of the external force F is dominant over the
potential U0(x) and the dynamics of colloidal diffusion
become similar to that over a flat incline. As discussed
above, the boundaries between different dynamic phases
are not sharp and care needs to be taken for the crossover
between different phases.

V. SUMMARY

We have constructed a two-layer colloidal system for
the study of diffusive and force-assisted barrier-crossing
dynamics over a periodic potential. The micron-sized
particles on the bottom layer form a colloid crystal,
whose corrugated surface provides a gravitational poten-
tial field for the top layer diffusing particles. When the
colloidal sample is carefully leveled, the top layer parti-
cles are under no external force and their motion over
the periodic potential is made under constant thermal
agitations. Using the techniques of optical microscopy
and multi-particle tracking, we measured the population
probability histogram P (x, y) of the top layer diffusing
particles, from which one finds the underlying poten-
tial U0(x, y) via the Boltzmann distribution, as shown
in Eq. (39). By averaging over the repetitive units of
the colloidal crystal and simplifying the periodic poten-
tial into a quasi-1D barrier function U0(X), we were able
to improve the statistical accuracy of U0(X) down to
∼ 0.1kBT .
When the colloidal sample is tilted at an angle θ (in

the range of 0-35◦) with respect to the vertical (grav-
ity) direction, a tangential component of the gravita-
tional force F is applied to the diffusing particles. This
external force reduces the energy barrier height so that
the detailed balance for the diffusing particles is broken
and a net particle flux is generated along the direction of
forcing. From the measured particle trajectories, we cal-
culated the probability density function G(∆x, τ) of the
particle’s displacement ∆x(τ), from which one obtains
the mean drift velocity v(F,Eb) and diffusion coefficient
D(F,Eb) of the particles as a function of F and intrinsic
barrier height Eb. The measured v(F,Eb) and D(F,Eb)
are in good agreement with with the exact results of the
1D drift velocity [1] and diffusion coefficient [2, 3].

Based on these exact results, we analytically showed
under the steepest descent approximation that there ex-
ists a scaling region, in which v(F,Eb) and D(F,Eb) both
scale as ν′(F ) exp[−E∗

b (F )/kBT ], where the pre-factor
ν′(F ) and barrier height E∗

b (F ) both are modified by F .
The experiment verified the theory and demonstrated the
applications of the colloidal potential. With the simul-
taneously obtained energetics and dynamics information,
we examined different scaling forms of ν′(F ) and E∗

b (F )
and their accuracy in determining the characteristics of
the external potential, such as the intrinsic barrier height
Eb.

It was found that in the small F region, the effect of
the potential U0(x) can be separated from the external
force F , and both v(F,Eb) andD(F,Eb) can be expanded
in terms of F/FT . In the intermediate force region
(FT < F < Fc), the normalized v(F,Eb) and D(F,Eb)
share the same scaling form of Arrhenius-Kramers type,
as discussed above. The effective barrier height E∗

b (F ) is
lowered by the external force F . In the large force limit
(F/Fc & 1), the effect of the potential U0(x) becomes
very small and the dynamics of colloidal diffusion is sim-
ilar to that over a flat incline. Furthermore, a “phase
diagram” of the colloidal transport and diffusion dynam-
ics over a tilted periodic potential is drawn in the plane
of the normalized external force F/FT and intrinsic bar-
rier height Eb/kBT . The phase diagram provides a useful
guideline about the dynamic behavior and effective gov-
erning equations for the colloidal transport and diffusion
in the linear and nonlinear regimes of the applied force.

This work provided crucial information for our gen-
eral understanding of forced barrier-crossing dynamics
beyond the linear response theory and the Arrhenius-
Kramers equation. In addition, our results provided a
useful interpretation of the driven colloidal transport in
terms of a force-dependent effective friction coefficient
ξeff (F ) given by Eqs. (16), (32) and (48), respectively,
as the forcing increases. By carefully examining the theo-
retical and experimental results, we find that the Stokes-
Einstein relation between the diffusion coefficient D and
the friction coefficient ξeff in the steady-state is violated
to a different extend, depending on the driving or how far
away from equilibrium. In the small F region, the parti-
cles spend most of their time near the local minima of the
tilted periodic potential with occasional hopping to the
next well. The system is still very much thermalized and
close to equilibrium and thus the Stokes-Einstein rela-
tion holds. In the intermediate force region, the external
driving is strong enough to cause rapid hopping and thus
the particles do not have much time to be thermalized
in the local minima. In this case, D still has the Stokes-
Einstein form, but the energy input Fλ/2 becomes the
dominant source causing diffusion and friction. In the
large force limit, the system is far from equilibrium and
kBT plays no role at all. In this case, D and ξeff are
not related by any Stokes-Einstein-like relation, except
in the F → ∞ limit in which the usual Stokes-Einstein
relation recovers: D → D0.
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