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We report on normal contact and friction measurements of model multicontact interfaces formed between smooth surfacesand
substrates textured with a statistical distribution of spherical micro-asperities. Contacts are either formed between a rigid textured
lens and a smooth rubber, or a flat textured rubber and a smoothrigid lens. Measurements of the real area of contactA versus
normal loadP are performed by imaging the light transmitted at the microcontacts. For both interfaces,A(P ) is found to be sub-
linear with a power law behavior. Comparison to two multi-asperity contact models, which extend Greenwood-Williamson(J.
Greenwood, J. Williamson,Proc. Royal Soc. London Ser. A295, 300 (1966)) model by taking into account the elastic interaction
between asperities at different length scales, is performed, and allows their validation for the first time. We find that long range
elastic interactions arising from the curvature of the nominal surfaces are the main source of the non-linearity ofA(P ). At a
shorter range, and except for very low pressures, the pressure dependence of both density and area of micro-contacts remains well
described by Greenwood-Williamson’s model, which neglects any interaction between asperities. In addition, in steady sliding,
friction measurements reveal that the mean shear stress at the scale of the asperities is systematically larger than that found for a
macroscopic contact between a smooth lens and a rubber. Thissuggests that frictional stresses measured at macroscopiclength
scales may not be simply transposed to microscopic multicontact interfaces.

Introduction

Surface roughness has long been recognized as a key issue in
understanding solid friction between macroscopic bodies.As
pointed out by the pioneering work of Bowden and Tabor1,
friction between rough surfaces involves shearing of myriads
of micro-asperity contacts of characteristic length scales
distributed over orders of magnitude. The statistical averaging
of the contributions of individual micro-asperity contacts to
friction remains an open issue which largely relies on the
contact mechanics description of multicontact interfaces. In
early multi-asperities contact models such as the seminal
Greenwood-Williamson’s model (GW)2, randomly rough
surfaces are often assimilated to a height distribution of non
interacting spherical asperities which obey locally Hertzian
contact behavior. Along these guidelines, some early models
also attempted to describe the fractal nature of surface rough-
ness by considering hierarchical distributions of asperities3.
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More refined exact elastic contact mechanics theories were
also developped by Westergard4, Johnson5 and Manners6,7,
amongst others, in order to solve the problem of elastic
contacts between one dimensional periodic wavy surfaces.
Most of the subsequent generalisations of elastic contact
theories to randomly rough surfaces are more or less based
on a spectral description of surface topography8–11. Within
the framework of linear (visco)elasticity or elasto-plastic
behavior, these theories allow estimation of the pressure
dependence of the distribution of microcontacts size and
pressure at various length scales. From an experimental
perspective, elucidation and validation of these models using
microscopic randomly rough surfaces such as abraded or
bead blasted surfaces is compromised by the difficulties in
the measurement of the actual distribution of microcontact
areas at the micrometer scale. Although early attempts were
made by Dieterich and Kilgore12 with roughened surfaces of
transparent materials using contact imaging techniques, direct
comparison of the experimental data with contact mechanics
models lacks clarity.

In this study, we take advantage of recent advances in
sol-gel and micro-milling techniques to engineer two types
of model randomly rough and transparent surfaces with
topographical characteristics compatible with GW’s modelof
rough surfaces2. They both consist of statistical distributions
of spherical asperities whose sizes (∼ 20 µm up to 200µm)
allow for an optical measurement of the spatial distributions of
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the microcontacts areas. In their spirit, these experiments are
along the line of Archard’s previous investigations3, which
used model perspex surfaces consisting of millimeter sized
spherical asperities of equal height. However, in Archard’s
investigations, a small number of asperities were used. Fur-
thermore, technical limitations in the estimation of variation
of heights of asperities did not allow for a statistical analysis
of the load dependence of the distributions of microcontact
areas. Here, using a sphere-on-plane contact geometry with
different statistical distributions of micro-asperities, we probe
the elastic interactions between asperities (seee.g.13–16) by
directly comparing the measured distributions of the real area
of contact to the predictions of two different multi-asperity
contact models. We show how the use of textured surfaces
allows an accurate validation of these models that permits an
investigation of the statistical distribution of contact pressure,
number of microcontacts and microcontact radii distributions.
In the last part of the paper, we present the results of a
preliminary study that illustrates how such model systems
can be used to investigate the relationship between frictional
properties and real contact areas.

Materials and Techniques

Two types of randomly rough surfaces covered with spheri-
cal caps were designed using two different techniques as de-
scribed below. The first surface (RA for Rigid Asperities) con-
sists of glass lenses (BK7, Melles-Griot, radius of curvature 13
mm) covered with a distribution of micrometer sized rigid as-
perities with varying heights and radii of curvature. The sec-
ond surface (SA for Soft Asperities) is made of a nominally
flat silicone slab decorated with a random spatial distribution
of soft spherical micro-asperities with equal radius of curva-
ture and varying heights.

RA lenses

RA’s topography was obtained by replicating condensed liquid
droplets on a hydrophobic surface. Water evaporating from a
bath heated at 70◦C was first allowed to condense on a Hex-
aMethylDiSilazane (HMDS) treated hydrophobic glass slide
kept at room temperature, resulting in a surface with myriads
of droplets. This surface was then covered with a degassed
mixture of a PolyDiMethylSiloxane cross-linkable liquid sil-
icone (PDMS, Sylgard 184, Dow Corning) cured at 70◦C for
2 hours. One is left, upon demolding, with a PDMS surface
with concave depressions, which are negative images of the
condensed water droplets. These PDMS samples then serve as
molds to replicate rigid equivalents on the glass lenses using
a sol-gel imprinting process fully described elsewhere17. An
example of the resulting pattern with smooth spherical caps

Fig. 1 (a) SEM image topography of a RA+ sol-gel replica
(φ = 0.41). (b) Same with an SA PDMS replica of a micro-milled
mold (φ = 0.4). (c) microcontacts spatial distribution with RA+

(P = 22 mN). (d) Same with the SA of (b) and a lens of radius of
curvature 128.8 mm (P = 20 mN). (c-d) are image differences with
a reference non-contact image. Note the size difference in the
apparent contact related to the difference in curvature of both
indenters.

of various sizes is shown in Fig. 1a. By changing the time of
exposuretexp of the HMDS treated glass to water vapor, dif-
ferent surfaces with different asperity sizes and densities are
obtained as a result of droplet coalescence during the water
condensation process. Two patterns with small (resp. large)
asperities were made withtexp = 15 s (resp. 60 s). They
are respectively referred to as RA− and RA+. Their topogra-
phy at the apex was characterized with an optical profilometer
(Microsurf 3D, Fogale Nanotech) to extract the mean surface
fractionφ covered by the asperities (Table 1) and the distribu-
tions of their heightsh and radii of curvatureR. Both distri-
butions are found to be Gaussian (not shown) with meansh̄, R̄
and standard deviations given in Table 1. For RA+, h is found
to be proportional toR (Fig. 2). This suggests that the spheri-
cal shape of the asperities is uniquely controlled by the contact
angleθ of water droplets on the HMDS treated surface prior
to molding. In this case, one expects, indeed, the relationship
h = R(1 − cos θ). Fitting the data of Fig. 2 yieldsθ ∼ 57◦,
very close to 55◦ which is the value of the advancing contact
angle we measured for water droplets on HMDS treated glass.
For RA− however, no evident correlation has been observed,
for which we have no clear explanation (Fig. 2, inset).

2 | 1–13

Page 2 of 13Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



Table 1 RA’s mean topographical characteristics

texp(s) φ h̄(µm) R̄(µm)

15 0.34± 0.02 9.0± 2.4 49.6± 12.8a

60 0.41± 0.05 29.6± 10.1 64.4± 19.6b

a from 293 asperities.
b from 119 asperities.
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Fig. 2 (Color online) Heighth of the spherical micro-asperities as a
function of their radius of curvatureR for the RA+ lens (φ = 0.41).
Inset: Same for the RA− lens (φ = 0.34). The solid line is a linear
fit of the data.

SA samples

SA samples were obtained by cross-linking PDMS in molds
(2.5 mm deep) fabricated with a desktop CNC Mini-Mill
machine (Minitech Machinary Corp., USA) using ball end
mills of radius 100µm, allowing to design, with 1µm reso-
lution, patterns with controlled surface densities and height
distributions (Fig. 1b). Spherical cavities were randomly
distributed over 1 cm2 with a non overlapping constraint
with two different surface densitiesφ = 0.1 and0.4. Their
heights as obtained from a uniform random distribution were
in the range [30–60]µm. SA samples withφ = 0.1 are thus
referred to as SA− further down, and those withφ = 0.4 as
SA+. Half of the bottom of the mold was kept smooth so that
SA samples had both a patterned part and a smooth one. The
smooth part was used in a JKR contact configuration18, which
allowed measurement of each sample Young’s modulusE.
Secondly, it provided means to locate accurately the center
of the apparent contacts formed on the patterned part. Since

contacts with the patterned part were obtained by a simple
translation of the sample, the center within the contact images
was taken as the center of the JKR circular contact, obtained
using standard image analysis.

As detailed above, RA samples display spatial and height
distributions of asperities set by both the evaporation andthe
sol-gel processes, which can only be characterizeda posteri-
ori. SA samples however, have a statistical roughness which
can be finely tuned with any desired pattern, both in height
and spacing. As a result, SA flat surfaces are very appropri-
ate for the statistical investigation of contact pressure distribu-
tion as they can be produced at centimeter scales thus allowing
for several realizations of the contact at different positions on
the patterned surface. Nevertheless, contrary to SA asperi-
ties which always present a microscopic surface roughness in-
herent to the milling procedure, RA micro-asperities are very
smooth. It thus makes them especially suitable for the investi-
gation of frictional properties, as microcontacts obtained with
a smooth rubber substrate can be assimilated to single asperity
contacts.

Experimental setups

For RA lenses, normal contact experiments were performed
by pressing the lenses against a thick flat PDMS slab under a
constant normal loadP . Its thickness (∼ 15 mm) was cho-
sen to ensure semi-infinite contact conditions (i.e. the ratio of
the contact radius to the specimen thickness was more than
ten19). For SA flat samples, sphere-on-plane contacts were
obtained by pressing them against a clean BK7 spherical lens
(LA1301, Thorlabs Inc.) with a radius of curvature of 128.8
mm,∼ 10 times larger than the radius of curvature of the pat-
terned RA lenses. To ensure comparable semi-infinite contact
conditions, SA samples remained in adhesive contact against
a ∼ 15 mm thick PDMS slab. The experiments were per-
formed with a home made setup described in20,21. Using a
combination of cantilevers and capacitive displacement sen-
sors, both the normal (P ) and interfacial lateral (Q) forces
are monitored in the range [0–2.5] N with a resolution of
10−3 N. This setup also provides simultaneous imaging of the
microcontacts with the combination of a high resolution CCD
camera (Redlake ES2020M, 1600×1200 pixels2, 8 bits) and a
long–working distance Navitar objective. Once illuminated in
transmission with a white LED diffusive panel, microcontacts
appear as bright disks. Measuring their areas using standard
image thresholding techniques provides a direct measure of
their entire spatial distribution. The total true area of contact
A is then obtained by summing all microcontact areas. In ad-
dition, assuming the validity of Hertzian contact theory atthe
scale of the asperity and knowingE, radii of curvatureR of
each asperity andν = 0.5 the Poisson’s ratio20,21, the disks
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radiiai are a direct measure of the local normal forcespi since

pi =
4Ea3i

3(1− ν2)R
(1)

As described previously21, a linear relationship between the
total normal loadPc =

∑

i pi and the measuredP is system-
atically found for all SA samples, thus validating Hertz as-
sumption. However, the slope ofPc versusP depends slightly
on the optical threshold used to detectai. To recover a unit
slope, we thus calibrated the optical threshold with a refer-
ence sample of known Young’s modulus. For all other sam-
ples, we then kept the same optical threshold and tunedE for
each sample within its measured uncertainties to recover a unit
slope. Note that Hertz contact theory assumes thatai/R ≪ 1
in order to stay in the linear elastic range. In our experiments,
we find that, at the highest normal load,ai/R is at maximum
of the order of0.3. Investigations by Liu and coworkers22 us-
ing micro-elastomeric spheres in contact with a plane (contact
radiusa) have shown however that Hertz theory remains ac-
curate for values ofa/R up to∼ 0.33.
For RA samples, such a calibration method could not be ap-
plied as it requires knowing the radii of curvature of all as-
perities to evaluatepi. Because of this limitation∗, we chose
the threshold arbitrarily from the contact images between their
two extremal values for which the change in total area was
found to vary marginally. Consequently, it was not possibleto
measure any local normal force distribution for RA samples.

Friction experiments with RA patterned lenses were per-
formed with another experimental setup described earlier23.
RA lenses were rubbed against a smooth PDMS slab
(E = 3±0.1MPa) keeping bothP and the driving velocityv
constant. The setup allowed variation ofv from a fewµm s−1

up to 5 mm s−1 thus allowing simultaneous measurements of
P andQ with a resolution of10−2 N.

Multi-asperity contact models

To investigate quantitatively the effects of elastic interactions
between micro-asperity contacts on the real contact area and
related pressure distribution, two different multi-asperity con-
tact models were considered, both of which include elastic
interactions at different length scales. The first one was de-
rived by Greenwood and Tripp (GT)13 as an extension to the
case of rough spheres of the seminal model of Greenwood
and Williamson (GW) for the contact between nominally flat
surfaces. The second one was developed more recently by
Ciavarellaet al.14,15. It consists in a modified form of GW’s

∗Measurements of radii of curvature were performed using profilometry im-
ages obtained at a high magnification. Identifying for a given asperity its
radius of curvature would imply matching the position of this asperity with its
position in a zoomed out image of the macroscopic apparent contact.

model, with elastic interactions between microcontacts incor-
porated in a first order-sense. Both models describe the con-
tact mechanics of rough surfaces with random distributionsof
spherical asperities, which is what we investigate here experi-
mentally. As a consequence of this simplified form of surface
topography, it was not necessary to consider more refined con-
tact models based on a spectral description of the surfaces such
as Persson’s model8.

In GT’s model, Hertz theory of elastic contact between a
smooth sphere and a smooth plane is extended by adding
roughness to the plane. As a starting point, the relationship be-
tween the local pressure and the local real contact area within
an elementary portion of the rough contact is assumed to obey
GW’s theory. Accordingly, micro-asperity contacts are sup-
posed to be Hertzian and to be independent, that is, the elastic
displacements due to the normal force exerted on one asper-
ity has negligible effect on any other asperity. However, use of
GW’s relationship requires that the separation of both surfaces
at any location within the macroscopic contact is known,i.e.
that the shape of nominal surfaces under deformation is de-
termined. This requirement is deduced from linear elasticity
theory (Green’s tensor, see reference24 for instance) that intro-
duces long range elastic interactions at the scale of the appar-
ent Hertzian contact. As opposed to GW’s model, which can
be derived analytically, in GT’s model, calculation of the real
contact area and pressure distribution can only be done withan
iterative numerical integration of a set of coupled equations, as
described in13.

In Ciaravellaet al.’s model, the approach includes in the
first order-sense elastic interactions between Hertzian micro-
asperity contacts,i.e. for every asperity a displacement is im-
posed which is sensitive to the effect of the spatial distribu-
tion of Hertzian pressures in the neighboring asperities. For
each micro-asperity contact, a shift of the position of the de-
formable surface is introduced, which results from the vertical
displacement caused by the neighboring ones. Accordingly,
the indentation depthδi of theith micro-asperity contact is

δi = δ0i +

N
∑

j 6=i

αijδ
3/2
j , (2)

whereδ0i > 0 is the indentation depth in the absence of any
elastic coupling between microcontacts, andαij are the ele-
ments of the interaction matrix. As shown in Fig. 3,δ0i is
a purely geometrical term simply given by the difference be-
tween the positions of the two undeformed surfaces for the
prescribed indentation depth∆. The sum in the rhs of eqn (2)
represents the interaction term derived from Hertz contactthe-
ory. Our study slightly differs from Ciavarellaet al.’s model
as we take forαij an asymptotic expansion of the Hertz solu-
tion for the vertical displacement of the surface, instead of its
exact expression. Elementsαij of the interaction matrix thus
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Fig. 3 Sketch of the geometric configuration for the indentation of
(a) SA and (b) RA surface topography. For both configurations, ∆ is
the prescribed indentation depth taking as a reference for the vertical
position of the indenting sphere the altitude at which the smooth
surface is touching the uppermost asperity.

read

[αij ] = −
4
√

Rj

3π

1

rij
, i 6= j , (3)

whererij is the distance between asperitiesi andj andRj

is the radius of curvature of thej th asperity. This approxi-
mation avoids evaluating at each step of the calculation the
interaction matrix[αij ], which consequently depends only
on the surface topography. Such an approximation is valid
as long as the average distance between asperitiesL is much
larger than the average asperity microcontact radiusa. For
RA samples, optical measurements reveal that this criterion
is satisfied as the ratioL/a, which is a decreasing function
of P , remains between 6 and 8. For SA samples, one also
measures thatL/a ≈ 16− 32 for SA− andL/a ≈ 9− 15 for
SA+. The above detailed models are obviously valid as long
as no contact occurs in regions between the top parts of the
spherical caps.

Normal contacts

RA measurements

In order to stay consistent with the hypothesis of the con-
tact models, true contact area measurements for RA lenses

were performed for normal loadsP for which only tops of
the micro-asperities make contact with the PDMS slab. While
for RA+ lenses, this is observed for the entire range (up to
0.6 N) ofP , for RA− lenses this occurs as long asP ≤ 0.2 N.
Figure 4 shows the total contact areaA versusP for both RA
lenses contacting a smooth PDMS substrate.A(P ) exhibits a
non-linear power law behavior with the following exponents:
0.812± 0.009 for RA− and0.737± 0.042 for RA+.
To compare these results with Ciaravellaet al.’s model, cal-
culations were carried out using simulated lens topographies
generated from Gaussian sets of asperity heights calculated
using the experimental parameters reported in Table 1. The
radii of curvature of the asperities were varied as a function
of their heights using the experimentally measuredR(h) re-
lationship. Asperities were spatially distributed according to
a uniform distribution with a non-overlap constraint. In order
to minimize bias in their spatial distribution, asperitieswere
positioned by decreasing size order.
Figure 4 shows the results of such simulations using
Ciavarella’s model. Uncertainties in the experimental deter-
mination of surface parameters (mainly theR(h) relationship)
were found to result in some scatter in the simulatedA(P )
response. In order to account for this scatter, the simulated
curves are represented as colored areas in Fig. 4. A good
agreement is observed between theory and experiments only
when elastic interactions are accounted for. Without such in-
teractions (i.e. when the termαij in eqn (2) is set to zero), the
actual contact area at a givenP is clearly underestimated.

SA measurements

For SA samples in contact with the glass lens of radius of
curvature 128.8 mm, microcontacts always occur at the top of
the asperities for the whole investigatedP range up to 0.6 N.
For eachP , the real area of contactA was averaged over
N = 24 different locations on the sample. This allowed us
to probe statistically different contact configurations while
reducing the error onA by a factor

√
N . Figure 5 shows

the resultingA versusP for both SA− and SA+ samples.
As found with RA lenses,A(P ) curves are also sub-linear
and are well fitted by power laws. For both tested surface
densities, power law exponents are found to be density
independent, with0.945± 0.014 for SA− and0.941± 0.005
for SA+. Changingφ from 0.1 to 0.4 mainly results in an
increase ofA(P ) at all P (Fig. 5). As previously done with
RA samples, both SA data sets are compared to Ciaravellaet
al.’s model14,15 predictions, with bothαij = 0 andαij 6= 0.
Calculations were performed using the exact topography used
to make SA samples, andA versusP curves were obtained
with the exact same 24 contact configurations. Errors on
the calculatedA values were obtained by varying Young’s
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Fig. 4 Log-log plot of the real area of contactA versusP for both
RA− (a) and RA+ (b) lenses. The upper and lower limits of the
error bars correspond to the total areas measured with the arbitrarily
chosen extremal values of the optical threshold (see text).Red
shaded areas correspond to the predictions of Ciavarellaet al.’s
model14,15 by settingαij to 0 in eqn (2). Green areas correspond to
αij 6= 0. Areas extent characterizes the scatter in the simulations,
arising from uncertainties in the experimental determination of the
topography parameters.

modulus within its experimental uncertainties, yielding the
shaded areas of Fig. 5. Red shaded areas correspond toαij

to 0 in eqn (2), while green areas correspond toαij 6= 0.
At low normal loads (P ≤ 0.1 N), the effect of the elastic
interaction onA is almost negligible, but it becomes more
pronounced at higher ones (P > 0.1 N), resulting in a larger
true contactA. As shown on Fig. 5, our data atP > 0.1 N
is clearly better captured by the interacting model rather than
the non-interacting one for both surface densities.

TheseA(P ) measurements, together with those obtained
with RA lenses, indicate that including an elastic interaction
is thus essential to have a complete description of the contact
mechanics of such systems. Yet, it remains unclear which of
the short range (interaction between neighboring asperities)
and/or long range (determined by the geometry of the macro-
scopic contact) parts of the elastic interaction predominate.
We now address precisely this question in the following.

Role of elastic interactions

True contact area load dependence
Using contact imaging techniques, we were able to probe

how the total true contact area varies with the applied load
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Fig. 5 Log-log plot of the real area of contactA versusP for both
SA− (φ = 0.1, blue diamonds) and SA+ (φ = 0.4, blue circles)
samples. The inset is a close up for0.2 ≤ P ≤ 0.6 N. Error bars
are given by the standard deviation ofA on 24 different contact
configurations. Red shaded areas correspond to the predictions of
Ciavarellaet al.’s model14,15 by settingαij to 0 in eqn (2). Green
areas correspond toαij 6= 0. Areas extent characterizes the scatter
in the simulations, arising from uncertainties in the experimental
determination ofE.

for contacts between a smooth surface and the different model
rough surfaces decorated with spherical caps. For all sizes
and spatial distributions of the micro-asperities tested here,
we found thatA(P ) curves could be satisfactorily described
within the framework of a simple rough contact model with a
classical assumption that Hertzian contact occurs at the scale
of the micro-asperities. As opposed to both GW’s and GT’s
models, our approach takes into account in an approximate
manner the elastic coupling between asperities which is often
neglected to fully describe the contact mechanics of rough in-
terfaces.
For all investigated SA topographies, a nearly linear relation-
ship is found forA(P ), which is consistent with the conclu-
sions of the paper of Greenwood and Tripp13 that states that
A(P ) is ”approximately” linear. More generally, our find-
ings for SA surfaces do not depart from most of asymptotic
development at lowP of most current rough contact mod-
els for nominally flat surfaces10. Such models, indeed, also
predict a linearA(P ) relationship. Conversely, for RA to-
pographies, a non-linear power law likeA(P ) relationship is
found. Such deviations from linearity was actually pointedout
in recent theoretical works by Carbone and Bottiglione25 for
nominally plane–plane rough contacts. These authors pointed
out indeed that asperity contact models deviate very rapidly
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respectively, Hertz’ maximum pressurep0 and Hertz contact radiusaH . The black dashed line corresponds to Hertz prediction. Blue solid
lines are fits using Greenwood-Tripp model (GT) with a uniform asperity height density and same surface densityφ. The red dot-dashed lines
are predictions of Ciaravellaet al.’s model14,15 setting the interaction termαij = 0, while the green dashed lines correspond to the full model
with αij 6= 0. Both latter predictions are statistical averages over 1000 independent pattern realizations withφ = 0.4 and a uniform height
distribution.

from the asymptotic linear relation even for very small, and
in many cases, unrealistic vanishing applied loads. For our
present sphere–on–plane contact, it is legitimate to wonder if
the magnitude of the deviations arises either from the differ-
ences in the asperities height and size distributions and/or the
macroscopic curvatures of the spherical indenter. To provide
an answer to this question, simulations using Ciaravella’set
al.’s model, with the exact same asperities distribution (height,
radius of curvature and lateral distribution) but different radii
of curvatureRl of the macroscopic lens indenter (Rl = 13 mm
andRl = 128.8 mm, as in the experiments) were performed.
In both cases,A(P ) curves are found to follow asymptoti-
cally (for 0.005 ≤ P ≤ 1N) a power law, whose exponent is
∼ 0.86 with Rl = 13 mm and∼ 0.93 with Rl = 128.8 mm.
DecreasingRl thus enhances the nonlinearity of theA(P ) re-

lationship. It is likely that such effects simply result from the
fact that the increase in the gap between both the PDMS and
the lens from the edges of the contact is larger for a lens witha
small radius of curvature. For a load increaseδP , the increase
in the number of microcontacts at the periphery of the appar-
ent contact area is thus expected to be more pronounced with
a largeRl. This should translate into a more linearA(P ) de-
pendence for largeRl. This hypothesis is further supported by
a simple calculation detailed in Appendix A. Assuming that
the rough contact obeys Hertz law at the macroscopic length
scale, one can express the gap height between surfaces at the
periphery of the contact as a function of the Hertzian radius
and the radius of curvature of the indenting lens. Equating this
gap height to the standard deviation of the height distribution
yields a characteristic length scale∆ which corresponds to the
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size of the annular region surrounding the Hertzian contact.
This length is found to vary as∆ ∝ R

5/9
l P−1/9. This con-

firms that for a given applied load, the extension of the contact
area from its Hertzian value, as resulting from microasperities
contacts, should be enhanced whenRl increases.
Of course, it is expected that the non-linearity of theA(P ) re-
lationship could also depend on the statistical propertiesof the
asperity distributions. This is indeed suggested by eqn. (A.9)
which predicts that∆ scales asσ2/3, whereσ is the stan-
dard deviation of the height distribution of asperities. One can
also mention the early theoretical work of Archard3, based
on hierarchical distribution of spherical asperities on a spher-
ical indenter. This model predicts thatA(P ) follows a power
law whose exponent varies between 2/3 (i.e. the limit of the
smooth Hertzian contact) and unity (when the number of hier-
archical levels of asperities is increased).
Before addressing further the issue of the elastic interactions
between microcontacts, some preliminary comments are war-
ranted, regarding the sensitivity of theA(P ) relationship to
the details of the spatial distribution of microasperities. For
that purpose, one can consider a comparison between exper-
imental and theoretical results for RA patterns. While the
micro-asperities were distributed spatially according toa uni-
form random distribution in the simulations, such a distri-
bution probably does not reproduce very accurately the fea-
tures of the droplet pattern. As a result of droplet coalescence
during condensation, some short distance order is probably
achieved between asperities as suggested by a close exami-
nation of Fig. 1a. However, the good agreement between the
experiments and the simulations in Fig. 4a shows that the load
dependence of the actual contact area is not very sensitive to
the details in the spatial distribution of asperities. As far as the
normal load dependence of the real contact area is considered,
the relevant features of surface topography are thus likelyto be
mainly the surface density of micro-asperities, and their size
and height distributions.
Microcontacts and pressure spatial distributions

So far, we only considered the effect of the elastic inter-
action on the load dependence ofA, and thus neglected any
spatial dependence of the microcontacts distribution. Direct
comparison of such data with Ciaravellaet al.’s model calcu-
lations is not easily accessible for RA samples since it would
require a knowledge of all asperities positions and respective
radii of curvature. With SA samples however, this can be eas-
ily done, as positions and radii of curvature of asperities are
known by design of the micromilled pattern. Figures 6a-b-c
show such direct comparison at three increasing normal loads
P (P = 0.02, 0.2, 0.5 N) for the case of the SA+ sample.
As expected, predicted microcontacts withαij 6= 0 almost al-
ways match the measured microcontacts (see the green circles
on the figure). For comparison, red circles at the predicted
positions of the model without elastic interaction have been

overlapped on the contact images. Clearly, the non-interacting
model predicts contacts at locations within the apparent con-
tact which are not seen in the experiment.

To perform a more quantitative comparison with theoreti-
cal predictions, we computed for both the experimental and
calculated points, the local radial pressure profilesp(r). The
latter, which is expected to be radially symmetric for a sphere–
on–plane normal contact, was obtained by summing up local
forcespi exerted on all microcontacts located within an an-
nulus of widthdr = 0.25 mm and radiusr centered on the
apparent contact center (obtained from JKR experiments). To
reduce the statistical error, averaging ofp(r) for several con-
tact configurations was then performed. For the experiment,
24 contact configurations (compatible with the size of the SA
pattern) at different locations on the same SA pattern were
used. For the calculated data (Ciaravellaet al.’s model), 1000
statistically different SA patterns were used and normal load-
ing was done at the center of the SA pattern. Bothαij = 0 and
αij 6= 0 data were computed. To test the effect of including
an elastic interaction at different length scales, we also com-
putedp(r) as predicted by GT’s model. As discussed earlier,
this model indeed constitutes in some sense a ’zeroth order ap-
proximation’ of Ciaravellaet al.’s model, as it only takes into
account long range elastic interactions whose extent is setby
the size of the apparent contact. GT’s calculation was imple-
mented with Mathematica 9 (Wolfram Research Inc., USA),
using a random asperities height distribution with heightscho-
sen uniformly between 30 and 60µm.

Figures 6d–e–f show the results on the example of SA+

for the three increasing loadsP of Figs. 6a–b–c. As already
anticipated from Figs. 6a–b–c, Ciaravellaet al.’s model with
αij 6= 0 gives a reasonably good fit of the measured data.
Takingαij = 0 yields larger discrepancy with the experimen-
tal points, revealing that, on average, the effect of the elas-
tic interaction is to increase significantly the apparent radius
of contact, the higher the normal loadP . As pointed out by
Greenwoood and Tripp in their original paper, the effect of
roughness is to add a small tail to the Hertzian pressure dis-
tribution which corresponds to the annular region around the
Hertzian contact in which the separation is comparable with
the surface roughness. Indeed, as already mentioned earlier,
an order of magnitude of this tail is provided by the char-
acteristic length∆ which scales asR5/9σ2/3 (see Appendix
A). It can be noted that this scaling is very close to that de-
duced from different arguments by Greenwood and Tripp (i.e.
∆ ∝

√
Rσ).

Given the experimental error bars, it is difficult to clearlyde-
lineate which of Ciaravellaet al.’s interacting model or GT’s
model fits best the measured data. Actually, to first order,
both models fit equally well the experiments, and constitute,
to our knowledge, the first direct experimental validation of
both models. This suggests in particular, that if one needs to
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measure the spatial distribution of pressurep(r), GT’s model
is a very good approximation. Second, it indicates that short
range local elastic interactions effects cannot easily be caught
when analyzing the radial pressure distribution, or that these
effects are of second order.

The fact thatp(r) distributions are very similar for both
models motivates a closer examination of the distributionsof
quantities from whichp(r) derives. For that purpose, the pres-
sure dependence of surface densityη and mean radiusa of
microcontacts was considered (whereη is defined as the num-
ber of microcontacts per unit area). In Fig 7, theoretical (as
calculated from Ciavarella’s model withαij 6= 0) and exper-
imental values ofη and a are reported in a log-log plot as
function of the contact pressurep. Two different domains are
clearly evidenced. When the pressure is greater than a critical
valuep∗, which is here of the order of 50 Pa,η anda exhibit
with p a power law behavior whose exponents are found to be
equal to0.4 and0.2, respectively, from the simulated data. As
detailed in Appendix B, these exponents are identical to that
predicted by the GW model for nominally flat surfaces in the
case of a uniform distribution of asperities heights (η ∝ p2/5

anda ∝ p1/5). This means that as long asp > p∗, the pres-
sure dependence ofη anda is insensitive to both the effects of
the elastic coupling between micro-asperities contacts and to
the curvature of the nominal surfaces. Below the critical pres-
surep∗, a power law dependence ofη anda is still observed
but with exponents, respectively0.78± 0.11 and0.37± 0.02,
which depart from the GW predictions (Fig. 7). We do not
yet have a definite explanation for these deviations which are
systematically observed, irrespective of the number of surface
realizations (up to 8000) considered. They could tentatively
be attributed to some short range effects of the pair correla-
tion function associated with asperity distribution. However,
the important point is thatp∗ always corresponds to very low
contact pressures. From an extended set of numerical simu-
lations where parameters such as asperities density, radius of
curvature and height distribution were varied by at least one
order of magnitude,p∗ was systematically found to be in the
range101 − 103Pa. For the considered contact conditions,
such a pressure range corresponds to a very narrow domain at
the tail of the pressure distribution whose physical relevance
is questionable. In other words, both the simulations and the
experimental data indicate that the GW theory is able to de-
scribe accurately the microcontacts distribution over most of
the investigated pressure range without a need to incorporate
the effects of short range elastic interactions in the roughcon-
tact description.

Frictional properties

We now turn onto the frictional behavior of RA lenses against
a smooth PDMS slab. As mentioned above, RA asperities
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Fig. 7 (Color online) (a) Microcontacts densityη, normalized by
the mean number of micro-asperities per unit areaη0, versus local
pressurep for the SA sample withφ = 0.4. (b) Mean microcontacts
areaā versus local pressurep for the same sample. On both graphs,
black disks are the results of GT’s model predictions, the green
disks are predictions of Ciaravellaet al.’s model withαij 6= 0 and
crosses correspond to the experimental data at three different loads
P = 0.02, 0.2, 0.5 N. Thick black lines are power law fits of GT’s
model predicted data, while green solid lines are power law fits of
Ciaravellaet al.’s model predicted data forp < p∗, with p∗ ≈ 50 Pa.
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Fig. 8Q versusP in steady sliding (v = 0.5 mm s−1) for contacts
between a smooth PDMS substrate and RA− (a) and RA+ (b)
lenses. On both graphs, dashed lines are the theoreticalQ given by
eqn (4), taking forA its measured values and forτ0 = 0.34 MPa the
average shear stress obtained with the smooth lens. Solid lines are
fits of the experimental data with eqn (4), yieldingτ0 =0.40 MPa
for RA− and 0.49 MPa for RA+. Inset:Q versusP for the smooth
lens, in steady sliding. The solid line is a fit of the data using
eqn (4), taking forA its measured value in steady sliding.

are very smooth which allows us to consider the associated
micro-asperities contacts as single-asperity contacts. RA sur-
faces thus provide systems with a single roughness scale as
opposed to SA surfaces which present an additional micro-
scopic roughness. In what follows, we address from prelimi-
nary results the issue of the contribution of individual micro-
asperities contact to the macroscopic friction force. ForP
within [0.01–0.6] N and driving velocitiesv up to 5 mm s−1,
both RA+ and RA− lenses systematically exhibited smooth
steady state friction with no evidence of contact instabilities
such as stick-slip, nor strong changes in their frictional behav-
ior. Thus, only results obtained at the intermediate velocity of
v = 0.5 mm s−1 are reported here. Figure 8 shows the result-
ing lateral forceQ versus normal forceP curves for both RA−

(Fig. 8a) and RA+ (Fig. 8b) samples, as well as for a reference
glass lens with the same radius of curvature and covered with
a thin smooth layer of the same sol-gel material used for RA
lenses (Fig. 8b, inset). In all cases,Q is found to vary non-
linearly withP . In the simplest description, the total friction
forceQ is expected to be the sum of local friction forcesqi
acting on all contacting micro-asperities. According to previ-
ous studies using glass/PDMS elastomer contacts26,27, a con-
stant, pressure independent, shear stressτ0 can be assumed to
prevail at the intimate contact interface between the asperities
and the PDMS elastomer, yieldingqi = τ0(πa

2
i ). Within this

framework,Q should thus write as

Q = τ0A (4)

with A =
∑

i(πa
2
i ) the real area of contact. In the calcula-

tion, we take forA the experimental values measured under
normal indentation after verifying from optical contact obser-
vations that the microcontacts areas during sliding are notsig-
nificantly different from that achieved under static loading †.
As a first attempt, the frictional shear stressτ0 was taken as
the experimental value calculated from the ratio of the friction
force to the actual contact area measured during steady state
friction with the smooth lens. As shown by the dotted lines
in Figs. 8a-b, choosing this shear stress value underestimates
the experimental data for both small and large size asperities
RA samples. Fitting the experimental data with eqn (4) using
a least square method yields howeverτ0 = 0.4 and 0.49 MPa
for small and large size asperities respectively. There is thus
some evidence of a dependence of the frictional shear stress
on the contact length scale, the shear stress at the microcon-
tacts scale being larger than that at the scale of a millimeter
sized contact (∼ 18% and∼ 44% increase for RA- and RA+,
respectively). Curvatures of the micro-asperity contactsbe-
ing larger than that of the smooth contact with the glass lens,
the increase inτ0 at small length scales could be attributed to

†When looking carefully, a slight decrease of individual areas of microcontacts
can be seen between the static and sliding regime. This decrease remains
however difficult to quantify.
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bulk viscoelastic dissipation as a result of the ploughing of the
PDMS substrate by the micro-asperities. However, the fact
thatQ does not vary significantly when the sliding velocity is
changed by nearly three orders of magnitude (from 0.01 to 5
mm s−1) does not support this assumption. This weak contri-
bution of viscoelastic dissipation to friction can be related to
the low glass temperatureTg = −120◦C of the PDMS elas-
tomer. Indeed, for the considered micro-asperities size dis-
tributions, the characteristic strain frequency associated with
the microcontacts deformation isv/a ≈ 10 Hz, i.e. well be-
low the glass transition frequency at room temperature (more
than108 Hz). Other effects, arising for example from non lin-
earities in the highly strained microcontacts could be at play,
which will be the scope of further investigations. However,
these experimental results show that frictional stresses mea-
sured at macroscopic length scales may not be simply trans-
posed to microscopic multicontact interfaces.

Conclusion

In this work, we have studied both normal contact and fric-
tion measurements of model multicontact interfaces formed
between smooth surfaces and rough surfaces textured with a
statistical distribution of spherical micro-asperities.Two com-
plementary interfacial contacts were studied, namely a rigid
sphere covered with rigid asperities against a smooth elas-
tomer, and a smooth rigid sphere against a flat patterned elas-
tomer. In both cases, experimentalA(P ) relationships were
found to be non-linear and well fitted by Ciaravellaet al.’s
model taking into account elastic interaction between asperi-
ties. Additional information regarding the nature of the elastic
coupling between asperities was provided from the examina-
tion of the profiles of contact pressure, contact density and
average radius of asperity contacts. While the long range
elastic coupling arising from the curved profile of the inden-
ter was found to be an essential ingredient in the description
of the rough contacts, both experimental and simulation re-
sults demonstrate that, for the considered topographies, short
range elastic interactions between neighboring asperities does
not play any detectable role. As a consequence, the pres-
sure dependence of both the density and the radius of asperity
contacts within the macroscopic contact is very accuratelyde-
scribed using GW model which neglects asperity interactions.
To our best knowledge, these results constitute the first direct
experimental validation of GW and GT models. The question
arises as to what extent our conclusion regarding the elastic
coupling could be extrapolated to more realistic surface rough-
nesses as theoretical simulations using, for example self affine
fractal surfaces, indicate a significant contribution of such ef-
fects. From an experimental perspective, this issue could be
addressed by considering more sophisticated patterned sur-
faces with hierarchical distributions of micro-asperities.
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Appendix

A Gap between surfaces in Hertzian contact

In a Hertzian sphere–on–flat contact, the vertical displacement
uz of the free surface outside the contact can be expressed as18

uz(r) =
4

3K

p0
2a

[(

2a2 − r2
)

arcsin(a/r)

+ ra
(

1− a2/r2
)1/2

]

; r ≥ a
(A.1)

wherep0 is the maximum Hertzian pressure,a is the con-
tact radius andK is the elastic constant defined byK =
4/3E/(1−ν2). From the expression of the maximum contact
pressure

p0 =
3

2π

aK

Rl
(A.2)

whereRl is the radius of the spherical indenter, equation (A.1)
can be rewritten as

uz (r) =
1

πRl

[(

2a2 − r2
)

arcsin(a/r)

+ ra
(

1− a2/r2
)1/2

]

; r ≥ a

(A.3)

The profile of the sphere is given by

s(r) =
1

2Rl

(

2a2 − r2
)

(A.4)

The gap[u] (r) between both surfaces is thus given by

[u] (r) =
1

πRl

[

(

2a2 − r2
)

arcsin(a/r) + ra
(

1− a2/r2
)1/2

]

− 1

2Rl

(

2a2 − r2
)

(A.5)

A series expansion of eqn A.5 atr = a yields

[u] (r) ∼ 8

3

√
a
√
2

πRl
(r − a)

3/2
+O((r − a)2) (A.6)

For a rough contact, a characteristic length∆ can be defined as
the length over which the above calculated gap between both
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surfaces is of the order of magnitude of some length charac-
terizing the asperity distribution, like the standard deviation of
the height distributionσ. From the condition[u] (a+∆) = σ,

∆ ≃
(

3π

8
√
2

)2/3
R

2/3
l σ2/3

a1/3
(A.7)

or
∆

a
≃

(

3π

8
√
2

)2/3
R

2/3
l σ2/3

a4/3
(A.8)

which can also be expressed as a function of the applied nor-
mal loadP

∆ ≃
(

3π

8
√
2

)2/3

R
5/9
l σ2/3K1/9P−1/9

∆

a
≃

(

3π

8
√
2

)2/3 (
K2Rlσ

3

P 2

)
2

9

(A.9)

B GW’s model for a uniform height distribution of
spherical asperities

In this Appendix, we formulate the classical GW’s model for
the contact between two nominally plane rough surfaces in
the case of a uniform height distribution of the spherical as-
perities. Accordingly, non interacting Hertzian contactsare
assumed to occur locally at the scale of the micro-asperities.
The surface density of microcontacts is given by

η =

∫ ∞

d

ψ(z)dz (B.1)

whered is the separation between the reference planes of the
two surfaces andψ(z) is the expected number of contacts per
unit area at a height betweenz andz+ dz above the reference
plane. Similarly, the contact pressurep for a given approachd
between the surfaces can be defined as

p =

∫ ∞

d

KR1/2 (z − d)
3/2

ψ (z)dz (B.2)

wherep is defined as the ratio of the applied normal load to
the nominal area of contact andK = 4/3E/(1− ν2). In the
case of a uniform distribution of asperity height with standard
deviationσ, one can write

∫ ∞

−∞

ψ(z)dz = kσ = η0 (B.3)

wherek is a constant andη0 is the surface density of asperities.
The surface density of contacts and the contact pressure can
then be rewritten as

η =

∫ ∆−d

0

kdx (B.4)

p =

∫ ∆−d

0

KR1/2x3/2dx (B.5)

which gives

η = k (∆− d) =
η0
σ

(∆− d) (B.6)

p =
2

5
KR1/2 (∆− d)

5/2 η

η0
(B.7)

where∆ is the maximum asperity height above the reference
plane. From eqns (B.6) and (B.7), the relationship between
the surface density of contacts and the contact pressure canbe
expressed as

η

η0
=

(

5

2

)2/5 [
p

η0KR1/2σ3/2

]2/5

(B.8)

According to the Hertzian behaviour of micro-asperity con-
tacts, the relationship between the expected mean contact ra-
diusa and the contact pressure is given by

p =
K

R
ηa3 (B.9)

By inserting eqn (B.9) in eqn B.8), the expected mean contact
radius may be expressed as

a =

(

2

5

)2/5 [
pR2σ2/3

Kη0

]1/5

(B.10)
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