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Novel method to determine the elastic modulus 

of extremely soft materials 

Tamás Stirlinga and Miklós Zrínyia,b 

Determination of elastic moduli of extremely soft materials that may deform under their own weight is 

a rather difficult experimental task. A new method has been elaborated by means of which the elastic 

modulus of such materials can be determined. This method is generally applicable to all soft materials 

with purely neo-Hookean elastic deformation behaviour with elastic moduli lower than 1kPa. Our novel 

method utilises the self-deformation of pendent gel cylinders under gravity. When suspended, the 

material at the very top bears the weight of the entire gel cylinder, but that at the bottom carries no 

load at all. Due to the non-uniform stress distribution along the gel sample both the stress and the 

resulting strain show position dependence. The cross-sectional area of the material is lowest at the top 

of the sample and gradually increases towards its bottom. The equilibrium geometry of the pendant gel 

is used to evaluate the elastic modulus. Experimental data obtained by the proposed new method were 

compared to results obtained from underwater measurements. The parameters affecting the 

measurement uncertainty were studied by a Pareto analysis of a series of adaptive Monte Carlo 

simulations. It has been shown that our method provides an easily achievable method to provide 

accurate determination of the elastic modulus of extremely soft matters typically applicable for moduli 

under 1 kPa. 

 

Introduction 

The elastic modulus of materials is an important characteristic 

of their mechanical behaviour. Conventional method of 

determination is usually based on unidirectional elongation or 

compression. In case of soft materials it is difficult to perform 

reliable measurements. The effect of deformation under the 

specimen’s own weight can be decreased by measuring the 

elastic modulus in a liquid having the same density as that of 

the material. However, finding a proper liquid, which has the 

same density but does not react with the material and does not 

alter its mechanical properties can sometimes be both 

challenging and expensive, especially in case of complex 

materials. The other technical difficulty arises from gripping 

the end of a soft sample between the specimen clips at 

elongation measurements, which results in inhomogeneous 

deformation. At unidirectional compression the barrel distortion 

may cause experimental error. Due to these phenomena 

measurements based on unidirectional stress-strain dependence 

are difficult to evaluate. Although alternative methods do exist, 

such as the bending cylinder under gravity by Peng et al.,1 these 

methods are only feasible for materials that are still harder than 

those discussed herein. The main motivation of the present 

work was to develop a method which exploits the deformation 

of the suspended cylindrical samples under their own weight. In 

this work we have studied the unidirectional stress-strain 

properties of extremely soft materials, i.e. materials that have 

moduli under 1 kPa. 

Theoretical background 

On the basis of the rubber elasticity theory,2-5 it is possible to 

express the elastic free energy density as a function of the 

principal deformation ratios λx, λy and λz. These quantities are 

defined as the ratio of deformed and undeformed dimensions 

corresponding to the directions x, y and z, respectively. 

��� = �� + �
� ∙ 
 ∙ ��� + ��� + ��� − 3� (1) 

where ael represents the elastic part of the free energy density, 

G means the elastic modulus and a0 stands for the free energy 

density of the undeformed gel sample �� = �� = �� = 1�. As 

the volume of the sample remains constant during deformation, 

the product of the principal deformations equals one. 

� ∙ �� ∙ �� = 1 (2) 

It is known that in general the elastic properties of gels cannot 

be satisfactorily described by the Gaussian network models. 
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Another widely used model for the description of such 

materials is the Mooney-Rivlin model. The free energy density 

function of an incompressible Mooney-Rivlin material is: 

 

� = �� ∙ ��� − 3� + �� ∙ ��� − 3� (3) 

 

Where I1 and I2 are the first and second strain invariants: 

 

�� = �� + ��� + ��� (4) 

�� = �� ∙ ��� + �� ∙ ��� + ��� ∙ ��� (5) 

 

However, there is much experimental evidence showing that if 

the swelling degree exceeds a certain value, a virtual 

idealization of mechanical properties occur and C2 can 

practically be considered as zero.6-8 This means that for highly 

swollen networks the Gaussian model can provide an adequate 

approximation. 

 

The stress-strain dependence of a unidirectional deformed gel 

sample may be expressed on the basis of Eqs. 1 and 2. Let us 

consider a cylindrical gel extended along its axis z, so that the 

circular symmetry is maintained. Let h0 and h be the initial 

(reference) and deformed length of the cylinder, respectively. 

Then the principal deformation ratio along the axis z is	�� =
� ��	⁄ ,	and � = �� = �1 ��⁄  for all other directions 

perpendicular to the z axis. Therefore Eq. 1 can be rewritten as: 

����� = �� + �
� ∙ 
 ∙ ���� + 2 ∙ ���� − 3� (6) 

The stress can be derived from Eq. 6 by a standard method.2-5 

The result is called the neo-Hookean law: 

 ! = 
 ∙ ��� − ����� (7) 

where the nominal stress, σN is defined as the ratio of the 

equilibrium elastic force and the undeformed cross-sectional 

area of the sample. 

 

The neo-Hookean law described in Eq.7. is generally applicable 

in most cases, but the suspension of a sample made of an 

extremely soft material results in more complex geometries due 

to the inhomogeneity of stress distribution across the length of 

the sample (see Fig. 2). In order to describe the spatial 

dependence of the equilibrium cross-sectional area in a 

suspended sample we propose a model, which assumes the 

sample is deformed into a series of cylinders or prisms as 

shown in Fig. 1. 

 

 

Fig. 1 Concept of the model. A cylindrical sample is deformed into a series of 

cylinders as a result of suspension, each with its own length, diameter and 

weight. 

The gel cylinder at the very top bears the largest weight, 

therefore this part is the longest and the narrowest. Each 

proceeding cylinder bears less weight and is therefore shorter 

but wider than the previous. At the bottom, the gel piece carries 

no load at all, therefore it undergoes no deformation. In order to 

give a better estimation of the elastic modulus it was thought 

beneficial to use a more generalized form of the neo-Hookean 

law, which utilizes more experimental data. Therefore, we 

included not only the elongation, but also the contraction of a 

given segment of the gel. The neo-Hookean law can thus be 

written in the following form: 

 "�#� = 
 ∙ $����#� − �%��#�& (8) 

where n denotes the sequential number of each sample segment, 

starting from the top of the sample, σR stands for the real stress, 

λe is the vertical deformation ratio defined as the ratio of 

suspended and unsuspended length of a segment, and λr means 

the horizontal deformation ratio of suspended and unsuspended 

diameters of a gel segment. 

 

Eq. 8 can be derived from Eq. 7. by taking into consideration 

the conservation of volumes (� ∙ �� ∙ �� = �� ∙ �%� = 1) as well 

as the general relationship between nominal and real stresses. 

 !�#� = '�(�
)* = '�(�

)�(� ∙ )
�(�
)* =  "�#� ∙ +,∙- .⁄

+*,∙- .⁄ =  "�#� ∙ �%��#� =
 "�#� ∙ �

/0�(� (9) 

where F(n) is the force affecting the cross-sectional area, A(n) 

of the n-th part of the suspended gel peace and A0 means the 

unsuspended cross-sectional area, d and d0 are the diameters of 

the corresponding cross-sections. It must be mentioned that, in 

case of a suspended sample, the actual geometry between two 

adjacent marks is not really a cylinder, but more a conical 

frustum. In order to facilitate modelling, each conical frustum 
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was mathematically transformed into a hypothetical cylinder 

with the same height and volume as the corresponding conical 

frustum, and a diameter, dcalc. This diameter was calculated 

from the equality of volumes: 

123�2 = 4+,5+∙656,
7  (10) 

where dcalc is the equivalent diameter of the hypothetical 

cylinder, and d and D are the measured upper and lower 

diameters of the conical frustum, respectively. 

 

In the proposed model – despite the continuous spatial 

dependence of stresses and deformations – the real stress 

decreases step-by-step from the top of the specimen towards its 

bottom, in accordance with the amount of load under each 

segment. This latter is considered to be constant within each 

individual segment. 

 

The only relevant measurable quantity related to the forces 

affecting a sample segment is the total weight of the sample. 

According to the presented model, each segment is affected by 

the total weight of segments below it but not by the segment in 

question and not by those above it. Therefore, if the sample is 

divided into “n” number of segments, then the first segment is 

affected by the weight of the other “n-1” segments, the second 

by the other “n-2” and so on. The last segment is not affected 

by any other and thus remains undeformed. As the density of 

the sample was assumed to be constant during deformation, the 

weight affecting a certain segment was considered to be 

proportional to its volume, and was calculated accordingly. In 

order to calculate σR, weights were multiplied by the 

gravitational acceleration and were divided by the cross-

sectional area of the segment, which was calculated from the 

equivalent diameter of each hypothetical cylinder. As σR refers 

to real stresses, and not nominal stresses, the required cross-

sectional areas were those of the suspended sample and those of 

the unsuspended. 

 

According to the model, if the position dependent σR, λe and λr 

data can be determined via measurement for each sample 

segment, then plotting σR against $����#� − �%��#�& yields a 

linear curve, and the slope provides the shear modulus of the 

sample. This is only true however as long as G is constant, i.e. 

for small to moderate deformations and constant temperature. 

 

Experimental 

Sample preparation 

For the experiments, gel systems of polyvinyl alcohol (PVA) 

swollen to equilibrium in water were used. The samples were 

prepared from high molecular weight polyvinyl alcohol 

(M=124000-186000 g/mol, Aldrich) cross-linked with 

glutaraldehyde (Merck) in water under acidic conditions 

(pH≈2). The PVA concentration of these hydrogels was 4.5 

wt% at preparation and their crosslink density (CD), which is 

the molar ratio of monomer units to crosslinkers in the system, 

ranged between 300 and 400. The polymer solution, the cross-

linking agent, and the catalyst (1:1 HCl, VWR) were manually 

mixed in beakers and were afterwards poured into cylindrical 

containers. After the crosslinking reaction took place the gels 

were removed from the containers and were put in distilled 

water. The water was then removed and changed several times 

in order to get rid of remnants unreacted materials. Before 

elastic measurements, the gel cylinders were removed from the 

water, and while unsuspended, they were marked with paint 

throughout their length at quasi-equidistant intervals (approx. 1 

cm). 

 

Determination of the elastic modulus by the pendant gel method 

Samples were glued to a cork at their upper ends, afterwards 

they were marked at quasi-equidistant intervals and then they 

were suspended by the extensometer such as shown in Fig. 2. 

The extensometer allowed for smooth lifting of the samples 

which was very important especially in case of the softest 

samples, as it prevented them from tearing at the top, where 

internal stresses were close to the tensile strengths of the 

materials. Photographs were taken of both the unsuspended and 

the suspended samples. All photographs were individually 

calibrated with a digital caliper. The picture resolution was 

initially 10 pix/mm, but was later increased to 100 pix/mm. The 

accuracy of distance measurements was estimated to be ±5 pix. 

During evaluation of the photographs sample diameters were 

measured at each mark along with the distances of adjacent 

marks. 
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Fig. 2 A suspended cylindrical sample. Unsuspended length was approx. 100 mm, 

suspended length was approx. 125 mm. Crosslink density was 350. 

To give the most precise estimation of sample weight at the 

time of suspension, the weight of the samples was measured 

both before and after suspension along with the exact times of 

each weight measurement. As the exact time of the photograph 

taken at suspension was also recorded, the exact weight of the 

sample at suspension could be estimated by linear interpolation. 

Although the weight reduction during a measurement was 

usually only a few percent (around 3-5% in most cases, 

probably due to evaporation), all stresses were calculated from 

sample weights, therefore it was thought beneficial to 

determine sample weights as accurately as possible. The 

accuracy of the analytical balance, provided by its 

manufacturer, was 0.0001 g. 

 

Unidirectional extension measurements 

If an extremely soft gel sample is put into an environment 

which has a density similar or equal to its own, then the 

extension due to its own weight will be reduced, and the 

modulus of the material can be measured by stress-strain 

measurement in an extensometer. For our hydrogel samples we 

used distilled water. Such an experiment is shown in Fig. 3. 

 

 

Fig. 3 Stress-strain measurement of a hydrogel under water. 

Due to the extreme softness of our materials, it was impossible 

to keep the ends of the samples within the specimen clips of the 

extensometer. Therefore, samples were glued to corks which 

were cut at their opposite sides to a proper size, and it was the 

corks which were gripped by the specimen clips of the 

extensometer. The instrument used in these measurements was 

an Instron 5942 extensometer (0.5 kN capacity, 726 mm 

vertical test space). 

 

Results and discussion 

Determination of the elastic modulus by the pendant gel method 

In order to implement the concept presented in Fig. 1 and 

formulated by Eq. 8, λe, λr, and σR must be determined properly 

for all the n segments of the sample. 

The distances between two adjacent marks and the diameters at 

each mark were measured for all samples and the equivalent 

diameters were calculated by Eq.10 for each sample segment, 

both suspended and unsuspended. λe is the ratio of suspended 

and unsuspended distances, and λr is the ratio of the suspended 

and unsuspended equivalent diameters. 

 

Experimental data of λe, and λr, values of succeeding sample 

segments are presented in Fig. 4-Fig. 6 for three hydrogels with 

three different crosslink densities, 300, 350 and 400, 

respectively. It can be seen that while the deformation of most 

segments changes according to the model, i.e. each vertical 

deformation ratio is lower and each horizontal deformation 
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ratio is higher than that of the preceding sample, those of the 

first two and the last sample segments are different from which 

was anticipated and cannot be justified by the proposed model. 

Deviations at the top of the samples are probably due to the 

gluing required to be able to suspend the samples, while those 

at the very bottom are due to the difficulty of measuring the 

geometries of complex shapes and the priority of properly 

estimating the volume of the last sample segment (which is 

required for all stress calculations) compared with the precise 

measurement of the elongation and radial contraction of an 

individual sample segment. Although these segments were also 

involved in all calculations, they produced outliers in most 

cases, and were omitted from the plots which were used to 

determine the modulus. 

 

 

Fig. 4 Elongation and radial contraction of each sample segment in a sample 

(CD_300_2). n is the sequential number of each sample segment from the top to 

the bottom of the sample. 

 

 

Fig. 5 Elongation and radial contraction of each sample segment in a sample 

(CD_350_2). n is the sequential number of each sample segment from the top to 

the bottom of the sample. 

 

Fig. 6 Elongation and radial contraction of each sample segment in a sample 

(CD_400_1). n is the sequential number of each sample segment from the top to 

the bottom of the sample. 

Experimental data were analysed on the basis of Eq. 8. As the 

result of an ordinary least squares regression is correct only if 

the underlying assumptions are true, and is sensitive to the 

violation of its assumptions (e.g. homoscedasticity, 

independency and normal distribution of errors) and especially 

sensitive to outliers, it was thought more convenient to apply a 

robust linear regression model to evaluate experimental results. 

 

 

 

Fig. 7 Elongation, radial contraction and stress-strain relationship of an approx. 

100 mm long sample (CD=350). Shear modulus was calculated according to the 

described model. 
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To visualize the goodness of fit, the modulus calculated as the 

slope of this linear curve was used to simulate the location of 

each mark on the suspended sample from that of the 

unsuspended, by applying the neo-Hookean law to each sample 

segment. The results are shown on Fig. 8. 

 

Fig. 8 Location of each mark on the unsuspended and suspended sample. 

Measured and simulated results. 

As can be seen in Fig. 8 the linear regression did not produce a 

good fit, and it seem like the real modulus of the sample is 

lower than the estimate. The difference was thought to be 

associated with the sensitivity of the model to measurement 

uncertainties and the general applicability of the linear model to 

this problem. 

 

There are various reasons for the low precision of the model. 

Following a bottom-up approach, the first thing to consider is 

the uncertainty associated with measurement results. The theory 

and calculations presented herein are in accordance with the 

relevant international standards.9,10 Measurements in general 

have imperfections that give rise to error. These errors can be 

systematic or random in nature. Systematic errors, or ‘biases’ 

are effects which have a certain quantifiable effect on all 

measurement results. If a recognized effect on a measurement 

result can be quantified and proves to be significant in size 

relative to the required accuracy of the measurement, a 

correction can be applied to compensate for the effect. Random 

errors on the other hand are unpredictable and arise from 

stochastic processes which give rise to variations in repeated 

observations of the measurand. If a general quantity “F” to be 

determined is a function of parameters “x1”, “x2”, … , “xn”, 

then the uncertainty of “F” could be estimated by a Pythagorean 

addition: 

 '� = 8 9'9:;
� ∙  �� + 8 9'9,;

� ∙  �� +⋯+ 8 9'
9=;

� ∙  (�  (11) 

In our experiments the quantity “F” to be studied is the 

modulus and its uncertainty arises from the uncertainty of 

weight and distance measurements. According to the GUM,9,10 

the uncertainty of a weight measurement can be approximated 

by uniform distribution from the accuracy of the analytical 

balance, if it is provided by the manufacturer. Similarly, the 

uncertainty of distances measured by the caliper can also be 

estimated by uniform distribution from the accuracy provided 

by its manufacturer. Regarding the photographs it was assumed 

that all distances can be measured with the same ± 5 pix 

accuracy, and the uncertainty of a distance measurement can be 

approximated by triangular distribution, which is the 

distribution of the sum of two uniformly distributed variables. 

The various sources of uncertainties and their estimated values 

are summarized in Table 1. 

Table 1 Sources of uncertainty in our measurements. 

Measurand Symbol 
Accuracy 

(+/-) 
Distribution Uncertainty 

Weight  >�  
0.0001 

(g) 
uniform  >� = 0.0001�

3 	�A� 
Distance 

(caliper) 
 �.>>�  

0.02 

(mm) 
uniform  �.>>� = 0.02�

3 	�BB� 
Distance 

(photograph) 
 �.CD�  5 (pix) triangular  �.CD� = 5�

6 �GHI� 
 

According to Eq. 11 and Table 1, the uncertainty of a 

photograph calibration can be estimated by the following 

equations: 

J = �.CD
�.>> (12) 

and 

 2� = 8 92
9�.CD;

� ∙  �.CD� + 8 92
9�.>>;

� ∙  �.>>� = �
�.>>, ∙ �J� ∙  �.>>� +

 �.CD� � (13) 

Where c is the photograph resolution or calibration ratio, l.pix is 

the calibration distance measured in pix and l.mm is the same 

distance measured by the caliper in mm. The same way the 

uncertainty of a distance measurement can be estimated from 

the following equations: 

K. BB = �.CD
2  (14) 

and 

 �.>>� = 89�.>>
9�.CD;

� ∙  �.CD� + 89�.>>
92 ;� ∙  2� = �

2, ∙ �K. BB� ∙  2� +
 �.CD� � (15) 

Where l.pix and l.mm are not calibration distances anymore, but 

the actual distances on the sample to be measured. 

 

Based on these considerations the adjustable parameters which 

contribute to the uncertainty of the modulus are the initial 

geometrical parameters of the sample (length, diameter and the 

number of sample segments) and the parameters of the 

calibration (calibration distance and calibration ratio). By 
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assigning values to these quantities one can calculate an 

estimation of the modulus, and by altering these values one can 

screen for those effects which contribute the most to the 

estimated uncertainty. 

 

Although the above equations provided proof for the 

parameters which come into consideration, the uncertainty of 

the modulus cannot be expressed in such a simple form but 

only by a numerical model, therefore the propagation of its 

uncertainty cannot be easily studied by the same method. 

 

The general idea of a Monte Carlo propagation of uncertainty 

calculation is the repeated sampling from the probability 

distributions of each parameter and the calculatation of the 

desired quantity from each sample taken. The result of the 

simulation will be a histogram for the desired quantity. The 

parameters altered in our simulations are presented in Table 2. 

 

Table 2 Paremeters altered during Monte Carlo trials. 

 Symbol Lower (-) Higher (+) Dimension 

Calibration distance lc 10 50 mm 

Calibration ratio c 10 100 pix/mm 

Initial sample length h0 50 100 mm 

Initial sample diameter d0 10 20 mm 

Number of sample 

segments 
N 5 10 - 

 

For each set of parameters, suspended geometries were 

calculated from the unsuspended geometries by the neo-

Hookean law, assuming a fixed 500 Pa modulus for the sample. 

This represented a situation when everything was measured 

precisely and there was no uncertainty associated with 

measurement results. Afterwards, random samples were taken 

around each calculated data assuming a given level of 

uncertainty (Table 1), and from the random samples the 

modulus was calculated by robust linear regression. The 

procedure involved an increasing number of Monte Carlo trials 

(adaptive Monte Carlo method), until the result of interest i.e. 

the standard deviation of the modulus have stabilised, which 

usually required trials in the magnitude of 105. Based on Table 

2 a 2n full factorial simulation experiment was designed, and 

the effect of each parameter on the 0.95 coverage interval of the 

modulus was investigated. The effects are summarized in a 

Pareto chart in Fig. 9. 

 

 

Fig. 9 Pareto chart of effects based on a 2
n
 full factorial experimental design of 

adaptive Monte Carlo simulations. 

Based on Fig. 9 the parameters responsible for the majority of 

uncertainties are the photograph resolution, or calibration ratio 

c, the calibration distance lc, and their interaction lc:c. A 

response surface was constructed to illustrate these effects. 

 

 

Figure 10 Response surface of the effects of photograph resolution and 

calibration distance on the 0.95 coverage interval of the modulus. 

The response surface indicates that by improving the calibration 

i.e. increasing the resolution of the photographs and the 

calibration distance, the precision of the model can be 

significantly increased. This is shown in Fig. 11 and Fig. 12. 
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Fig. 11 Elongation, radial contraction and stress-strain relationship of an approx. 

100 mm long sample (CD≈350). Resolution was increased from 10 pix/mm to 100 

pix/mm. 

 

Fig. 12 Location of each mark on the unsuspended and suspended sample. 

Measured and simulated results. 

Unidirectional extension measurements 

During the measurements the rod and the clips of the 

extensometer were also partially immersed in distilled water. 

These parts were made of materials that had different density 

than the density of the distilled water in which they were 

immersed, and were gradually removed from the water during 

the course of the measurements, which resulted in a time 

dependent buoyancy. Based on two consecutive measurements 

for each sample, the time dependent buoyancy was quantified 

and taken into correction. 

 

 

Fig. 13 Unidirectional extension of a hydrogel sample under distilled water 

(CD_400_1). 

The curve labelled “Sample” shows the classical unidirectional 

stress-strain relationship of a sample under distilled water. 

After the measurement, which lasted until 40 mm extension, the 

distilled water was removed from the container, the sample was 

cut off from the lower cork, leaving it hanging from the upper 

cork, then the distilled water was returned to the container, and 

the sample was returned to its initial position. Afterwards, the 

measurement was performed again, resulting in the curve 

labelled “Blind”. The position of the dashed vertical line 

indicates a state of deformation where �� = 1. Data points to 

the right of the dashed line were omitted from further analysis. 

Results of the second measurement were then subtracted from 

those of the first, and the modulus was estimated as the slope of 

the resulting curve, using a cross-sectional area which was 

calculated from the average of the measured unsuspended 

diameters of the sample. 

 

Improved evaluation of experimental data 

Fig. 7 and Fig. 11 show a linearization of the neo-Hookean law 

where the slope of the fitted linear curve is an estimation of the 

shear modulus itself. However, due to the fact that the ordinate 

of the plot is derived from two weight measurements and a 

distance measurement, and the abscissa is derived from the 

second power of a series of individual distance measurements, 

it had to be verified that the assumptions of linear regression e.g 

weak exogeneity (negligible variance of predictor variables), 

homoscedasticity (constant variance of the response variable), 

or the independence of errors are all met. In this process small 

sample Monte Carlo simulations (50 samplings) were 

performed for a given sample (G=500 Pa, h0=100 mm, d0=20 

mm, N=10) under two different conditions (worst case: c=10 

mm/pix, l.mm=10 mm; best case: c=100mm/pix, l.mm=50 

mm). The results are presented in Fig. 14 and Fig. 15. From the 

two figures it is obvious that imprecise calibration produces 
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strong exogeneity which damages homoscedasticity, resulting 

in potentially big errors in the calculated modulus and thus bad 

correlations between measured and simulated sample 

geometries. 

 

 

Fig. 14 Simulated measurements (G=500 Pa, c=10 pix/mm, l.mm=10 mm, h0=100 

mm, d0=20 mm, N=10). 

The figures indicate that if one is capable of producing high 

resolution photographs, then linear regression is applicable, but 

otherwise other methods are required to determine the most 

probable modulus of the sample. 

 

Fig. 15 Simulated measurements (G=500 Pa, c=100 pix/mm, l.mm=50 mm, 

h0=100 mm, d0=20 mm, N=10). 

Non-linear regression is a convenient alternative as it takes the 

unsuspended distances as its input and applies the neo-Hookean 

law to the unsuspended distances in a certain modulus range, 

and finds the modulus, which produces the best fit. The result 

of such an approximation for the sample previously presented 

in Fig. 8 is presented in Fig. 16. The figure shows that the 

actual modulus of the sample was lower than the one calculated 

by linear regression. 

 

 

Fig. 16 Location of each mark on the unsuspended and suspended sample. 

Measurement and simulations. Simulations were run using moduli from both 

linear and non-linear approximations. 

Comparison with conventional unidirectional extension 

measurements 

It must be stressed that the „conventional” method is not 

conventional at all, due to its various limitations (e.g. 

difficulties of choosing a proper medium) described earlier. In 

our case however, distilled water proved to be a proper 

medium, therefore if the proposed method provided good 

results, the calculated moduli needed to be comparable with 

those determined by the conventional method. Results are 

presented in Table 3. 

 

Table 3 Shear moduli estimated by robust linear and non-linear regression. 

RSS is the residual sum of squares between measured and simulated 

distances for both linear and nonlinear regression. Conv. is shear modulus 

estimated from the results of conventional unidirectional stress-strain 

measurement performed under distilled water. 

  
GR.Lin.Regr. 

(Pa) 

RSS 

(mm2) 
GNonlin.Regr. (Pa) 

RSS 

(mm2) 

Conv. 

(Pa) 

CD300_1 749.2 82.313 1006.8 2.7240 863.8 

CD300_2 779.2 61.85 862.6 6.43 749.7 

CD300_3 621.6 48.50 680 8.03 614.6 

CD350_1 388.4 16.889 417.1 3.4993 462.1 

CD350_2 438.4 294.93 496.2 33.11 565.8 

CD350_3 439.6 938.75 581.6 17.22 616.6 

CD400_1 177.4 346.50 195.5 29.648 173.3 

CD400_2 362.4 171.86 365.5 169.36 343.9 

CD400_3 313.4 86.37 314.6 86.01 334.1 

 

Table 3 shows that the difference between the results of the 

proposed new method and the so called „conventional” method 

differ by no more than approx. 20 % which is acceptable given 

the limitations of the conventional method. 

 

Conclusions 
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In our work we have developed a new method to determine the 

modulus of extremely soft materials from their deformation 

under their own weight. The method is generally applicable to 

all kinds of soft materials irrespective of material composition 

with the restrictions that a cylindrical sample must be prepared 

from them and their deformation must be purely elastic and 

lack any form of plasticity. Test results with polyvinyl alcohol 

hydrogels show good correlation with those from underwater 

measurements which provide experimental proof for the 

applicability of the new method. The most important 

parameters affecting measurement uncertainty are the 

resolution of the photographs taken and the distances used for 

the calibration. The higher the resolution of the photograph and 

the calibration distances, the higher moduli the method can 

accurately determine, but for most commonly available imaging 

equipment, the measurement uncertainty due to pixel density 

constraints restricts the use of the method to moduli under 1000 

Pa. The accuracy of modulus determination can be further 

increased by substituting non-linear regression for linear 

regression. 
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